Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,176)

Search Parameters:
Keywords = occupancy comfort

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3674 KB  
Article
Optimizing the Trade-Off Among Comfort, Electricity Use, and Economic Benefits in Smart Buildings Within Renewable Electricity Communities
by Federico Mattana, Roberto Ricciu, Gianmarco Sitzia and Emilio Ghiani
Energies 2026, 19(2), 547; https://doi.org/10.3390/en19020547 - 21 Jan 2026
Abstract
The integration of smart electricity management models in buildings is a key strategy for improving living comfort and optimizing energy efficiency. The incentive mechanisms introduced by the Italian regulatory framework for widespread self-consumption and energy communities encourage the deployment of smart management systems [...] Read more.
The integration of smart electricity management models in buildings is a key strategy for improving living comfort and optimizing energy efficiency. The incentive mechanisms introduced by the Italian regulatory framework for widespread self-consumption and energy communities encourage the deployment of smart management systems within Collective Self-Consumption Groups (CSGs) and Renewable Energy Communities (RECs). These mechanisms drive the search for solutions that combine occupant well-being with economic benefits, thereby fostering citizen participation in aggregation models that play a key role in the transition towards a progressively decarbonized electricity system. In this context, an optimization model for the management of residential heat pumps is proposed, aimed at identifying the best compromise between thermal comfort, electricity consumption, and economic benefits. The approach developed in the research encourages citizens to take an active role without the need for burdensome commitments and/or significant changes in their daily habits, in line with the importance that users themselves attribute to these aspects. To demonstrate the potential of the proposed approach, a case study was developed on a residential building located in Sardinia (Italy). The implementation of an optimization model aimed at simultaneously maximizing economic benefits and indoor thermal comfort is simulated. The model’s economic and energy performance is assessed and compared with the results obtained using different advanced heat pump control and management strategies. Full article
Show Figures

Figure 1

22 pages, 4924 KB  
Article
Experimental Evaluation of the Impacts of Suspended Particle Device Smart Windows with Glare Control on Occupant Thermal and Visual Comfort Levels in Winter
by Sue-Young Choi, Soo-Jin Lee and Seung-Yeong Song
Buildings 2026, 16(2), 444; https://doi.org/10.3390/buildings16020444 - 21 Jan 2026
Abstract
The building sector accounts for approximately 30% of global energy use. The demand for energy-efficient, high-performance buildings is increasing given the increasing awareness of the climate crisis. The building envelope greatly influences overall building energy performance. Considering the broad shift from passive to [...] Read more.
The building sector accounts for approximately 30% of global energy use. The demand for energy-efficient, high-performance buildings is increasing given the increasing awareness of the climate crisis. The building envelope greatly influences overall building energy performance. Considering the broad shift from passive to adaptive systems, smart window technologies are attracting attention. Despite their potential, few scholars have examined occupant comfort in spaces with smart windows. This gap is addressed herein by comparatively analyzing occupants’ responses to thermal and visual environments in a room with a smart window (RoomSW) and a room with a conventional window (RoomCW) in a residential building in winter. The smart window is operated via a glare-prevention tint control strategy. The results reveal that under thermal conditions comparable to those in an actual dwelling, wintertime smart window tinting for glare prevention does not decrease occupants’ thermal sensation or satisfaction. Regarding visual comfort, conditions in RoomSW and RoomCW satisfy the minimum illuminance requirement of 200 lx, but glare occurs in RoomCW with a mean New Daylight Glare Index (DGIN) of 24.1, compared to 9.6 in RoomSW. Questionnaire results indicate greater satisfaction with the luminous environment in RoomSW relative to RoomCW, with scores of +1.4 and +0.2, respectively. Full article
Show Figures

