Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (152)

Search Parameters:
Keywords = odorant sensing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5003 KiB  
Article
Coffees Brewed from Standard Capsules Help to Compare Different Aroma Fingerprinting Technologies—A Comparison of an Electronic Tongue and Electronic Noses
by Biborka Gillay, Zoltan Gillay, Zoltan Kovacs, Viktoria Eles, Tamas Toth, Haruna Gado Yakubu, Iyas Aldib and George Bazar
Chemosensors 2025, 13(7), 261; https://doi.org/10.3390/chemosensors13070261 - 18 Jul 2025
Viewed by 760
Abstract
With the development of various new types of instrumental aroma sensing technologies, there is a need for methodologies that help developers and users evaluate the performance of the different devices. This study introduces a simple method that uses standard coffee beverages, reproducible worldwide, [...] Read more.
With the development of various new types of instrumental aroma sensing technologies, there is a need for methodologies that help developers and users evaluate the performance of the different devices. This study introduces a simple method that uses standard coffee beverages, reproducible worldwide, thus allowing users to compare aroma sensing devices and technologies globally. Eight different variations of commercial coffee capsules were used to brew espresso coffees (40 mL), consisting of either Arabica coffee or a blend of Robusta and Arabica coffee, covering a wide range of sensory attributes. The AlphaMOS Astree electronic tongue (equipped with sensors based on chemically modified field-effect transistor technology) and the AlphaMOS Heracles NEO and the Volatile Scout3 electronic noses (both using separation technology based on gas chromatography) were used to describe the taste and odor profiles of the freshly brewed coffee samples and also to compare them to the various sensory characteristics declared on the original packaging, such as intensity, roasting, acidity, bitterness, and body. Linear discriminant analysis (LDA) results showed that these technologies were able to classify the samples similarly to the pattern of the coffees based on the human sensory characteristics. In general, the arrangement of the different coffee types in the LDA results—i.e., the similarities and dissimilarities in the types based on their taste or smell—was the same in the case of the Astree electronic tongue and the Heracles electronic nose, while slightly different arrangements were found for the Scout3 electronic nose. The results of the Astree electronic tongue and those of the Heracles electronic nose showed the taste and smell profiles of the decaffeinated coffees to be different from their caffeinated counterparts. The Heracles and Scout3 electronic noses provided high accuracies in classifying the samples based on their odor into the sensory classes presented on the coffee capsules’ packaging. Despite the technological differences in the investigated devices, the introduced coffee test could assess the similarities in the taste and odor profiling capacities of the aroma fingerprinting technologies. Since the coffee capsules used for the test can be purchased all over the world in the same quality, these coffees can be used as global standard samples during the comparison of different devices applying different measurement technologies. The test can be used to evaluate instrumentational and data analytical developments worldwide and to assess the potential of novel, cost-effective, accurate, and rapid solutions for quality assessments in the food and beverage industry. Full article
(This article belongs to the Special Issue Electronic Nose and Electronic Tongue for Substance Analysis)
Show Figures

Graphical abstract

46 pages, 9005 KiB  
Review
Chemosensory Receptors in Vertebrates: Structure and Computational Modeling Insights
by Aurore Lamy, Rajesh Durairaj and Patrick Pageat
Int. J. Mol. Sci. 2025, 26(14), 6605; https://doi.org/10.3390/ijms26146605 - 10 Jul 2025
Viewed by 568
Abstract
Chemical communication is based on the release of chemical cues, including odorants, tastants and semiochemicals, which can be perceived by animals and trigger physiological and behavioral responses. These compounds exhibit a wide size and properties range, spanning from small volatile molecules to soluble [...] Read more.
Chemical communication is based on the release of chemical cues, including odorants, tastants and semiochemicals, which can be perceived by animals and trigger physiological and behavioral responses. These compounds exhibit a wide size and properties range, spanning from small volatile molecules to soluble proteins, and are perceived by various chemosensory receptors (CRs). The structure of these receptors is very well conserved across all organisms and within the family to which they belong, the G-protein-coupled receptor (GPCR) family. It is characterized by highly conserved seven-transmembrane (7TM) α-helices. However, the characteristics of these proteins and the methods used to study their structures are limiting factors for resolving their structures. Due to the importance of CRs—especially olfactory and taste receptors, responsible for two of our five basic senses—alternative methods are utilized to overcome these structural challenges. Indeed, in silico structural biology is an expanding field that is very useful for CR structural studies. Since the 1960s, many algorithms have been developed and improved in an attempt to resolve protein structure. We review the current knowledge regarding different vertebrate CRs in this study, with an emphasis on the in silico structural methods employed to improve our understanding of CR structures. Full article
(This article belongs to the Special Issue Membrane Proteins: Structure, Function, and Drug Discovery)
Show Figures

