The Dysregulation of Tuning Receptors and Transcription Factors in the Antennae of Orco and Ir8a Mutants in Aedes aegypti Suggests a Chemoreceptor Regulatory Mechanism Involving the MMB/dREAM Complex
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Knockout Strains
2.2. Mosquitoes
2.3. Antennal Dissections
2.4. RNA Extractions
2.5. RNAseq
2.6. Data Analysis
2.6.1. RNAseq Data Preparation
2.6.2. Annotation Files Preparation
2.6.3. RNAseq Analysis
2.7. Transcription Factor Analysis
2.8. Upstream Motif Analysis
2.9. qRT-PCR Validation
3. Results
3.1. Strain Confirmation
3.2. Sample Statistics
3.3. Odorant Receptors Are Under-Expressed in Aedes Aegypti Orco−/−
3.4. Chemoreceptor Dysregulation in Aedes Aegypti Ir8a−/−
3.5. Molecular Pathways and Transcription Factors Involved in Chemosensory Regulation
3.6. Motifs Identified Upstream of Differentially Expressed Genes
3.7. qRT-PCR Validates RNAseq
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Orco | Odorant Receptor Co-Receptor |
OrX | Odorant Receptor Tuning Receptor |
IrX | Ionotropic Receptor Tuning Receptor |
GrX | Gustatory Receptor Tuning Receptor |
DPE | Days Post Eclosion |
ZT | Zeitgeber Time |
GAF | General Annotation File |
GFF | Generic Feature File |
OSN | Olfactory Sensory Neuron |
ORN | Odorant Receptor Neuron |
DEG | Differentially Expressed Gene |
References
- Matthews, B.J.; Vosshall, L.B. How to turn an organism into a model organism in 10 ‘easy’ steps. J. Exp. Biol. 2020, 223, jeb218198. [Google Scholar] [CrossRef]
- Herre, M.; Goldman, O.V.; Lu, T.C.; Caballero-Vidal, G.; Qi, Y.; Gilbert, Z.N.; Gong, Z.; Morita, T.; Rahiel, S.; Ghaninia, M.; et al. Non-canonical odor coding in the mosquito. Cell 2022, 185, 3104–3123. [Google Scholar] [CrossRef]
- Task, D.; Lin, C.C.; Vulpe, A.; Afify, A.; Ballou, S.; Brbic, M.; Schlegel, P.; Raji, J.; Jefferis, G.; Li, H.; et al. Chemoreceptor co-expression in Drosophila melanogaster olfactory neurons. Elife 2022, 11, e72599. [Google Scholar] [CrossRef]
- Benton, R. Drosophila olfaction: Past, present and future. Proc. Biol. Sci. 2022, 289, 20222054. [Google Scholar] [CrossRef]
- Bohbot, J.; Pitts, R.J.; Kwon, H.W.; Rutzler, M.; Robertson, H.M.; Zwiebel, L.J. Molecular characterization of the Aedes aegypti odorant receptor gene family. Insect. Mol. Biol. 2007, 16, 525–537. [Google Scholar] [CrossRef]
- Ai, M.; Min, S.; Grosjean, Y.; Leblanc, C.; Bell, R.; Benton, R.; Suh, G.S. Acid sensing by the Drosophila olfactory system. Nature 2010, 468, 691–695. [Google Scholar] [CrossRef]
- Barrows, W.M. The reactions of the Pomace fly, Drosophila ampelophila loew, to odorous substances. J. Exp. Zool. 1907, 4, 515–537. [Google Scholar] [CrossRef]
- Shaw, W.R.; Catteruccia, F. Vector biology meets disease control: Using basic research to fight vector-borne diseases. Nat. Microbiol. 2019, 4, 20–34. [Google Scholar] [CrossRef]
- WHO. Dengue and Severe Dengue. Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed on 12 December 2024).