Figure 1

33 pages, 4465 KB  
Article
Environmentally Sustainable HVAC Management in Smart Buildings Using a Reinforcement Learning Framework SACEM
by Abdullah Alshammari, Ammar Ahmed E. Elhadi and Ashraf Osman Ibrahim
Sustainability 2026, 18(2), 1036; https://doi.org/10.3390/su18021036 - 20 Jan 2026
Abstract
Heating, ventilation, and air-conditioning (HVAC) systems dominate energy consumption in hot-climate buildings, where maintaining occupant comfort under extreme outdoor conditions remains a critical challenge, particularly under emerging time-of-use (TOU) electricity pricing schemes. While deep reinforcement learning (DRL) has shown promise for adaptive HVAC [...] Read more.
Heating, ventilation, and air-conditioning (HVAC) systems dominate energy consumption in hot-climate buildings, where maintaining occupant comfort under extreme outdoor conditions remains a critical challenge, particularly under emerging time-of-use (TOU) electricity pricing schemes. While deep reinforcement learning (DRL) has shown promise for adaptive HVAC control, existing approaches often suffer from comfort violations, myopic decision making, and limited robustness to uncertainty. This paper proposes a comfort-first hybrid control framework that integrates Soft Actor–Critic (SAC) with a Cross-Entropy Method (CEM) refinement layer, referred to as SACEM. The framework combines data-efficient off-policy learning with short-horizon predictive optimization and safety-aware action projection to explicitly prioritize thermal comfort while minimizing energy use, operating cost, and peak demand. The control problem is formulated as a Markov Decision Process using a simplified thermal model representative of commercial buildings in hot desert climates. The proposed approach is evaluated through extensive simulation using Saudi Arabian summer weather conditions, realistic occupancy patterns, and a three-tier TOU electricity tariff. Performance is assessed against state-of-the-art baselines, including PPO, TD3, and standard SAC, using comfort, energy, cost, and peak demand metrics, complemented by ablation and disturbance-based stress tests. Results show that SACEM achieves a comfort score of 95.8%, while reducing energy consumption and operating cost by approximately 21% relative to the strongest baseline. The findings demonstrate that integrating comfort-dominant reward design with decision-time look-ahead yields robust, economically viable HVAC control suitable for deployment in hot-climate smart buildings. Full article
Show Figures

Figure 1

20 pages, 3974 KB  
Systematic Review
Improving Energy Efficiency of Mosque Buildings Through Retrofitting: A Review of Strategies Utilized in the Hot Climates
by Abubakar Idakwo Yaro, Omar S. Asfour and Osama Mohsen
Eng 2026, 7(1), 52; https://doi.org/10.3390/eng7010052 - 19 Jan 2026
Viewed by 35
Abstract
Mosque buildings have symbolic significance, which makes them ideal candidates for implementing energy-efficient building design strategies. Mosques located in hot climates face several challenges in achieving thermal comfort while meeting energy efficiency requirements due to their distinct architectural features and intermittent occupancy patterns. [...] Read more.
Mosque buildings have symbolic significance, which makes them ideal candidates for implementing energy-efficient building design strategies. Mosques located in hot climates face several challenges in achieving thermal comfort while meeting energy efficiency requirements due to their distinct architectural features and intermittent occupancy patterns. Addressing these challenges requires integrating innovative energy-efficient retrofit strategies that cater to the characteristics of existing contemporary mosque buildings. Thus, this study provides a review of these approaches, considering both passive and active strategies. Passive strategies include thermal insulation, glazing upgrades, and shading improvements, while active ones include Heating, Ventilation, and Air Conditioning (HVAC) zoning and smart control, lighting upgrades, and the integration of photovoltaic panels. The findings highlight the potential of combining both passive and active retrofitting measures to achieve substantial energy performance improvements while addressing the thermal comfort needs of mosque buildings in hot climates. However, more research is needed on smart control systems and advanced building materials to further enhance energy performance in mosque buildings. By adopting these strategies, mosques can serve as models of energy-efficient design, promoting sustainability and resilience in their communities. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

24 pages, 1073 KB  
Article
Designing Accessible and Comfortable Bus Interiors for Sustainable and Smart Urban Mobility: A Pilot Experimental Ordinal Regression Study
by Mitsuyoshi Fukushi, Sebastián Seriani, Vicente Aprigliano, Alvaro Peña and Emilio Bustos
Sustainability 2026, 18(2), 1019; https://doi.org/10.3390/su18021019 - 19 Jan 2026
Viewed by 29
Abstract
Accessible and comfortable public transportation is a cornerstone of sustainable and inclusive urban mobility. However, there is a knowledge gap in how interior layout influences riders’ comfort perception under constant occupancy conditions. We conducted a pilot laboratory experiment in Valparaíso, Chile using a [...] Read more.
Accessible and comfortable public transportation is a cornerstone of sustainable and inclusive urban mobility. However, there is a knowledge gap in how interior layout influences riders’ comfort perception under constant occupancy conditions. We conducted a pilot laboratory experiment in Valparaíso, Chile using a full-scale urban bus mock-up. Twenty-five participants each experienced four seating scenarios (yielding 100 total observations per outcome) that varied seat pitch (20, 30, 45 cm) and seat orientation (forward-facing vs. side-facing). Cumulative link mixed models were used to estimate seat pitch and orientation effects on the comfort outcomes, with participant-specific random intercepts. Increased seat pitch dramatically improved comfort ratings (e.g., virtually no participants felt comfortable at 20 cm, whereas nearly all did at 45 cm). Side-facing bench seating (longitudinal orientation) yielded significantly higher comfort, legroom, and ease-of-movement ratings than the forward-facing configuration at ~30 cm pitch (p < 0.001). Within the tested mock-up conditions, the results suggest that seat pitch is a major driver of perceived comfort and in-vehicle usability, and that a side-facing bench layout (tested at ~30 cm spacing) can improve perceived spaciousness relative to forward-facing seating. Because this is a small, non-probability pilot sample and a partial factorial design, these findings should be considered preliminary design sensitivities that warrant validation in larger, in-service studies before informing fleet-wide standards. Full article
Show Figures

