Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (378)

Search Parameters:
Keywords = nutritional imbalance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2393 KiB  
Review
Aggressive Mating Behavior in Roosters (Gallus gallus domesticus): A Narrative Review of Behavioral Patterns
by Mihnea Lupu, Dana Tăpăloagă, Elena Mitrănescu, Raluca Ioana Rizac, George Laurențiu Nicolae and Manuella Militaru
Life 2025, 15(8), 1232; https://doi.org/10.3390/life15081232 - 3 Aug 2025
Viewed by 219
Abstract
This review explores sexual aggression in broiler breeder males, aiming to synthesize existing scientific evidence regarding its causes, behavioral manifestations, and consequences, while addressing the genetic, neuroendocrine, and environmental mechanisms involved. Through an extensive analysis of scientific literature, the paper highlights that intensive [...] Read more.
This review explores sexual aggression in broiler breeder males, aiming to synthesize existing scientific evidence regarding its causes, behavioral manifestations, and consequences, while addressing the genetic, neuroendocrine, and environmental mechanisms involved. Through an extensive analysis of scientific literature, the paper highlights that intensive genetic selection aimed at enhancing growth and productivity has resulted in unintended behavioral dysfunctions. These include the reduction or absence of courtship behavior, the occurrence of forced copulations, and a notable increase in injury rates among hens. Reproductive challenges observed in meat-type breeder flocks, in contrast to those in layer lines, appear to stem from selection practices that have overlooked traits related to mating behavior. Environmental and managerial conditions, including photoperiod manipulation, stocking density, nutritional imbalances, and the use of mixed-sex rearing systems, are also identified as contributing factors to the expression of sexual aggression. Furthermore, recent genetic findings indicate a potential link between inherited neurobehavioral factors and aggressive behavior, with the SORCS2 gene emerging as a relevant candidate. Based on these insights, the review emphasizes the importance of considering behavioral parameters in breeding programs in order to reconcile productivity objectives with animal welfare standards. Future research may benefit from a more integrative approach that combines behavioral, physiological, and genomic data to better understand and address the multifactorial nature of sexual aggression in poultry systems. Full article
(This article belongs to the Section Animal Science)
Show Figures

Figure 1

10 pages, 784 KiB  
Article
Effect of Malnutrition on Femoral Cartilage Thickness in Pediatric Patients
by Şükrü Güngör, Raikan Büyükavcı, Fatma İlknur Varol, Emre Gök and Semra Aktürk
Children 2025, 12(8), 1021; https://doi.org/10.3390/children12081021 - 2 Aug 2025
Viewed by 150
Abstract
Background/Objectives: Malnutrition is an imbalance of nutrients required for growth, development, and organ function. Its impact on bone development is known, but its effects on cartilage remain unclear. This study aimed to evaluate the femoral cartilage thickness in children with primary malnutrition. [...] Read more.
Background/Objectives: Malnutrition is an imbalance of nutrients required for growth, development, and organ function. Its impact on bone development is known, but its effects on cartilage remain unclear. This study aimed to evaluate the femoral cartilage thickness in children with primary malnutrition. Methods: In this cross-sectional observational study, 83 children with primary malnutrition and 62 age- and sex-matched healthy controls were included. Patients with primary malnutrition were classified as mild, moderate and severe. Femoral cartilage thickness measurements of all children were taken by ultrasound from the femoral lateral condyle, femoral medial condyle and intercondylar area for both knees with the patient in a supine position with the knees flexed 90 degrees. Results: The right lateral, right medial, left lateral, and left medial femoral cartilages were significantly thicker in patients with malnutrition compared to those without malnutrition (p = 0.002, 0.004, <0.001, and 0.001, respectively). A significant negative correlation was found between age, weight Z-score, and height Z-score and triceps skinfold thickness. Conclusions: Distal femoral cartilage thickness is significantly greater in children with primary malnutrition. This demonstrates the effect of nutritional factors on cartilage tissue and suggests that children with chronic malnutrition are at risk for both knee joint problems and short stature later in life. Full article
(This article belongs to the Section Pediatric Gastroenterology and Nutrition)
Show Figures