- de Almeida, M.T.; Merighi, D.G.S.; Visnardi, A.B.; Boneto Goncalves, C.A.; Amorim, V.M.F.; Ferrari, A.S.A.; de Souza, A.S.; Guzzo, C.R. Latin America’s Dengue Outbreak Poses a Global Health Threat. Viruses 2025, 17, 57. [Google Scholar] [CrossRef]
- Vinauger, C.; Lutz, E.K.; Riffell, J.A. Olfactory learning and memory in the disease vector mosquito Aedes aegypti. J. Exp. Biol. 2014, 217, 2321–2330. [Google Scholar] [CrossRef]
- Mitra, S.; Pinch, M.; Kandel, Y.; Li, Y.; Rodriguez, S.D.; Hansen, I.A. Olfaction-related gene expression in the antennae of female mosquitoes from common Aedes aegypti laboratory strains. Front. Physiol. 2021, 12, 668236. [Google Scholar] [CrossRef]
- Tallon, A.K.; Lorenzo, M.G.; Moreira, L.A.; Martinez Villegas, L.E.; Hill, S.R.; Ignell, R. Dengue infection modulates locomotion and host seeking in Aedes aegypti. PLoS Neglected Trop. Dis. 2020, 14, e0008531. [Google Scholar] [CrossRef]
- Montell, C.; Zwiebel, L.J. Chapter Ten—Mosquito Sensory Systems. In Advances in Insect Physiology; Raikhel, A.S., Ed.; Academic Press: Cambridge, MA, USA, 2016; Volume 51, pp. 293–328. [Google Scholar]
- Jones, W.D.; Cayirlioglu, P.; Kadow, I.G.; Vosshall, L.B. Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 2007, 445, 86–90. [Google Scholar] [CrossRef]
- Kwon, J.Y.; Dahanukar, A.; Weiss, L.A.; Carlson, J.R. The molecular basis of CO2 reception in Drosophila. Proc. Natl. Acad. Sci. USA 2007, 104, 3574–3578. [Google Scholar] [CrossRef]
- Sparks, J.T.; Dickens, J.C. Mini review: Gustatory reception of chemicals affecting host feeding in aedine mosquitoes. Pestic. Biochem. Physiol. 2017, 142, 15–20. [Google Scholar] [CrossRef]
- Bohbot, J.D.; Sparks, J.T.; Dickens, J.C. The maxillary palp of a model of multisensory integration. Insect Biochem. Mol. 2014, 48, 29–39. [Google Scholar] [CrossRef]
- Matthews, B.J.; Dudchenko, O.; Kingan, S.B.; Koren, S.; Antoshechkin, I.; Crawford, J.E.; Glassford, W.J.; Herre, M.; Redmond, S.N.; Rose, N.H.; et al. Improved reference genome of informs arbovirus vector control. Nature 2018, 563, 501–507. [Google Scholar] [CrossRef]
- Benton, R.; Vannice, K.S.; Gomez-Diaz, C.; Vosshall, L.B. Variant Ionotropic Glutamate Receptors as Chemosensory Receptors in Drosophila. Cell 2009, 136, 149–162. [Google Scholar] [CrossRef]
- Clyne, P.J.; Warr, C.G.; Freeman, M.R.; Lessing, D.; Kim, J.; Carlson, J.R. A novel family of divergent seven-transmembrane proteins: Candidate odorant receptors in Drosophila. Neuron 1999, 22, 327–338. [Google Scholar] [CrossRef]
- Rytz, R.; Croset, V.; Benton, R. Ionotropic receptors (IRs): Chemosensory ionotropic glutamate receptors in Drosophila and beyond. Insect Biochem. Mol. Biol. 2013, 43, 888–897. [Google Scholar] [CrossRef]
- Wicher, D.; Miazzi, F. Functional properties of insect olfactory receptors: Ionotropic receptors and odorant receptors. Cell Tissue Res. 2021, 383, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Pullmann-Lindsley, H.; Huff, R.M.; Boyi, J.; Pitts, R.J. Odorant receptors for floral- and plant-derived volatiles in the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae). PLoS ONE 2024, 19, e0302496. [Google Scholar] [CrossRef]