Figure 1

22 pages, 1783 KB  
Article
In Pursuit of Sustainable Well-Being: Articulating Place Attachment Through Multi-Sensory Spatial Qualities in Campus Environments
by Okan Şimşek and Ecem Kara
Sustainability 2026, 18(2), 1008; https://doi.org/10.3390/su18021008 - 19 Jan 2026
Viewed by 40
Abstract
Place attachment refers to the meaningful ties between individuals and their environments. In educational settings, multi-sensory spatial qualities enhance spatial experience and support long-term well-being. Yet, the relationship between place attachment and spatial qualities has not been sufficiently articulated from a sustainability perspective. [...] Read more.
Place attachment refers to the meaningful ties between individuals and their environments. In educational settings, multi-sensory spatial qualities enhance spatial experience and support long-term well-being. Yet, the relationship between place attachment and spatial qualities has not been sufficiently articulated from a sustainability perspective. This study investigates the associations between sensory spatial qualities and place attachment in educational settings. Accordingly, the study aims to achieve the following: (1) determine students’ place attachment scores, (2) assess multi-sensory spatial qualities in educational spaces, and (3) examine their relationship to support sustainable well-being. The empirical phase employs synchronic methodology conducted with 70 architecture students in the educational spaces of the Department of Architecture at ATU. Place attachment scores were measured via the Place Attachment to University Scale, and sensory spatial qualities were recorded on-site. The relationship is analyzed through Spearman’s correlation, linear regression, and hierarchical regression analyses. Spearman’s correlation indicates significant associations between place attachment and thermal (r = 0.312; p = 0.0086) and visual (r = −0.297; p = 0.0124) qualities. Multiple linear regression shows that thermal (β = 0.466; p = 0.001) and visual qualities (β = −0.0016; p < 0.001) are associated with place attachment. Hierarchical regression reveals that adding multi-sensory spatial variables results in a significant increase in explained variance (ΔR2 = 0.118; p < 0.001) beyond exposure-related factors (R2 = 0.685). These findings demonstrate the contribution of multi-sensory spatial quality to sustainable well-being and its alignment with sustainability-oriented educational environments. Full article
Show Figures

Figure 1

22 pages, 3512 KB  
Article
Numerical Analysis of the Impact of Air Conditioning Operating Parameters on Thermal Comfort in a Classroom in Hot Climate Regions
by Guillermo Efren Ovando-Chacon, Enrique Cruz-Octaviano, Abelardo Rodriguez-Leon, Sandy Luz Ovando-Chacon and Ricardo Francisco Martinez-Gonzalez
Buildings 2026, 16(2), 400; https://doi.org/10.3390/buildings16020400 - 18 Jan 2026
Viewed by 48
Abstract
Achieving adequate thermal comfort in classrooms in hot cities in southern Mexico is challenging. A heterogeneous distribution of air conditioning flow leads to thermal discomfort, affecting occupants’ academic performance and increasing energy consumption. This study evaluates the thermal comfort of occupants in an [...] Read more.
Achieving adequate thermal comfort in classrooms in hot cities in southern Mexico is challenging. A heterogeneous distribution of air conditioning flow leads to thermal discomfort, affecting occupants’ academic performance and increasing energy consumption. This study evaluates the thermal comfort of occupants in an air conditioned classroom using computational fluid dynamics. We determined the effects of variations in air conditioning operating parameters (supply angle, velocity, and temperature) on PMV and modified PMV indices. An operating configuration of 60°, 3 m/s, and 22 °C ensures that thermal comfort remains within regulations while optimizing energy consumption, in contrast to the original PMV model. Using the modified PMV model, the values are 0.38 for students and 0.31 for the teacher, with percentages of dissatisfied individuals of 10% and 7.7%, respectively. This study demonstrates the importance of analyzing air conditioning operating parameters to enhance thermal comfort while reducing energy consumption. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