Figure 1

17 pages, 4929 KiB  
Article
Assessment of Grassland Carrying Capacity and Grass–Livestock Balance in the Three River Headwaters Region Under Different Scenarios
by Wenjing Li, Qiong Luo, Zhe Chen, Yanlin Liu, Zhouyuan Li and Wenying Wang
Biology 2025, 14(8), 978; https://doi.org/10.3390/biology14080978 (registering DOI) - 1 Aug 2025
Viewed by 186
Abstract
It is crucial to clarify the grassland carrying capacity (CC) and the balance between grass and livestock under different scenarios for ecological protection and sustainable development in the Three River Headwaters Region (TRHR). This study focused on the TRHR and used livestock data, [...] Read more.
It is crucial to clarify the grassland carrying capacity (CC) and the balance between grass and livestock under different scenarios for ecological protection and sustainable development in the Three River Headwaters Region (TRHR). This study focused on the TRHR and used livestock data, MODIS Net Primary Productivity (NPP) data, and artificial supplementary feeding data to analyze grassland CC and explore changes in the grass–livestock balance across various scenarios. The results showed that the theoretical CC of edible forage under complete grazing conditions was much lower than that of crude protein under nutritional carrying conditions. Furthermore, without increasing the grazing intensity of natural grasslands, artificial supplementary feeding reduced overstocking areas by 21%. These results suggest that supplementary feeding effectively addresses the imbalance between forage supply and demand, serving as a key measure for achieving sustainable grassland livestock husbandry. Despite the effective mitigation of grassland degradation in the TRHR due to strict grass–livestock balance policies and ecological restoration projects, the actual livestock CC exceeded the theoretical capacity, leading to overgrazing in some areas. To achieve desired objectives, more effective grassland management strategies must be implemented in the future to minimize spatiotemporal conflicts between grasses and livestock and ensure the health and stability of grassland ecosystems. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Graphical abstract