- Ray, G.; Huff, R.M.; Castillo, J.S.; Bellantuono, A.J.; DeGennaro, M.; Pitts, R.J. Carboxylic acids that drive mosquito attraction to humans activate ionotropic receptors. PLoS Neglected Trop. Dis. 2023, 17, e0011402. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Godino, L.L.; Rytz, R.; Bargeton, B.; Abuin, L.; Arguello, J.R.; Peraro, M.D.; Benton, R. Olfactory receptor pseudo-pseudogenes. Nature 2016, 539, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Raji, J.I.; Melo, N.; Castillo, J.S.; Gonzalez, S.; Saldana, V.; Stensmyr, M.C.; DeGennaro, M. Aedes aegypti mosquitoes detect acidic volatiles found in human odor using the IR8a pathway. Curr. Biol. 2019, 29, 1253–1262. [Google Scholar] [CrossRef]
- Raji, J.I.; Potter, C.J. Chemosensory ionotropic receptors in human host-seeking mosquitoes. Curr. Opin. Insect Sci. 2022, 54, 100967. [Google Scholar] [CrossRef]
- Cooke, M.; Chembars II, M.S.; Pitts, R.J. The conserved IR75 subfamily mediates carboxylic acid detection in insects of public health and agricultural importance. J. Insect Sci. 2025, 25, ieaf012. [Google Scholar] [CrossRef]
- Hwang, Y.-S.; Schultz, G.W.; Axelrod, H.; Kramer, W.L.; Mulla, M.S. Ovipositional repellency of fatty acids and their derivatives against Culex and Aedes mosquitoes. Environ. Entomol. 1982, 11, 223–226. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, L.; Wang, B.; Guan, Z.; Dong, Z.; Zhang, J.; Cao, S.; Yang, L.; Wang, B.; Gong, Z.; et al. Structural basis for odorant recognition of the insect odorant receptor OR-Orco heterocomplex. Science 2024, 384, 1453–1460. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, A.Q.; Ryu, J.; Del Marmol, J. Structural basis of odor sensing by insect heteromeric odorant receptors. Science 2024, 384, 1460–1467. [Google Scholar] [CrossRef]
- Huff, R.M.; Pitts, R.J. Carboxylic acid responses by a conserved odorant receptor in culicine vector mosquitoes. Insect Mol. Biol. 2020, 29, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Morita, T.; Lyn, N.G.; von Heynitz, R.K.; Goldman, O.V.; Sorrells, T.R.; DeGennaro, M.; Matthews, B.J.; Houri-Zeevi, L.; Vosshall, L.B. Cross-modal sensory compensation increases mosquito attraction to humans. Sci. Adv. 2025, 11, eadn5758. [Google Scholar] [CrossRef]
- De Obaldia, M.E.; Morita, T.; Dedmon, L.C.; Boehmler, D.J.; Jiang, C.S.; Zeledon, E.V.; Cross, J.R.; Vosshall, L.B. Differential mosquito attraction to humans is associated with skin-derived carboxylic acid levels. Cell 2022, 185, 4099–4116. [Google Scholar] [CrossRef] [PubMed]
- Larsson, M.C.; Domingos, A.I.; Jones, W.D.; Chiappe, M.E.; Amrein, H.; Vosshall, L.B. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 2004, 43, 703–714. [Google Scholar] [CrossRef]
- DeGennaro, M.; McBride, C.S.; Seeholzer, L.; Nakagawa, T.; Dennis, E.J.; Goldman, C.; Jasinskiene, N.; James, A.A.; Vosshall, L.B. Orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature 2013, 498, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Ai, M.; Blais, S.; Park, J.Y.; Min, S.; Neubert, T.A.; Suh, G.S. Ionotropic glutamate receptors IR64a and IR8a form a functional odorant receptor complex in vivo in Drosophila. J. Neurosci. 2013, 33, 10741–10749. [Google Scholar] [CrossRef]
- Benton, R.; Sachse, S.; Michnick, S.W.; Vosshall, L.B. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol. 2006, 4, e20. [Google Scholar] [CrossRef] [PubMed]
- Abuin, L.; Prieto-Godino, L.L.; Pan, H.; Gutierrez, C.; Huang, L.; Jin, R.; Benton, R. In vivo assembly and trafficking of olfactory Ionotropic Receptors. BMC Biol. 2019, 17, 34. [Google Scholar] [CrossRef]