31 pages, 12428 KB  
Article
Seasonal Changes in Indoor Thermal Conditions and Thermal Comfort in Urban Houses in the Warm–Humid Climate of India
by Subhagata Mukhopadhyay, Nikhil Kumar, Tetsu Kubota, Shankha Pratim Bhattacharya, Hanief Ariefman Sani and Takashi Asawa
Buildings 2026, 16(2), 382; https://doi.org/10.3390/buildings16020382 - 16 Jan 2026
Viewed by 168
Abstract
Cities in India experience distinct seasons, including summer, winter and monsoons. the understanding of thermal comfort within modern houses throughout the different seasons is pivotal for determining a passive design strategy for residences, towards carbon neutrality. Long-term investigations were conducted within five typical [...] Read more.
Cities in India experience distinct seasons, including summer, winter and monsoons. the understanding of thermal comfort within modern houses throughout the different seasons is pivotal for determining a passive design strategy for residences, towards carbon neutrality. Long-term investigations were conducted within five typical houses in the warm–humid climate of Kharagpur, India, spanning three seasons from July 2023 to July 2024. These included air temperature (AT), relative humidity (RH), indoor wind speed and globe temperature for calculating standard effective temperature (SET*). The SET* was used in thermal comfort evaluation, focusing on the cooling effects of elevated wind speeds. The results showed that indoor ATs were well stabilized among the houses, ranging from 27 to 32 °C in monsoon, 20 to 23 °C in winter and 30 to 32 °C in summer on average, due to the effects of high thermal mass structure with relatively small openings. Overall, both the house-wise differences (1–2 °C) and diurnal differences (0.5–3 °C) were much smaller than the seasonal differences. It was found that the resultant indoor operative temperatures (OTs) did not fall within the required comfort levels during the summer and monsoons, whereas those of the winter months met the required standard. The current modern Indian houses of high thermal mass structure prevented flexible adaptations to the dynamic seasonal changes as well as changes within a day. The occupants tended to reduce the SET* by increasing the wind speeds with the assistance of mechanical air circulation, thus reducing the perceived AT by 5 °C in summers. Separate design strategies should be adopted seasonally and in different parts of the day, to maintain a thermally comfortable environment for the occupants. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

35 pages, 5626 KB  
Article
The View from the Window—Assessment by the “View Owner” and the “View Observers”
by Barbara Szybinska Matusiak, Mandana Sarey Khanie, Natalia Sokol, Aicha Diakite-Kortlever, Valerio Roberto Maria Lo Verso, Laura Bellia, Francesca Fragliasso and Melissa Mittelstädt
Buildings 2026, 16(2), 371; https://doi.org/10.3390/buildings16020371 - 15 Jan 2026
Viewed by 221
Abstract
Access to an unobstructed view of the outside through a window has been shown to play a critical role in supporting occupants’ visual comfort, psychological well-being, and cognitive performance, as it provides environmental connection and reduces stress. The aim of this study was [...] Read more.
Access to an unobstructed view of the outside through a window has been shown to play a critical role in supporting occupants’ visual comfort, psychological well-being, and cognitive performance, as it provides environmental connection and reduces stress. The aim of this study was to investigate how window view assessment ratings differ between “view owners” (individuals with long-term experience of the view) and “view observers” (those who view photos of a view). Findings from 12 in-person workshops on window view assessment are presented. The participants were 207 students from six European universities. Each participant presented their window view as “view owner”, while the remining students rated it on the 1–9 Likert scale as “view observers”. The ratings given by the “view owners” (prior to workshops) were significantly higher than those given by the “view observers”, showing the influence of familiarity and long-term experience. The additional contextual information about the interior and narrative descriptions provided orally by the “view owners” had a small positive effect. Night views were rated lower than day views by the “view observers”. The findings highlight the impact of long-term experience on the assessment of the window view and encourage the inclusion of night-view in recommendations. Full article
Show Figures