Figure 1

22 pages, 1372 KiB  
Article
A Discrete Choice Experiment to Assess Cat Owners’ Preferences for Topical Antiparasitics and the Comparative Ease of Use of a Combined Selamectin and Sarolaner Formulation: An International Survey
by Constantina N. Tsokana, George Valiakos, Kennedy Mwacalimba, Danielle Riley, Ashley Enstone, Robin Wyn, Tom Metcalf, Emily Melchior, Eleni Pavlidou and Andrea Wright
Animals 2025, 15(13), 1985; https://doi.org/10.3390/ani15131985 - 6 Jul 2025
Viewed by 648
Abstract
Cat owners are involved in their cats’ healthcare, including the prevention of parasitic diseases. However, a comprehensive understanding of their preferences for feline antiparasitics is lacking. This study addresses this gap through a multifaceted methodology comprising three phases. In Phase 1, the physical [...] Read more.
Cat owners are involved in their cats’ healthcare, including the prevention of parasitic diseases. However, a comprehensive understanding of their preferences for feline antiparasitics is lacking. This study addresses this gap through a multifaceted methodology comprising three phases. In Phase 1, the physical properties and usability aspects of seven topical antiparasitic formulations were assessed. Within Phase 2, an ease-of-use study was conducted to evaluate the cat owners’ application experience with deidentified products representing three topical antiparasitics. Phase 3 included the identification and validation of product attributes most valued by pet owners through interviews with cat owners and veterinary experts. The product attributes identified informed the subsequent quantitative discrete choice experiment (DCE), which involved 1040 cat owners from different countries (Australia/New Zealand, Canada, Greece/Spain, and the UK) and aimed to analyze their preferences based on choices among product profiles mirroring four topical antiparasitics: selamectin–sarolaner, moxidectin–fluralaner, moxidectin–imidacloprid, and eprinomectin–esafoxolaner–praziquantel. Phase 1 showed that the selamectin–sarolaner formulation exhibits minimal odor, less stickiness, and less drying time. The ease-of-use study (Phase 2) showed that the blinded product representing the selamectin–sarolaner formulation was characterized by seamless application, rapid dispensing, and a sense of control during application. The quantitative DCE study (Phase 3) indicated a preference for the product profile mirroring the selamectin–sarolaner formulation among a global sample of cat owners. Demographic characteristics such as gender, age, and insurance status influenced their preferences. Key predictors for preferring the selamectin–sarolaner formulation over at least one comparator treatment included the ability to confirm successful administration, age restrictions, ease of application, and the time before the cat could sit on furniture following administration. These findings suggest that cat owners prioritize ease of use, safety, and overall user experience, providing valuable guidance for veterinary practitioners to make informed treatment recommendations. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

16 pages, 5477 KiB  
Article
Enhanced Triethylamine-Sensing Characteristics of SnS2/LaFeO3 Composite
by Hong Wu, Xiaobing Wang, Yuxiang Chen and Xiaofeng Wang
Chemosensors 2025, 13(7), 228; https://doi.org/10.3390/chemosensors13070228 - 23 Jun 2025
Viewed by 414
Abstract
Triethylamine (TEA), a volatile organic compound (VOC), has important applications in industrial production. However, TEA has an irritating odor and potential toxicity, making it necessary to develop sensitive TEA gas sensors with high efficiency. This study focused on preparing LaFeO3 nanoparticles modified [...] Read more.
Triethylamine (TEA), a volatile organic compound (VOC), has important applications in industrial production. However, TEA has an irritating odor and potential toxicity, making it necessary to develop sensitive TEA gas sensors with high efficiency. This study focused on preparing LaFeO3 nanoparticles modified by SnS2 nanosheets (SnS2/LaFeO3 composite) using a hydrothermal method together with sol–gel technique. According to the comparison results of the gas-sensing performance between pure LaFeO3 and SnS2/LaFeO3 composite with varying composition ratios, 5% SnS2/LaFeO3 sensor had a sensitivity for TEA that was 3.2 times higher than pure LaFeO3 sensor. The optimized sensor operates at 140 °C and demonstrates strong stability, selectivity, and long-term durability. Detailed analyses revealed that the SnS2 nanosheets enhanced oxygen vacancy (OV) content and carrier mobility through heterojunction formation with LaFeO3. This study provides insights into improving gas-sensing performance via p-n heterostructure design and proposes a novel LaFeO3-based material for TEA detection. Full article
(This article belongs to the Special Issue Advanced Chemical Sensors for Gas Detection)
Show Figures