- Chiang, A.; Priya, R.; Ramaswami, M.; Vijayraghavan, K.; Rodrigues, V. Neuronal activity and Wnt signaling act through Gsk3-beta to regulate axonal integrity in mature Drosophila olfactory sensory neurons. Development 2009, 136, 1273–1282. [Google Scholar] [CrossRef]
- Hueston, C.E.; Olsen, D.; Li, Q.; Okuwa, S.; Peng, B.; Wu, J.; Volkan, P.C. Chromatin Modulatory Proteins and Olfactory Receptor Signaling in the Refinement and Maintenance of Fruitless Expression in Olfactory Receptor Neurons. PLoS Biol. 2016, 14, e1002443. [Google Scholar] [CrossRef]
- Task, D.; Potter, C.J. Rapid degeneration of Drosophila olfactory neurons in Orco mutant maxillary palps. MicroPubl. Biol. 2021. [CrossRef]
- Long, T.; Mohapatra, P.; Ballou, S.; Menuz, K. Odorant receptor co-receptors affect expression of tuning receptors in Drosophila. Front. Cell Neurosci. 2024, 18, 1390557. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.; van der Goes van Naters, W.; Shiraiwa, T.; Carlson, J.R. Mechanisms of odor receptor gene choice in Drosophila. Neuron 2007, 53, 353–369. [Google Scholar] [CrossRef]
- Khan, M.; Vaes, E.; Mombaerts, P. Regulation of the probability of mouse odorant receptor gene choice. Cell 2011, 147, 907–921. [Google Scholar] [CrossRef]
- Magklara, A.; Lomvardas, S. Stochastic gene expression in mammals: Lessons from olfaction. Trends Cell Biol. 2013, 23, 449–456. [Google Scholar] [CrossRef]
- Jafari, S.; Alkhori, L.; Schleiffer, A.; Brochtrup, A.; Hummel, T.; Alenius, M. Combinatorial activation and repression by seven transcription factors specify Drosophila odorant receptor expression. PLoS Biol. 2012, 10, e1001280. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Goldman, A.; Carlson, J. Positive and Negative Regulation of Odor Receptor Gene Choice in Drosophila by Acj6. J. Neurosci. 2009, 29, 12940–12947. [Google Scholar] [CrossRef]
- Jafari, S.; Alenius, A. Cis-regulatory mechanisms for robust olfactory sensory neuron class-restricted odorant receptor gene expression in Drosophila. PLOS Genet. 2015, 11, e1005051. [Google Scholar] [CrossRef]
- Tichy, A.L.; Ray, A.; Carlson, J.R. A new Drosophila POU Gene, pdm3, acts in odor receptor expression and axon targeting of olfactory neurons. J. Neurosci. 2008, 28, 7121–7129. [Google Scholar] [CrossRef]
- Gonzalez, A.; Jafari, S.; Zenere, A.; Alenius, M.; Altafini, C. Thermodynamic model of gene regulation for the Or59b olfactory receptor in Drosophila. PLoS Comp. Biol. 2019, 15, e1006709. [Google Scholar] [CrossRef]
- Ray, A.; van der Goes van Naters, W.; Carlson, J.R. A regulatory code for neuron-specific odor receptor expression. PLoS Biol. 2008, 6, e125. [Google Scholar] [CrossRef] [PubMed]
- Mika, K.; Cruchet, S.; Chai, C.P.; Prieto-Godino, L.L.; Auer, T.O.; Pradervand, S.; Benton, R. Olfactory receptor-dependent receptor repression in Drosophila. Sci. Adv. 2021, 7, eabe3745. [Google Scholar] [CrossRef] [PubMed]
- McFarlane, M.; Almire, F.; Kean, J.; Donald, C.L.; McDonald, A.; Wee, B.; Lauréti, M.; Varjak, M.; Terry, S.; Vazeille, M.; et al. The Aedes aegypti Domino ortholog p400 regulates antiviral exogenous small interfering RNA pathway activity and ago-2 expression. Msphere 2020, 5, e00081-20. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Mejía, A.; Mejía-Jaramillo, A.M.; Fernandez, G.J.; Granada, Y.; Lowenberger, C.; Triana-Chávez, O. Long-Term exposure to lambda-cyhalothrin reveals novel genes potentially involved in Aedes aegypti insecticide resistance. Insects 2025, 16, 106. [Google Scholar] [CrossRef] [PubMed]