Figure 1

22 pages, 5885 KB  
Article
Performance Analysis of Phase Change Material Walls and Different Window-to-Wall Ratios in Elderly Care Home Buildings Under Hot-Summer and Cold-Winter Climate
by Wuying Chen, Bao Xie and Lu Nie
Buildings 2026, 16(2), 367; https://doi.org/10.3390/buildings16020367 - 15 Jan 2026
Viewed by 168
Abstract
In regions with hot summers and cold winters, elderly care buildings face the dual challenges of high energy consumption and stringent thermal comfort requirements. Using Nanchang as a case study, this research presents an optimization approach that integrates phase change material (PCM) walls [...] Read more.
In regions with hot summers and cold winters, elderly care buildings face the dual challenges of high energy consumption and stringent thermal comfort requirements. Using Nanchang as a case study, this research presents an optimization approach that integrates phase change material (PCM) walls with the window-to-wall ratio (WWR). PCM wall performance was tested experimentally, and EnergyPlus simulations were conducted to assess building energy use for WWR values ranging from 0.25 to 0.50, with and without PCM. The phase change material (PCM) used in this study is paraffin (an organic phase change material), which has a melting point of 26 °C and can store and release heat during temperature fluctuations. The experimental results show that PCM walls effectively reduce heat transfer, lowering the surface temperatures of external, central, and internal walls by 3.9 °C, 3.8 °C, and 3.7 °C, respectively, compared to walls without PCM. The simulation results predict that the PCM wall can reduce air conditioning energy consumption by 8.2% in summer and total annual energy consumption by 14.2%. The impact of WWR is orientation-dependent: east and west façades experience significant cooling penalties as WWR increases and should be maintained at or below 0.30; the south façade achieves optimal performance at a WWR of 0.40, with the lowest total energy load (111.2 kW·h·m-2); and the north façade performs best at the lower bound (WWR = 0.25). Under the combined strategy (south wall with PCM and WWR = 0.40), annual total energy consumption is reduced by 9.8% compared to the baseline (no PCM), with indoor temperatures maintained between 18 and 26 °C. This range is selected based on international thermal comfort standards (e.g., ASHRAE) and comfort research specifically targeting the elderly population, ensuring comfort for elderly occupants. These findings offer valuable guidance for energy-efficient design in similar climates and demonstrate that the synergy between PCM and WWR can reduce energy consumption while maintaining thermal comfort. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

16 pages, 2496 KB  
Article
A Comparative Analysis of Thermal Discomfort Assessment Approaches in Residential Buildings Under Different Solar Orientations and Use Patterns
by Kácia Henderson Barbosa, Taylana Piccinini Scolaro and Enedir Ghisi
Sustainability 2026, 18(2), 892; https://doi.org/10.3390/su18020892 - 15 Jan 2026
Viewed by 128
Abstract
In horizontal condominiums, where standardised designs are often implemented without considering the surroundings, thermal discomfort can be significant. This study compares two thermal discomfort assessment approaches (mean degree-hour and bioclimatic chart) using computer simulations in the EnergyPlus programme, considering different building solar orientations [...] Read more.
In horizontal condominiums, where standardised designs are often implemented without considering the surroundings, thermal discomfort can be significant. This study compares two thermal discomfort assessment approaches (mean degree-hour and bioclimatic chart) using computer simulations in the EnergyPlus programme, considering different building solar orientations and use patterns. The comparison of approaches allowed the annual percentage of time outside the comfort zone to be quantified. According to the bioclimatic chart, in the most critical room, the proportion of discomfort hours was 16.2%, which could be reduced to 12.3% by changing the solar orientation. According to the mean degree-hour approach, the room with the highest discomfort registered 1.8 mean degree-hours, a value that could decrease to 0.91 by changing the solar orientation. However, it was observed that the use patterns of the rooms may limit the potential for reducing discomfort. Overall, both approaches indicated that north and south orientations tend to lead to less discomfort. However, in some cases, the bioclimatic chart identified east, northeast, and southeast orientations as more suitable alternatives. The differences between the methods were mainly attributed to the parameters adopted by each approach. By analysing different thermal comfort assessment approaches, the study highlights how methodological choices influence the interpretation of thermal discomfort while confirming that solar orientation remains a relevant passive strategy whose effectiveness depends on room use patterns, thereby supporting occupants’ well-being and contributing to environmental and energy sustainability in residential buildings. Full article
Show Figures