Graphical abstract

29 pages, 7911 KiB  
Article
The Dysregulation of Tuning Receptors and Transcription Factors in the Antennae of Orco and Ir8a Mutants in Aedes aegypti Suggests a Chemoreceptor Regulatory Mechanism Involving the MMB/dREAM Complex
by Matthew M. Cooke, Michael S. Chembars and Ronald Jason Pitts
Insects 2025, 16(6), 638; https://doi.org/10.3390/insects16060638 - 17 Jun 2025
Viewed by 936
Abstract
Olfaction has been extensively studied in the yellow fever mosquito, Aedes aegypti. This species uses its sense of smell to find blood hosts and other resources, contributing to its impact as a vector for human pathogens. Two major families of protein-coding genes, [...] Read more.
Olfaction has been extensively studied in the yellow fever mosquito, Aedes aegypti. This species uses its sense of smell to find blood hosts and other resources, contributing to its impact as a vector for human pathogens. Two major families of protein-coding genes, the odorant receptors (Ors) and the ionotropic receptors (Irs), provide the mosquito with sensitivities to distinct classes of volatile compounds in the antennae. Individual tuning receptors in both families require co-receptors for functionality: Orco for all Ors, and Ir8a for many Irs, especially ones that are involved in carboxylic acid detection. In Drosophila melanogaster, disruptions of Orco or Ir8a impair receptor function, tuning receptor expression, and membrane localization, leading to general anosmia. We reasoned that Orco and Ir8a might also be important for coordinated chemosensory receptor expression in the antennal sensory neurons of Ae. aegypti. To test this, we performed RNAseq and differential expression analysis in wildtype versus Orco−/− and Ir8a−/− mutant adult female antennae. Our analyses revealed Or and Ir tuning receptors are broadly under-expressed in Orco−/− mutants, while a subset of tuning Irs are under-expressed in Ir8a mutants. Other chemosensory and non-chemosensory genes are also dysregulated in these mutants. Furthermore, we identify differentially expressed transcription factors including homologs of the Drosophila melanogaster Mip120 gene. These data suggest a previously unknown pleiotropic role for the Orco and Ir8a co-receptors in the coordination of expression of chemosensory receptors within the antennae of Ae. aegypti by participating in a feedback loop involving amos and members of the MMB/dREAM complex. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Graphical abstract

21 pages, 2147 KiB  
Article
TAAR8 in the Brain: Implications for Dopaminergic Function, Neurogenesis, and Behavior
by Taisiia S. Shemiakova, Alisa A. Markina, Evgeniya V. Efimova, Ramilya Z. Murtazina, Anna B. Volnova, Aleksandr A. Veshchitskii, Elena I. Leonova and Raul R. Gainetdinov
Biomedicines 2025, 13(6), 1391; https://doi.org/10.3390/biomedicines13061391 - 6 Jun 2025
Cited by 1 | Viewed by 576
Abstract
Background/Objectives: G protein-coupled trace amine-associated receptors (TAARs) belong to a family of biogenic amine-sensing receptors. TAAR1 is the best-investigated receptor of this family, and TAAR1 agonists are already being tested in clinical studies for the treatment of schizophrenia, anxiety, and depression. Meanwhile, other [...] Read more.
Background/Objectives: G protein-coupled trace amine-associated receptors (TAARs) belong to a family of biogenic amine-sensing receptors. TAAR1 is the best-investigated receptor of this family, and TAAR1 agonists are already being tested in clinical studies for the treatment of schizophrenia, anxiety, and depression. Meanwhile, other TAARs (TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9 in humans) are mostly known for their olfactory function, sensing innate odors. At the same time, there is growing evidence that these receptors may also be involved in brain function. TAAR8 is the least studied TAAR family member, and currently, there is no data on its function in the mammalian central nervous system. Methods: We generated triple knockout (tTAAR8-KO) mice lacking all murine Taar8 isoforms (Taar8a, Taar8b, and Taar8c) using CRISPR-Cas9 technology. In this study, we performed the first phenotyping of tTAAR8-KO mice for behavioral, electrophysiological, and neurochemical characteristics. Results: During the study, we found a number of alterations specific to tTAAR8-KO mice compared to controls. tTAAR8-KO mice demonstrated better short-term memory, more depressive-like behavior, and higher body temperature. Also, we observed changes in the dopaminergic system, brain electrophysiological activity, and adult neurogenic functions in mice lacking Taar8 isoforms. Conclusions: Based on the data obtained, it can be assumed that the physiological TAAR8 role is not limited only to the innate olfactory function, as previously proposed. TAAR8 could be involved in brain function, in particular in dopamine function regulation. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