11 pages, 219 KiB  
Article
Altitude-Linked Distribution Patterns of Serum and Hair Mineral Elements in Healthy Yak Calves from Ganzi Prefecture
by Chenglong Xia, Yao Pan, Jianping Wu, Dengzhu Luorong, Qingting Yu, Zhicai Zuo, Yue Xie, Xiaoping Ma, Lan Lan and Hongrui Guo
Vet. Sci. 2025, 12(8), 718; https://doi.org/10.3390/vetsci12080718 - 31 Jul 2025
Viewed by 173
Abstract
Mineral imbalances in livestock can critically impair growth, immunity, and productivity. Yaks inhabiting the Qinghai–Tibetan Plateau face unique environmental challenges, including high-altitude-induced nutrient variability. This study investigated the status of mineral elements and their correlations with altitude in healthy yak calves across five [...] Read more.
Mineral imbalances in livestock can critically impair growth, immunity, and productivity. Yaks inhabiting the Qinghai–Tibetan Plateau face unique environmental challenges, including high-altitude-induced nutrient variability. This study investigated the status of mineral elements and their correlations with altitude in healthy yak calves across five regions in Ganzi Prefecture, located at elevations ranging from 3100 to 4100 m. Hair and serum samples from 35 calves were analyzed for 11 essential elements (Na, K, Ca, Mg, S, Cu, Fe, Mn, Zn, Co, and Se). The results revealed widespread deficiencies. Key deficiencies were identified: hair Na and Co were significantly below references value (p < 0.05), and Se was consistently deficient across all regions, with deficiency rates ranging from 35.73% to 56.57%. Serum Mg and Cu were generally deficient (Mg deficiency > 26% above 3800 m). S, Mn (low detection), and Co were also suboptimal. Serum selenium deficiency was notably severe in lower-altitude areas (≤59.07%). Significant correlations with altitude were observed: hair sodium levels decreased with increasing altitude (r = −0.72), while hair manganese (r = 0.88) and cobalt (r = 0.65) levels increased. Serum magnesium deficiency became more pronounced at higher elevations (r = 0.58), whereas selenium deficiency in serum was more severe at lower altitudes (r = −0.61). These findings indicate prevalent multi-element deficiencies in yak calves that are closely linked to altitude and are potentially influenced by soil mineral composition and feeding practices, as suggested by previous studies. The study underscores the urgent need for region-specific nutritional standards and altitude-adapted mineral supplementation strategies to support optimal yak health and development. Full article
(This article belongs to the Section Anatomy, Histology and Pathology)
31 pages, 6501 KiB  
Review
From Hormones to Harvests: A Pathway to Strengthening Plant Resilience for Achieving Sustainable Development Goals
by Dipayan Das, Hamdy Kashtoh, Jibanjyoti Panda, Sarvesh Rustagi, Yugal Kishore Mohanta, Niraj Singh and Kwang-Hyun Baek
Plants 2025, 14(15), 2322; https://doi.org/10.3390/plants14152322 - 27 Jul 2025
Viewed by 1224
Abstract
The worldwide agriculture industry is facing increasing problems due to rapid population increase and increasingly unfavorable weather patterns. In order to reach the projected food production targets, which are essential for guaranteeing global food security, innovative and sustainable agricultural methods must be adopted. [...] Read more.
The worldwide agriculture industry is facing increasing problems due to rapid population increase and increasingly unfavorable weather patterns. In order to reach the projected food production targets, which are essential for guaranteeing global food security, innovative and sustainable agricultural methods must be adopted. Conventional approaches, including traditional breeding procedures, often cannot handle the complex and simultaneous effects of biotic pressures such as pest infestations, disease attacks, and nutritional imbalances, as well as abiotic stresses including heat, salt, drought, and heavy metal toxicity. Applying phytohormonal approaches, particularly those involving hormonal crosstalk, presents a viable way to increase crop resilience in this context. Abscisic acid (ABA), gibberellins (GAs), auxin, cytokinins, salicylic acid (SA), jasmonic acid (JA), ethylene, and GA are among the plant hormones that control plant stress responses. In order to precisely respond to a range of environmental stimuli, these hormones allow plants to control gene expression, signal transduction, and physiological adaptation through intricate networks of antagonistic and constructive interactions. This review focuses on how the principal hormonal signaling pathways (in particular, ABA-ET, ABA-JA, JA-SA, and ABA-auxin) intricately interact and how they affect the plant stress response. For example, ABA-driven drought tolerance controls immunological responses and stomatal behavior through antagonistic interactions with ET and SA, while using SnRK2 kinases to activate genes that react to stress. Similarly, the transcription factor MYC2 is an essential node in ABA–JA crosstalk and mediates the integration of defense and drought signals. Plants’ complex hormonal crosstalk networks are an example of a precisely calibrated regulatory system that strikes a balance between growth and abiotic stress adaptation. ABA, JA, SA, ethylene, auxin, cytokinin, GA, and BR are examples of central nodes that interact dynamically and context-specifically to modify signal transduction, rewire gene expression, and change physiological outcomes. To engineer stress-resilient crops in the face of shifting environmental challenges, a systems-level view of these pathways is provided by a combination of enrichment analyses and STRING-based interaction mapping. These hormonal interactions are directly related to the United Nations Sustainable Development Goals (SDGs), particularly SDGs 2 (Zero Hunger), 12 (Responsible Consumption and Production), and 13 (Climate Action). This review emphasizes the potential of biotechnologies to use hormone signaling to improve agricultural performance and sustainability by uncovering the molecular foundations of hormonal crosstalk. Increasing our understanding of these pathways presents a strategic opportunity to increase crop resilience, reduce environmental degradation, and secure food systems in the face of increasing climate unpredictability. Full article
Show Figures