- Ward, C.M.; To, T.H.; Pederson, S.M. ngsReports: A Bioconductor package for managing FastQC reports and other NGS related log files. Bioinformatics 2020, 36, 2587–2588. [Google Scholar] [CrossRef]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef]
- Soneson, C.; Love, M.I.; Robinson, M.D. Differential analyses for RNA-seq: Transcript-level estimates improve gene-level inferences. F1000Research 2015, 4, 1521. [Google Scholar] [CrossRef] [PubMed]
- Love, M.; Anders, S.; Huber, W. Differential analysis of count data–the DESeq2 package. Genome Biol. 2014, 15, 10–1186. [Google Scholar]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Pertea, G.; Pertea, M. GFF utilities: GffRead and GffCompare. F1000Research 2020, 9, 304. [Google Scholar] [CrossRef]
- Jones, P.; Binns, D.; Chang, H.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef]
- Zur Lage, P.I.; Prentice, D.R.A.; Holohan, E.E.; Jarman, A.P. The Drosophila proneural gene amos promotes olfactory sensillum formation and suppresses bristle formation. Development 2003, 130, 4683–4693. [Google Scholar] [CrossRef]
- Hartl, M.; Loschek, L.F.; Stephan, D.; Siju, K.P.; Knappmeyer, C.; Kadow, I.C.G. A New Prospero and microRNA-279 Pathway Restricts CO2 Receptor Neuron Formation. J. Neurosci. 2011, 31, 15660–15673. [Google Scholar] [CrossRef] [PubMed]
- Goulding, S.E.; zur Lage, P.; Jarman, A.P. Amos, a proneural gene for Drosophila olfactory sense organs that is regulated by lozenge. Neuron 2000, 25, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Okumura, M.; Kato, T.; Miura, M.; Chihara, T. Hierarchical axon targeting of Drosophila olfactory receptor neurons specified by the proneural transcription factors Atonal and Amos. Genes Cells 2016, 21, 53–64. [Google Scholar] [CrossRef]
- Verzi, M.P.; Anderson, J.P.; Dodou, E.; Kelly, K.K.; Greene, S.B.; North, B.J.; Cripps, R.M.; Black, B.L. N-twist, an evolutionarily conserved bHLH protein expressed in the developing CNS, functions as a transcriptional inhibitor. Dev. Biol. 2002, 249, 174–190. [Google Scholar] [CrossRef]
- Fujii, S.; Yavuz, A.; Slone, J.; Jagge, C.; Song, X.Y.; Amrein, H. Sugar receptors in sweet taste perception, olfaction, and internal nutrient sensing. Curr. Biol. 2015, 25, 621–627. [Google Scholar] [CrossRef]
- Jové, V.; Gong, Z.Y.; Hol, F.J.H.; Zhao, Z.L.; Sorrells, T.R.; Carroll, T.S.; Prakash, M.; McBride, C.S.; Vosshall, L.B. Sensory discrimination of blood and floral nectar by mosquitoes. Neuron 2020, 108, 1163–1180.e12. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Grant, C.E.; Bailey, T.L. XSTREME: Comprehensive motif analysis of biological sequence datasets. BioRxiv, 2021; submitted. [Google Scholar] [CrossRef]
- Rauluseviciute, I.; Riudavets-Puig, R.; Blanc-Mathieu, R.; Castro-Mondragon, J.; Ferenc, K.; Kumar, V.; Lemma, R.B.; Lucas, J.; Cheneby, J.; Baranasic, D.; et al. JASPAR 2024: 20th anniversary of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2024, 52, D174–D182. [Google Scholar] [CrossRef] [PubMed]