Figure 1

34 pages, 3338 KB  
Article
Intelligent Energy Optimization in Buildings Using Deep Learning and Real-Time Monitoring
by Hiba Darwish, Krupa V. Khapper, Corey Graves, Balakrishna Gokaraju and Raymond Tesiero
Energies 2026, 19(2), 379; https://doi.org/10.3390/en19020379 - 13 Jan 2026
Viewed by 273
Abstract
Thermal comfort and energy efficiency are two main goals of heating, ventilation, and air conditioning (HVAC) systems, which use about 40% of the total energy in buildings. This paper aims to predict optimal room temperature, enhance comfort, and reduce energy consumption while avoiding [...] Read more.
Thermal comfort and energy efficiency are two main goals of heating, ventilation, and air conditioning (HVAC) systems, which use about 40% of the total energy in buildings. This paper aims to predict optimal room temperature, enhance comfort, and reduce energy consumption while avoiding extra energy use from overheating or overcooling. Six Machine Learning (ML) models were tested to predict the optimal temperature in the classroom based on the occupancy characteristic detected by a Deep Learning (DL) model, You Only Look Once (YOLO). The decision tree achieved the highest accuracy at 97.36%, demonstrating its effectiveness in predicting the preferred temperature. To measure energy savings, the study used RETScreen software version 9.4 to compare intelligent temperature control with traditional operation of HVAC. Genetic algorithm (GA) was further employed to optimize HVAC energy consumption while keeping the thermal comfort level by adjusting set-points based on real-time occupancy. The GA showed how to balance comfort and efficiency, leading to better system performance. The results show that adjusting from default HVAC settings to preferred thermal comfort levels as well controlling the HVAC to work only if the room is occupied can reduce energy consumption and costs by approximately 76%, highlighting the substantial impact of even simple operational adjustments. Further improvements achieved through GA-optimized temperature settings provide additional savings of around 7% relative to preferred comfort levels, demonstrating the value of computational optimization techniques in fine-tuning building performance. These results show that intelligent, data-driven HVAC control can improve comfort, save energy, lower costs, and support sustainability in buildings. Full article
Show Figures

Figure 1

25 pages, 3934 KB  
Article
Urban Heat Islands: Their Influence on Building Heating and Cooling Energy Demand Throughout Local Climate Zones
by Marta Lucas Bonilla, Cristina Nuevo-Gallardo, Jose Manuel Lorenzo Gallardo and Beatriz Montalbán Pozas
Urban Sci. 2026, 10(1), 43; https://doi.org/10.3390/urbansci10010043 - 11 Jan 2026
Viewed by 187
Abstract
The thermal influence of Urban Heat Islands (UHIs) is not limited to periods of high temperature but persists throughout the year. The present study utilizes hourly data collected over a period of one year from a network of hygrothermal monitoring stations with a [...] Read more.
The thermal influence of Urban Heat Islands (UHIs) is not limited to periods of high temperature but persists throughout the year. The present study utilizes hourly data collected over a period of one year from a network of hygrothermal monitoring stations with a high density, which were deployed across the city of Cáceres (Spain). The network was designed in accordance with the World Meteorological Organization’s guidelines for urban measurements (employing radiation footprints and surface roughness) and ensures representation of each Local Climate Zone (LCZ), characterized by those factors (such as building typology and density, urban fabric, vegetation, and anthropogenic activity, among others) that influence potential solar radiation absorption. The magnitude of the heat island effect in this city has been determined to be approximately 7 °C in summer and winter at the first hours of the morning. In order to assess the energy impact of UHIs, Cooling and Heating Degree Days (CDD and HDD) were calculated for both summer and winter periods across the different LCZs. Following the implementation of rigorous quality control procedures and the utilization of gap-filling techniques, the analysis yielded discrepancies in energy demand of up to 10% between LCZs within the city. The significance of incorporating UHIs into the design of building envelopes and climate control systems is underscored by these findings, with the potential to enhance both energy efficiency and occupant thermal comfort. This methodology is particularly relevant for extrapolation to larger and denser urban environments, where the intensification of UHI effects exerts a direct impact on energy consumption and costs. The following essay will provide a comprehensive overview of the relevant literature on the subject. Full article
(This article belongs to the Special Issue Urban Building Energy Analysis)
Show Figures