37 pages, 4556 KiB  
Review
Current Opportunities and Trends in the Gas Sensor Market: A Focus on e-Noses and Their Applications in Food Industry
by Selene Mor, Buse Gunay, Michele Zanotti, Michele Galvani, Stefania Pagliara and Luigi Sangaletti
Chemosensors 2025, 13(5), 181; https://doi.org/10.3390/chemosensors13050181 - 12 May 2025
Viewed by 1569
Abstract
Electronic noses (e-noses) are devices developed to recognize/classify odors and used in many fields, matching the current societal needs and concerns, such as food integrity and quality control, environmental monitoring, medical diagnostics, safety, and security in urban and industrial settlements. In this study, [...] Read more.
Electronic noses (e-noses) are devices developed to recognize/classify odors and used in many fields, matching the current societal needs and concerns, such as food integrity and quality control, environmental monitoring, medical diagnostics, safety, and security in urban and industrial settlements. In this study, we review the application fields of e-noses based on a market analysis of currently available devices. A total of 44 companies active up to 2024, as well as 265 products, have been identified by considering the web pages of companies that feature e-noses among their products. These devices have been classified according to (i) the sensing mechanisms underlying the device performances and (ii) the application fields. The most diffused sensing devices/systems are chemiresistors (12.8%), electrochemical sensors (13.0%), catalytic beads (12.4%), and those based on optical detection techniques (16.0%). Commercial e-noses find large application in the industrial (21.0%) and chemical and petrochemical (21.0%) fields. A focus is made on the food and beverage application field, which is still a minor part of the overall share (6.0%) but is rapidly increasing and plays a relevant role in future applications where safety, sustainability, and quality issues are strictly intertwined. From this study, a rather complex picture emerges, and a proper taxonomy is expected to correctly classify the different kinds of e-noses. Full article
Show Figures

Figure 1

26 pages, 5862 KiB  
Review
Recent Advances and Applications of Odor Biosensors
by Hongchao Deng, Zhangyu Chen, Pengfei Feng, Lifeng Tian, Huijuan Zong and Takamichi Nakamoto
Electronics 2025, 14(9), 1852; https://doi.org/10.3390/electronics14091852 - 1 May 2025
Viewed by 984
Abstract
Many odorants fall outside the sensing scope of the human olfactory system, yet they play quite important roles in our daily lives. Thus, numerous devices have been invented for qualitative or quantitative odor detection issues. Some analytical instruments, e.g., gas chromatography–mass spectrometry, are [...] Read more.
Many odorants fall outside the sensing scope of the human olfactory system, yet they play quite important roles in our daily lives. Thus, numerous devices have been invented for qualitative or quantitative odor detection issues. Some analytical instruments, e.g., gas chromatography–mass spectrometry, are precise and reliable, but also expensive and bulky. Odor sensors with a smaller size and a lower cost play an important role in on-site rapid odor detection. The sensitivity and selectivity of these sensors are mainly determined by their sensing materials. Inspired by the powerful animal olfactory system, researchers extract diverse biological materials and combine them with transducers to form odor biosensors. In this paper, we introduce odor biosensors based on transducer types such as microelectrodes, fluorescence, surface plasmon resonance, field-effect transistor, quartz crystal micro-balance, etc. Then, we list several applications of odor biosensors, such as environmental monitoring, disease diagnosis, food quality control, and security. In addition, we analyze the future development of odor biosensors. Full article
(This article belongs to the Special Issue Advanced Techniques in Biorobotics)
Show Figures