Figure 1

16 pages, 6892 KiB  
Article
Interrelation Between Growing Conditions in Caucasus Subtropics and Actinidia deliciosa ‘Hayward’ Yield for the Sustainable Agriculture
by Tsiala V. Tutberidze, Alexey V. Ryndin, Tina D. Besedina, Natalya S. Kiseleva, Vladimir Brigida and Aleksandr P. Boyko
Sustainability 2025, 17(14), 6499; https://doi.org/10.3390/su17146499 - 16 Jul 2025
Viewed by 324
Abstract
Kiwifruit is a high-value subtropical crop with significant nutritional and economic importance, but its cultivation faces growing challenges due to climate change, particularly in Caucasus. This study aims to study the impact of abiotic stressors such as temperature extremes, drought, and frost on [...] Read more.
Kiwifruit is a high-value subtropical crop with significant nutritional and economic importance, but its cultivation faces growing challenges due to climate change, particularly in Caucasus. This study aims to study the impact of abiotic stressors such as temperature extremes, drought, and frost on the yield of the ‘Hayward’ cultivar over a 20-year period (from 2003 to 2022). Using a combination of agroclimatic data analysis, measurements of soluble solid content, and soil moisture assessments, this research identified key factors which limit kiwifruit cultivation productivity. The results revealed a high yield variability—68%, with the mean value declining by 16.6% every five years due to increasing aridity and heat stress. Extreme temperature rises of up to 30 °C caused yield losses of 79–89%, and the presence of frost led to declines of 71–94%. In addition, it is objectively proven that the vulnerability of kiwifruit is subject to climate-driven water imbalances. This highlights the need for adaptive strategy formation in the area of optimized irrigation for the sustainable cultivation of fruit in the subtropics. One of the study’s limitations was that it was organized around a single variety of kiwifruit (‘Hayward’). In view of the fact that there are significant differences in growth characteristics among kiwifruit varieties, future research should focus on overcoming this shortcoming. Full article
Show Figures

Figure 1

36 pages, 914 KiB  
Review
Gut Microbiota in Women with Eating Disorders: A New Frontier in Pathophysiology and Treatment
by Giuseppe Marano, Sara Rossi, Greta Sfratta, Mariateresa Acanfora, Maria Benedetta Anesini, Gianandrea Traversi, Francesco Maria Lisci, Lucio Rinaldi, Roberto Pola, Antonio Gasbarrini, Gabriele Sani, Eleonora Gaetani and Marianna Mazza
Nutrients 2025, 17(14), 2316; https://doi.org/10.3390/nu17142316 - 14 Jul 2025
Cited by 1 | Viewed by 1597
Abstract
Emerging evidence highlights the critical role of the gut microbiota in the development and progression of eating disorders (EDs), particularly in women, who are more frequently affected by these conditions. Women with anorexia nervosa, bulimia nervosa, and binge eating disorder exhibit distinct alterations [...] Read more.
Emerging evidence highlights the critical role of the gut microbiota in the development and progression of eating disorders (EDs), particularly in women, who are more frequently affected by these conditions. Women with anorexia nervosa, bulimia nervosa, and binge eating disorder exhibit distinct alterations in gut microbiota composition compared to healthy controls. These alterations, collectively termed dysbiosis, involve reduced microbial diversity and shifts in key bacterial populations responsible for regulating metabolism, inflammation, and gut–brain signaling. The gut microbiota is known to influence appetite regulation, mood, and stress responses—factors closely implicated in the pathogenesis of EDs. In women, hormonal fluctuations related to menstruation, pregnancy, and menopause may further modulate gut microbial profiles, potentially compounding vulnerabilities to disordered eating. Moreover, the restrictive eating patterns, purging behaviors, and altered dietary intake often observed in women with EDs exacerbate microbial imbalances, contributing to intestinal permeability, low-grade inflammation, and disturbances in neurotransmitter production. This evolving understanding suggests that microbiota-targeted therapies, such as probiotics, prebiotics, dietary modulation, and fecal microbiota transplantation (FMT), could complement conventional psychological and pharmacological treatments in women with EDs. Furthermore, precision nutrition and personalized microbiome-based interventions tailored to an individual’s microbial and metabolic profile offer promising avenues for improving treatment efficacy, even though these approaches remain exploratory and their clinical applicability has yet to be fully validated. Future research should focus on sex-specific microbial signatures, causal mechanisms, and microbiota-based interventions to enhance personalized treatment for women struggling with eating disorders. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