Figure 1

25 pages, 3258 KB  
Article
Façade Morphologies and Daylighting Strategies for Visual Comfort in Mediterranean Office Buildings: A Contextual Framework for Northern Cyprus
by Fatemeh Monzavi, Huriye Gurdalli and Pooya Lotfabadi
Sustainability 2026, 18(2), 722; https://doi.org/10.3390/su18020722 - 10 Jan 2026
Viewed by 164
Abstract
The increasing adoption of highly glazed façades in contemporary office building has improved daylight penetration but has also intensified glare risk and sunlight overexposure in Mediterranean climates, with direct implications for occupant visual comfort and environmental sustainability. While daylight optimization has been widely [...] Read more.
The increasing adoption of highly glazed façades in contemporary office building has improved daylight penetration but has also intensified glare risk and sunlight overexposure in Mediterranean climates, with direct implications for occupant visual comfort and environmental sustainability. While daylight optimization has been widely discussed, fewer studies have examined how façade morphology systematically shapes the balance between daylight sufficiency and visual comfort in Mediterranean island contexts. This study investigates the relationship between façade configuration, daylight availability, and glare performance in office buildings in Northern Cyprus using climate-based daylight simulation. Six façade morphologies are evaluated across a range of window-to-wall ratios (WWR) using EN 17037-aligned criteria and metrics, including spatial daylight autonomy (sDA), annual sunlight exposure (ASE), and daylight glare probability (DGP). Usable daylight is not simply a function of more glass. As WWR increases, fully glazed façades in Mediterranean conditions tend to admit excessive direct sun and intensify glare, so daylight becomes less workable even when illuminance is high. Instead, hybrid and adaptive morphologies that control lighting through a combined approach of shade, diffusion, and redirection provide the most dependable performance, reducing both overexposure and glare while ensuring sufficient daylight sufficiency. The findings also indicate a distinct turning point at about 50–55% WWR, beyond which performance is mostly dependent on the façade’s ability to modulate its morphology and further glass offers minimal advantage. Based on this, the article suggests a contextual framework to encourage façade options for Mediterranean office environments that are more sustainable, aesthetically pleasing, and climate-responsive. Full article
Show Figures

Figure 1

23 pages, 3015 KB  
Article
Comparative Study on Surface Heating Systems with and Without External Shading: Effects on Indoor Thermal Environment
by Małgorzata Fedorczak-Cisak, Elżbieta Radziszewska-Zielina, Mirosław Dechnik, Aleksandra Buda-Chowaniec, Anna Romańska and Anna Dudzińska
Energies 2026, 19(1), 223; https://doi.org/10.3390/en19010223 - 31 Dec 2025
Viewed by 321
Abstract
The three key design criteria for nearly zero-energy buildings (nZEBs) and climate-neutral buildings are minimizing energy use, ensuring high occupant comfort, and reducing environmental impact. Thermal comfort is one of the main components of indoor environmental quality (IEQ), strongly affecting occupants’ health, well-being, [...] Read more.
The three key design criteria for nearly zero-energy buildings (nZEBs) and climate-neutral buildings are minimizing energy use, ensuring high occupant comfort, and reducing environmental impact. Thermal comfort is one of the main components of indoor environmental quality (IEQ), strongly affecting occupants’ health, well-being, and productivity. As energy-efficiency requirements become more demanding, the appropriate selection of heating systems, their automated control, and the management of solar heat gains are becoming increasingly important. This study investigates the influence of two low-temperature radiant heating systems—underfloor and wall-mounted—and the use of Venetian blinds on perceived thermal comfort in a highly glazed public nZEB building located in a densely built urban area within a temperate climate zone. The assessment was based on the PMV (Predicted Mean Vote) index, commonly used in IEQ research. The results show that both heating systems maintained indoor conditions corresponding to comfort or slight thermal stress under steady state operation. However, during periods of strong solar exposure in the room without blinds, PMV values exceeded 2.0, indicating substantial heat stress. In contrast, external Venetian blinds significantly stabilized the indoor microclimate—reducing PMV peaks by an average of 50.2% and lowering the number of discomfort hours by 94.9%—demonstrating the crucial role of solar protection in highly glazed spaces. No significant whole-body PMV differences were found between underfloor and wall heating. Overall, the findings provide practical insights into the control of thermal conditions in radiant-heated spaces and highlight the importance of solar shading in mitigating heat stress. These results may support the optimization of HVAC design, control, and operation in both residential and non-residential nZEB buildings, contributing to improved occupant comfort and enhanced energy efficiency. Full article
Show Figures

Figure 1

Back to TopTop