Figure 1

33 pages, 3639 KiB  
Review
“Pepper”: Different Spices, One Name—Analysis of Sensory and Biological Aspects
by Pierina Díaz-Guerrero, Sofia Panzani, Chiara Sanmartin, Chiara Muntoni, Isabella Taglieri and Francesca Venturi
Molecules 2025, 30(9), 1891; https://doi.org/10.3390/molecules30091891 - 24 Apr 2025
Viewed by 1595
Abstract
Spices are a part of modern and ancient cultures due to their recognized culinary and medicinal properties. Pepper is commonly used in many recipes; however, in the field of gastronomy, the term “pepper” usually refers to a group that includes several different spices, [...] Read more.
Spices are a part of modern and ancient cultures due to their recognized culinary and medicinal properties. Pepper is commonly used in many recipes; however, in the field of gastronomy, the term “pepper” usually refers to a group that includes several different spices, such as black pepper (Piper nigrum L.), cubeb pepper (Piper cubeba L.f.), long pepper (Piper longum L.), pink pepper (Schinus terebinthifolius Raddi), allspice (Pimenta dioica L. Merrill), and Japanese pepper (Zanthoxylum piperitum DC.). Despite the extensive study of the chemical characterization and medicinal and culinary properties of “pepper”, sensory analysis (color, aroma profile, odor profile, and chemesthesis) of these spices have not been completed. Therefore, the aim of this review was to identify the strengths, weaknesses, opportunities, and threats within the spice supply chain considering these six “peppers” to analyze their positive and negative aspects. Finally, we selected the most representative molecules and properties of spices referred to as “pepper” to expand the research focus and highlight their key aspects related to health and sensory science for future applications. In this sense, this review provides a new strategic guideline that will help us understand and assess the key internal and external factors of pepper, allowing them to be applied in different sectors with different approaches. Full article
(This article belongs to the Special Issue Nutrition and Sensory Analysis of Food)
Show Figures

Figure 1

13 pages, 9032 KiB  
Article
Cortical Representation of Food-Related Odors in Gustatory Areas Differs According to Their Taste Association: An fMRI Study
by Mariano Mastinu, Divesh Thaploo, Jonathan Warr and Thomas Hummel
Brain Sci. 2025, 15(4), 418; https://doi.org/10.3390/brainsci15040418 - 19 Apr 2025
Viewed by 709
Abstract
Background/Objectives: Gustatory stimuli are primarily processed in the insula, while the primary olfactory cortex involves the piriform cortex. Relatively little is known about the central-nervous integration of stimuli from foods. The main aim of this study in healthy participants was to evaluate [...] Read more.
Background/Objectives: Gustatory stimuli are primarily processed in the insula, while the primary olfactory cortex involves the piriform cortex. Relatively little is known about the central-nervous integration of stimuli from foods. The main aim of this study in healthy participants was to evaluate the processing of olfactory stimuli which are associated with gustatory sensations. Methods: Using a 3T MRI scanner, 47 healthy, right-handed women (mean age: 26.2 ± 4.7 years) with normal senses of taste and smell underwent functional scans. During the analysis, we presented isointense odors (2 “sweet” and 2 “sour”) to subjects using air-dilution olfactometry. Odor delivery (8 s) was alternated with the presentation of odorless air (12 s) and was repeated 10 times. Between each session, participants were asked to associate a taste with the odor. Results: The gustatory areas (insula and frontal operculum) were activated by exposure to odors. In addition, increased activations were observed in the bilateral angular gyrus, orbitofrontal cortex, and right caudate and nucleus accumbens during the perception of sour-like odors compared to sweet-like odors. Conclusions: The distinct neural responses to different odor categories suggest that the brain processes odors with varying hedonic and sensory characteristics through distinct neural pathways. Future research could explore how these findings translate to real-world food preferences and dietary behaviors, particularly in relation to individual differences in taste perception. Full article
Show Figures