31 pages, 2326 KiB  
Review
“My Bitch Is Empty!” an Overview of the Preconceptional Causes of Infertility in Dogs
by Juliette Roos-Pichenot and Maja Zakošek Pipan
Vet. Sci. 2025, 12(7), 663; https://doi.org/10.3390/vetsci12070663 - 12 Jul 2025
Viewed by 1100
Abstract
Infertility is a complex and common problem in reproductive medicine consultations. Three factors must be examined during the preconception phase: breeding management, the fertility of the bitch, and the fertility of the stud dog. Among these factors, improper breeding management remains the main [...] Read more.
Infertility is a complex and common problem in reproductive medicine consultations. Three factors must be examined during the preconception phase: breeding management, the fertility of the bitch, and the fertility of the stud dog. Among these factors, improper breeding management remains the main cause of reproductive failure, with accurate recognition of ovulation being crucial for successful mating. Artificial insemination allows for a thorough evaluation of semen quality compared to natural mating. In addition, genetic selection, nutritional factors, and reproductive health management can either impair or improve the fertility of females and males. Idiopathic infertility can occur in bitches, but it is important to rule out other possible causes first. In bitches with irregular estrus cycles, ovarian dysfunction and endocrine imbalances should be investigated. In bitches with regular cycles, uterine disorders such as cystic endometrial hyperplasia, endometritis or congenital anomalies may be the cause. Both mating-related and chronic endometritis are recognized as contributing factors to infertility. Infectious agents, particularly Brucella spp. and Mycoplasma spp., should also be evaluated, although interpretation of Mycoplasma test results requires caution. In males presenting with poor semen quality, potential causes include infectious diseases (with brucellosis always requiring exclusion), hormonal imbalances, and the impact of exogenous treatments. The article underscores the critical role of comprehensive diagnostic protocols, proactive health surveillance, and data-driven breeding strategies in systematically addressing this multifaceted challenge. Full article
(This article belongs to the Section Veterinary Reproduction and Obstetrics)
Show Figures