- Fukutani, K.F.; Kasprzykowski, J.I.; Paschoal, A.R.; Gomes, M.S.; Barral, A.; de Oliveira, C.I.; Ramos, P.I.P.; de Queiroz, A.T.L. Meta-Analysis of Aedes aegypti expression datasets: Comparing virus infection and blood-fed transcriptomes to identify markers of virus presence. Front. Bioeng. Biotechnol. 2017, 5, 84. [Google Scholar] [CrossRef]
- Sim, C.K.; Perry, S.; Tharadra, S.K.; Lipsick, J.S.; Ray, A. Epigenetic regulation of olfactory receptor gene expression by the Myb-MuvB/dREAM complex. Genes Dev. 2012, 26, 2483–2498. [Google Scholar] [CrossRef]
- Kaupp, U.B. Olfactory signaling in vertebrates and insects: Differences and commonalities. Nat. Rev. Neurosci. 2010, 11, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Grabe, V.; Sachse, S. Fundamental principles of the olfactory code. Biosystems 2018, 164, 94–101. [Google Scholar] [CrossRef]
- Hallem, E.A.; Carlson, J.R. The odor coding system of Drosophila. Trends Genet. 2004, 20, 453–459. [Google Scholar] [CrossRef]
- Barnum, G.; Hong, E.J. Olfactory coding. Curr. Biol. 2022, 32, R1296–R1301. [Google Scholar] [CrossRef]
- Rodriguez, I. Singular Expression of Olfactory Receptor Genes. Cell 2013, 155, 274–277. [Google Scholar] [CrossRef]
- Lewcock, J.; Reed, R. A feedback mechanism regulates monoallelic odorant receptor expression. Proc. Nat. Acad. Sci. USA 2004, 101, 1069–1074. [Google Scholar] [CrossRef]
- Maguire, S.E.; Afify, A.; Goff, L.A.; Potter, C.J. Odorant-receptor-mediated regulation of chemosensory gene expression in the malaria mosquito Anopheles gambiae. Cell Rep. 2022, 38, 110494. [Google Scholar] [CrossRef] [PubMed]
- Fabian, B.; Sachse, S. Experience-dependent plasticity in the olfactory system of Drosophila melanogaster and other insects. Front. Cell. Neurosci. 2023, 17, 1130091. [Google Scholar] [CrossRef] [PubMed]
- Koerte, S.; Keesey, I.W.; Khallaf, M.A.; Llorca, L.C.; Grosse-Wilde, E.; Hansson, B.S.; Knaden, M. Evaluation of the DREAM Technique for a High-Throughput Deorphanization of Chemosensory Receptors in Drosophila. Front. Mol. Neurosci. 2018, 11, 366. [Google Scholar] [CrossRef] [PubMed]
- Shankar, S.; Giraldo, D.; Tauxe, G.M.; Spikol, E.D.; Li, M.; Akbari, O.S.; Wohl, M.P.; McMeniman, C.J. Optimized genetic tools for neuroanatomical and functional mapping of the Aedes aegypti olfactory system. G3 Genes|Genomes|Genet. 2025, 15, jkae307. [Google Scholar] [CrossRef]
- Pan, J.W.; McLaughlin, J.; Yang, H.; Leo, C.; Rambarat, P.; Okuwa, S.; Monroy-Eklund, A.; Clark, S.; Jones, C.D.; Volkan, P.C. Comparative analysis of behavioral and transcriptional variation underlying CO2 sensory neuron function and development in Drosophila. Fly 2017, 11, 239–252. [Google Scholar] [CrossRef]
- Georlette, D.; Ahn, S.; MacAlpine, D.M.; Cheung, E.; Lewis, P.W.; Beall, E.L.; Bell, S.P.; Speed, T.; Manak, J.R.; Botchan, M.R. Genomic profiling and expression studies reveal both positive and negative activities for the Drosophila Myb MuvB/dREAM complex in proliferating cells. Genes Dev. 2007, 21, 2880–2896. [Google Scholar] [CrossRef]
- Pu, J.; Chung, H. New and emerging mechanisms of insecticide resistance. Curr. Opin. Insect Sci. 2024, 63, 101184. [Google Scholar] [CrossRef]
- Brevik, K.; Schoville, S.D.; Mota-Sanchez, D.; Chen, Y.H. Pesticide durability and the evolution of resistance: A novel application of survival analysis. Pest Manag. Sci. 2018, 74, 1953–1963. [Google Scholar] [CrossRef]