Figure 1

14 pages, 1633 KiB  
Review
Olfactory Capacity and Obesity: A Narrative Review of the Literature
by Samuel Durán-Agüero and Ana María Obregón-Rivas
Appl. Sci. 2025, 15(7), 3590; https://doi.org/10.3390/app15073590 - 25 Mar 2025
Viewed by 1177
Abstract
The sense of smell plays a crucial role in food perception, influencing dietary choices and eating behavior. This narrative review explores the relationship between olfactory function and obesity, addressing the question: how does smell influence the perception, selection, and eating behavior of food? [...] Read more.
The sense of smell plays a crucial role in food perception, influencing dietary choices and eating behavior. This narrative review explores the relationship between olfactory function and obesity, addressing the question: how does smell influence the perception, selection, and eating behavior of food? The review highlights that individuals with obesity may experience reduced olfactory sensitivity due to hormonal imbalances, such as elevated leptin and reduced ghrelin levels, which can alter odor perception and lead to unhealthy food preferences. Additionally, those with olfactory dysfunction may compensate by seeking saltier or sweeter foods, increasing the risk of obesity. The review also notes that olfactory responses vary across age groups, with some obese adolescents exhibiting greater olfactory sensitivity. The impact of the COVID-19 pandemic on olfactory function and eating habits is discussed, emphasizing the need for interventions that incorporate sensory aspects of eating to combat obesity. A comprehensive approach involving neuroscience, psychology, and public health is recommended to develop effective and personalized solutions for obesity prevention and treatment. Full article
(This article belongs to the Special Issue Food Security, Nutrition, and Public Health)
Show Figures

Figure 1

18 pages, 7165 KiB  
Article
Experience Embedding a Compact eNose in an Indoor Mobile Delivery Robot for the Early Detection of Gas Leaks
by Ricard Bitriá, Jordi Palacín, Elena Rubies and Eduard Clotet
Appl. Sci. 2025, 15(7), 3430; https://doi.org/10.3390/app15073430 - 21 Mar 2025
Viewed by 481
Abstract
Indoor transport robots are currently a key robotics application in large industrial assembly lines, and a similar future deployment as indoor mobile delivery robots in large horizontal or vertical buildings can be expected. This deployment can be accelerated if the transport robot is [...] Read more.
Indoor transport robots are currently a key robotics application in large industrial assembly lines, and a similar future deployment as indoor mobile delivery robots in large horizontal or vertical buildings can be expected. This deployment can be accelerated if the transport robot is also capable of performing other valuable tasks within buildings. In this direction, this paper presents the first results obtained by embedding a compact, low-power electronic nose (also known as an eNose) in an indoor mobile delivery robot. The objective of this implementation is the evaluation of a delivery robot as an early detector of gas leaks. The general advantage of using the gas sensing capabilities of an eNose is that it can be simultaneously trained to detect a single specific gas or a complex odor composed of various volatile chemical compounds. Experimental application results obtained in real operation conditions have confirmed that a mobile delivery robot embedded with a compact eNose can detect ethanol leaks while making a package delivery inside a building. Full article
(This article belongs to the Special Issue Recent Advances in Mechatronic and Robotic Systems)
Show Figures

Figure 1

23 pages, 6496 KiB  
Article
An Exploration of the Chemical Signals and Neural Pathways Driving the Attraction of Meloidogyne incognita and Caenorhabditis elegans to Favorable Bacteria
by Xunda Qin, Wuqin Wang, Chonglong Wei, Hao Cen, Liping Deng, Dandan Tan, Minghe Mo and Li Ma
Agronomy 2025, 15(3), 590; https://doi.org/10.3390/agronomy15030590 - 27 Feb 2025
Viewed by 559
Abstract
Root-knot nematodes (RKNs: Meloidogyne sp.) are among the most devastating plant pathogens. Their chemotaxis-driven host-seeking activity is critical for RKNs’ infection success. Using attractants derived from bacterial volatile organic compounds (BVOCs) to interrupt the host-seeking is promising for the management of RKNs. However, [...] Read more.
Root-knot nematodes (RKNs: Meloidogyne sp.) are among the most devastating plant pathogens. Their chemotaxis-driven host-seeking activity is critical for RKNs’ infection success. Using attractants derived from bacterial volatile organic compounds (BVOCs) to interrupt the host-seeking is promising for the management of RKNs. However, little is known about how BVOCs contribute to the attractiveness of RKNs. Here, we provide a first evaluation of the attractive potential of taxonomically diverse bacteria from different environments and assemble a previously unidentified repertoire of bi-attractive bacteria to M. incognita and Caenorhabditis elegans. We found that the attraction strength of the preferred bacteria to the nematodes was positively correlated with the abundance and amounts of ketones in the BVOC profiles. This suggested that ketones are key for BVOC-mediated attraction. In our behavioral experiments using ketone compounds, we provide evidence that the attractiveness of the nematodes to the preferred bacteria arises specifically from ketone odor cues, a phenomenon not reported previously. This study demonstrates for the first time that a specific ketone blend naturally occurring within the BVOC profiles from the preferred bacteria serves as a key odorant regulating their enhanced attraction toward the nematodes. We used genetic methods to show that the AWCON neurons are important for worms to sense the ketones derived from the preferred bacteria and drive attraction to these bacteria. Our study may serve as a platform for a better understanding of the chemical and neuronal basis for ketone-mediated bacteria–nematode interactions and the development of new BVOCs as attractants in RKNs’ management. Full article
Show Figures