Figure 1

16 pages, 1179 KiB  
Article
Effect and Optimal Level of Dietary Dried Watermeal (Wolffia globosa) Supplementation on the Production Performance of Two-Spotted Crickets (Gryllus bimaculatus)
by Jamlong Mitchaothai, Nils T. Grabowski, Rachakris Lertpatarakomol, Tassanee Trairatapiwan and Achara Lukkananukool
Animals 2025, 15(14), 2052; https://doi.org/10.3390/ani15142052 - 11 Jul 2025
Viewed by 289
Abstract
Watermeal (Wolffia globosa) is an emerging sustainable feed ingredient, valued for its rapid growth, high protein content, and rich nutrient profile, offering great potential to improve the efficiency and sustainability of edible cricket production systems through efficient resource use and reduced [...] Read more.
Watermeal (Wolffia globosa) is an emerging sustainable feed ingredient, valued for its rapid growth, high protein content, and rich nutrient profile, offering great potential to improve the efficiency and sustainability of edible cricket production systems through efficient resource use and reduced environmental impact. This study aimed to evaluate the effects of replacing commercial cricket feed with dried watermeal and to determine the optimal substitution level for the production performance of two-spotted crickets (Gryllus bimaculatus). Seven dietary treatments were tested, namely 0% (control; T1), 10% (T2), 25% (T3), 50% (T4), 75% (T5), 90% (T6), and 100% (T7). Crickets were reared for four weeks in an open system with 6 replicates per treatment, with each containing 120 nymphs. Body weight, feed intake, and survival rate were recorded weekly, and a production index was calculated at the end of the trial. Results showed average growth rates ranging from 7.40 to 28.20 mg/day, feed conversion ratios (FCR) between 1.03 and 1.68, survival rates of 29.28% to 69.73%, and production index values from 24.00 to 128.30. A significant decline in production efficiency (p < 0.05) was observed at substitution levels of 75% and above, with the 100% watermeal group showing the lowest production efficiency (p < 0.05), likely due to nutrient imbalances and indigestible compounds. Segmented regression analysis identified 36.7% as the optimal level of watermeal supplementation. In terms of body composition, crickets fed diets containing up to 50% watermeal (10%, 25%, and 50%) showed crude protein, crude fat, crude fiber, and ash contents comparable to those fed the commercial diet. This finding suggests that dried watermeal can replace up to 50% of the commercial cricket feed without negatively affecting growth performance, survival, or nutritional quality, with 36.7% identified as the optimal replacement level for maximizing production efficiency. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

20 pages, 545 KiB  
Article
Cricket Flour for a Sustainable Pasta: Increasing the Nutritional Profile with a Safe Supplement
by Serena Indelicato, Claudia Lino, David Bongiorno, Silvia Orecchio, Fabio D’Agostino, Sergio Indelicato, Aldo Todaro, Lucia Parafati and Giuseppe Avellone
Foods 2025, 14(14), 2404; https://doi.org/10.3390/foods14142404 - 8 Jul 2025
Viewed by 710
Abstract
This study investigates the nutritional and chemical profile of cricket (Acheta domesticus) flour, evaluating its potential as a sustainable and highly nutritious food source. Cricket flour, with a protein content of approximately 60%, offers a significantly higher nutritional value compared to [...] Read more.
This study investigates the nutritional and chemical profile of cricket (Acheta domesticus) flour, evaluating its potential as a sustainable and highly nutritious food source. Cricket flour, with a protein content of approximately 60%, offers a significantly higher nutritional value compared to many traditional food sources. It is particularly rich in essential amino acids, making it a valuable and sustainable protein alternative. Additionally, the flour is rich in minerals such as potassium, calcium, magnesium, copper, and zinc. The administration of 100 g of cricket flour would exceed the recommended daily intake for adults for most nutrients, making its incorporation into more traditional foods such as bread and pasta at low percentages feasible, easily compensating for any imbalances and increasing their nutritional values. We found that an addition of a mere 10% of cricket flour to produce an experimental pasta fulfilled half of the recommended daily intake values for protein, lipids, and minerals. Chemical analyses of the pure cricket flour revealed only trace amounts of polycyclic aromatic hydrocarbons (PAHs) and linear alkanes, with concentrations well below safety thresholds established for other food categories, indicating that cricket flour is safe for human consumption. The study’s findings confirm that cricket flour is a promising sustainable protein source, and its integration into classic foods could safely contribute to alleviating iron and copper deficiencies as well as malnutrition. Full article
Show Figures