Category | Closest Drosophila Homolog | Drosophila Gene ID | Ae. aegypti Gene Symbol | Ae. aegypti Gene ID | Percent Identity to Drosophila Homolog |
---|---|---|---|---|---|
MMB/dREAM complex | Mip120 | FBgn0033846 | Mip120a | AAEL005893 | 32.81 |
Mip120b | AAEL020020 | 32.81 | |||
miR-279 pathway | Esg | FBgn0287768 | Esg-like | AAEL008336 | 45.35 |
Amos homologs | Amos | FBgn0003270 | Amos-like | AAEL001637 | 37.86 |
Fer2 | FBgn0038402 | n-twist | AAEL007814 | 69.33 | |
Other TFs | Kdm2 | FBgn0037659 | Kdm2-like | AAEL008177 | 63.07 |
Oc | FBgn0004102 | Otx | AAEL002740 | 54.81 | |
Ets96B | FBgn0039225 | ERm | AAEL007700 | 39.09 | |
Fd96Ca | FBgn0004897 | Fd96Ca-like | AAEL002951 | 60.33 | |
Kdm4b | FBgn0053182 | Kdm4b-like | AAEL008266 | 58.3 | |
Srp | FBgn0003507 | GATA4 | AAEL010222 | 31.76 | |
Dfd | FBgn0000439 | Dfd-like | AAEL009950 | 54.62 | |
Odd | FBgn0002985 | Odd-like | AAEL007450 | 56.16 | |
Ase | FBgn0000137 | Ase-like | AAEL006817 | 32.6 | |
CG6654 | FBgn0038301 | CG6654-like | AAEL002751 | 23.59 | |
Trh | FBgn0262139 | Trh-like | AAEL002343 | 45.82 | |
CG11902 | FBgn0028647 | CG11902-like | AAEL006816 | 23.21 | |
Opa * | FBgn0003002 | Opa-like | AAEL005892 | 19.65 | |
CG17328 | FBgn0028895 | CG17328-like | AAEL010110 | 21.78 | |
CG9215 | FBgn0030659 | CG9215-like | AAEL013321 | 30.73 | |
CG5245 | FBgn0038047 | CG5245-like | AAEL012628 | 22.17 | |
Paris | FBgn0031610 | Paris-like | AAEL001016 | 34.42 | |
MBD-like | FBgn0027950 | MBD | AAEL001033 | 45.33 | |
CG14655 | FBgn0037275 | CG14655-like | AAEL001349 | 41.02 | |
Topi | FBgn0037751 | Topi-like | AAEL007456 | 21.41 | |
Cf2 | FBgn0000286 | Cf2-like | AAEL008798 | 18.75 | |
CG14135 | FBgn0036193 | CG14135-like | AAEL006052 | 25.23 | |
CG17568 | FBgn0032763 | CG17568-like | AAEL003176 | 24.18 | |
l(2)k10201 | FBgn0016970 | l(2)k10201-like | AAEL002310 | 34.88 | |
CG31441 | FBgn0051441 | CG31441-like | AAEL023700 | 22.15 | |
CG15696 | FBgn0038833 | CG15696-like | AAEL020500 | 55.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cooke, M.M.; Chembars, M.S., II; Pitts, R.J. The Dysregulation of Tuning Receptors and Transcription Factors in the Antennae of Orco and Ir8a Mutants in Aedes aegypti Suggests a Chemoreceptor Regulatory Mechanism Involving the MMB/dREAM Complex. Insects 2025, 16, 638. https://doi.org/10.3390/insects16060638
Cooke MM, Chembars MS II, Pitts RJ. The Dysregulation of Tuning Receptors and Transcription Factors in the Antennae of Orco and Ir8a Mutants in Aedes aegypti Suggests a Chemoreceptor Regulatory Mechanism Involving the MMB/dREAM Complex. Insects. 2025; 16(6):638. https://doi.org/10.3390/insects16060638
Chicago/Turabian StyleCooke, Matthew M., Michael S. Chembars, II, and Ronald Jason Pitts. 2025. "The Dysregulation of Tuning Receptors and Transcription Factors in the Antennae of Orco and Ir8a Mutants in Aedes aegypti Suggests a Chemoreceptor Regulatory Mechanism Involving the MMB/dREAM Complex" Insects 16, no. 6: 638. https://doi.org/10.3390/insects16060638
APA StyleCooke, M. M., Chembars, M. S., II, & Pitts, R. J. (2025). The Dysregulation of Tuning Receptors and Transcription Factors in the Antennae of Orco and Ir8a Mutants in Aedes aegypti Suggests a Chemoreceptor Regulatory Mechanism Involving the MMB/dREAM Complex. Insects, 16(6), 638. https://doi.org/10.3390/insects16060638