Figure 1

13 pages, 7585 KiB  
Article
Harnessing Odorant Receptor Activation to Suppress Real Malodor
by Reina Kanemaki, Kahori Kishigami, Mei Saito, Masafumi Yohda and Yosuke Fukutani
Int. J. Mol. Sci. 2025, 26(4), 1566; https://doi.org/10.3390/ijms26041566 - 13 Feb 2025
Viewed by 1234
Abstract
Mammals, including humans, sense smell by the responses of odorant receptors (ORs) to odor molecules. We have developed an effective method to identify novel antagonists capable of suppressing the pungent odor of cat urine by targeting specific ORs. Since odors are typically complex [...] Read more.
Mammals, including humans, sense smell by the responses of odorant receptors (ORs) to odor molecules. We have developed an effective method to identify novel antagonists capable of suppressing the pungent odor of cat urine by targeting specific ORs. Since odors are typically complex mixtures of multiple volatile compounds, olfactory perception can vary depending on the composition. We analyzed the response of ORs to cat urine odor using vapor stimulation assays to identify the responding ORs. Gas chromatography–mass spectrometry was then performed to identify compounds eliciting responses from these ORs. Trace-amine-associated receptor 5 (TAAR5) demonstrated a significant response associated with the odor intensity of cat urine, identifying trimethylamine as a major contributor to the strong odor. From hundreds of candidate compounds, we identified several novel antagonists that exhibited greater efficacy than a known TAAR5 antagonist. These compounds not only reduced the responses of TAAR5-expressing cells to cat urine odor but also significantly reduced odor intensity and improved sensory pleasantness in human tests. Our findings suggest that targeting ORs responsive to specific odors, without isolating their individual components, is a promising strategy for developing deodorizing agents against complex malodors like cat urine odor. This study emphasizes the value of using real odor mixtures to enhance our understanding of odor perception. Full article
(This article belongs to the Special Issue Membrane Proteins: Structure, Function, and Drug Discovery)
Show Figures

Graphical abstract

19 pages, 9936 KiB  
Article
Identification of Candidate Olfactory Genes in the Antennal Transcriptome of Loxostege sticticalis Trapped by Three Different Sex Pheromone Blends
by Mengke Zhang, Sumei Zhao, Zhiping Xue, Jiaying Sun, Jiangning Hao, Fengzhi Deng, Junxia Huang, Caroline Du and Yongjun Du
Insects 2025, 16(2), 152; https://doi.org/10.3390/insects16020152 - 3 Feb 2025
Viewed by 934
Abstract
Insects sense intraspecific or interspecific information about the chemical substances in the habitat through the sensitive olfactory system to carry out foraging, mating, oviposition, and other activities. The antennae serve as the primary olfactory organs in insects. The olfactory process involves the participation [...] Read more.
Insects sense intraspecific or interspecific information about the chemical substances in the habitat through the sensitive olfactory system to carry out foraging, mating, oviposition, and other activities. The antennae serve as the primary olfactory organs in insects. The olfactory process involves the participation of many proteins, such as odorant-binding proteins (OBPs) and odorant receptors (ORs), but ORs play a central role in olfactory specificity and sensitivity. The beet webworm, Loxostege sticticalis, is an omnivorous agricultural pest that endangers crops and poses a significant risk to the agricultural and animal husbandry production in northern China. In this study, Illumina sequencing was conducted on the antennal transcriptome of male L. sticticalis trapped by three different sex pheromone blends. A total of 10,320 DEGs were identified, from which 46 candidate olfactory genes were selected for further analysis. These candidate olfactory genes comprise 13 odorant receptors, 6 ionotropic receptors (IRs), 3 gustatory receptors (GRs), 12 odorant-binding proteins, and 13 chemosensory proteins (CSPs). In summary, we analyzed the antennal transcriptome of male L. sticticalis trapped by three different sex pheromone blends and identified several candidate olfactory genes. This discovery offers a foundation for further molecular-level investigations into the olfactory system of L. sticticalis. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

Back to TopTop