Figure 1

39 pages, 560 KiB  
Review
Trace Mineral Imbalances in Global Health: Challenges, Biomarkers, and the Role of Serum Analysis
by Marta López-Alonso, Inés Rivas and Marta Miranda
Nutrients 2025, 17(13), 2241; https://doi.org/10.3390/nu17132241 - 7 Jul 2025
Viewed by 771
Abstract
Background/Objectives: Trace minerals (TMs), both essential and toxic, are integral to human physiology, participating in enzymatic reactions, oxidative balance, immune function, and the modulation of chronic disease risk. Despite their importance, imbalances due to deficiencies or toxic exposures are widespread globally. While [...] Read more.
Background/Objectives: Trace minerals (TMs), both essential and toxic, are integral to human physiology, participating in enzymatic reactions, oxidative balance, immune function, and the modulation of chronic disease risk. Despite their importance, imbalances due to deficiencies or toxic exposures are widespread globally. While low-income countries often face overt deficiencies and environmental contamination, middle- and high-income populations increasingly deal with subclinical deficits and chronic toxic metal exposure. This review aims to explore the relevance of serum as a matrix for evaluating TM status across diverse clinical and epidemiological, geographic, and demographic settings. Methods: A narrative literature review was conducted focusing on the physiological roles, health impacts, and current biomarker approaches for key essential (e.g., zinc, copper, selenium) and toxic (e.g., lead, mercury, cadmium, arsenic) trace elements. Particular emphasis was placed on studies utilizing serum analysis and on recent advances in multi-element detection using inductively coupled plasma mass spectrometry (ICP-MS). Results: Serum was identified as a versatile and informative matrix for TM assessment, offering advantages in terms of clinical accessibility, biomarker reliability, and capacity for the simultaneous quantification of multiple elements. For essential TMs, serum levels reflect nutritional status with reasonable accuracy. For toxic elements, detection depends on instrument sensitivity, but serum can still provide valuable exposure data. The method’s scalability supports applications ranging from public health surveillance to individualized patient care. Conclusions: Serum trace mineral analysis is a practical and scalable approach for nutritional assessment and exposure monitoring. Integrating it into clinical practice and public health strategies can improve the early detection of imbalances, guide interventions such as nutritional supplementation, dietary modifications, and exposure mitigation efforts. This approach also supports advanced personalized nutrition and preventive care. Full article
(This article belongs to the Special Issue A New Perspective: The Effect of Trace Elements on Human Health)
Show Figures

Figure 1

26 pages, 1293 KiB  
Review
Microbiota-Modulating Strategies in Neonates Undergoing Surgery for Congenital Gastrointestinal Conditions: A Narrative Review
by Nunzia Decembrino, Maria Grazia Scuderi, Pasqua Maria Betta, Roberta Leonardi, Agnese Bartolone, Riccardo Marsiglia, Chiara Marangelo, Stefania Pane, Domenico Umberto De Rose, Guglielmo Salvatori, Giuseppe Grosso, Federica Martina Di Domenico, Andrea Dotta, Lorenza Putignani, Irma Capolupo and Vincenzo Di Benedetto
Nutrients 2025, 17(13), 2234; https://doi.org/10.3390/nu17132234 - 5 Jul 2025
Viewed by 680
Abstract
Background/Objectives: The gut microbiota (GM) is pivotal for immune regulation, metabolism, and neurodevelopment. Infants undergoing surgery for congenital gastrointestinal anomalies are especially prone to microbial imbalances, with a paucity of beneficial bacteria (e.g., Bifidobacteria and Bacteroides) and diminished short-chain fatty acid production. Dysbiosis [...] Read more.
Background/Objectives: The gut microbiota (GM) is pivotal for immune regulation, metabolism, and neurodevelopment. Infants undergoing surgery for congenital gastrointestinal anomalies are especially prone to microbial imbalances, with a paucity of beneficial bacteria (e.g., Bifidobacteria and Bacteroides) and diminished short-chain fatty acid production. Dysbiosis has been associated with severe complications, including necrotizing enterocolitis, sepsis, and feeding intolerance. This narrative review aims to critically examine strategies for microbiota modulation in this high-risk cohort. Methods: An extensive literature analysis was performed to compare the evolution of GM in healthy neonates versus those requiring gastrointestinal surgery, synthetizing strategies to maintain eubiosis, such as early nutritional interventions—particularly the use of human milk—along with antibiotic management and supplementary treatments including probiotics, prebiotics, postbiotics, and lactoferrin. Emerging techniques in metagenomic and metabolomic analysis were also evaluated for their potential to elucidate microbial dynamics in these patients. Results: Neonates undergoing gastrointestinal surgery exhibit significant alterations in microbial communities, characterized by reduced levels of eubiotic bacteria and an overrepresentation of opportunistic pathogens. Early initiation of enteral feeding with human milk and careful antibiotic stewardship are linked to improved microbial balance. Adjunctive therapies, such as the administration of probiotics and lactoferrin, show potential in enhancing gut barrier function and immune modulation, although confirmation through larger-scale studies remains necessary. Conclusions: Modulating the GM emerges as a promising strategy to ameliorate outcome in neonates with congenital gastrointestinal surgical conditions. Future research should focus on the development of standardized therapeutic protocols and the execution of rigorous multicenter trials to validate the efficacy and safety of these interventions. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

25 pages, 1135 KiB  
Review
Magnesium: Exploring Gender Differences in Its Health Impact and Dietary Intake
by Elisa Mazza, Samantha Maurotti, Yvelise Ferro, Alberto Castagna, Carmelo Pujia, Angela Sciacqua, Arturo Pujia and Tiziana Montalcini
Nutrients 2025, 17(13), 2226; https://doi.org/10.3390/nu17132226 - 4 Jul 2025
Viewed by 2099
Abstract
Background: Magnesium (Mg2+) plays a fundamental role in various physiological processes, including neuromuscular function, glucose metabolism, cardiovascular regulation, and bone health. Despite its significance, the influence of sex on magnesium metabolism, requirements, and health outcomes remains unexplored. The aim of [...] Read more.
Background: Magnesium (Mg2+) plays a fundamental role in various physiological processes, including neuromuscular function, glucose metabolism, cardiovascular regulation, and bone health. Despite its significance, the influence of sex on magnesium metabolism, requirements, and health outcomes remains unexplored. The aim of this review is to analyze sex-based differences in magnesium homeostasis, with a particular focus on hormonal regulation, body composition, and disease susceptibility. Methods: This narrative review, based on a non-systematic MEDLINE search conducted in January 2025, prioritized clinical trials from the past 15 years on human subjects and explored gender-specific aspects of magnesium intake, status, metabolism, and supplementation. Results: Hormonal fluctuations, particularly variations in estrogen levels, affect magnesium absorption, distribution, and retention, thereby influencing magnesium balance across different life stages such as puberty, pregnancy, and menopause. Additionally, dietary intake and lifestyle factors often differ between men and women, further impacting magnesium status. Emerging evidence suggests that suboptimal magnesium levels may differentially contribute to conditions such as osteoporosis, cardiovascular disease, and metabolic disorders in each sex. Conclusions: In conclusion, acknowledging sex-specific differences in magnesium metabolism is essential for developing personalized dietary guidelines and therapeutic strategies. Tailored nutritional approaches could significantly improve magnesium status, enhance overall health, and reduce the burden of chronic diseases linked to magnesium imbalance. Full article
(This article belongs to the Special Issue The Role of Magnesium Status in Human Health)
Show Figures

Graphical abstract

14 pages, 1081 KiB  
Review
High Tunnels as a Unique Theatre for Investigating the Complex Causes of Yellow Shoulder Disorder in Tomatoes
by Sapana Pandey, Christopher J. Matocha, Hanna Poffenbarger and Krista Jacobsen
Horticulturae 2025, 11(7), 773; https://doi.org/10.3390/horticulturae11070773 - 2 Jul 2025
Viewed by 363
Abstract
Yellow shoulder disorder (YSD) is characterized by discolored regions beneath the fruit’s epidermis, impacting the ripening process and rendering tomatoes unsuitable for marketing. YSD poses a significant challenge in high-tunnel (HT) tomato production, a system that has gained prominence for its ability to [...] Read more.
Yellow shoulder disorder (YSD) is characterized by discolored regions beneath the fruit’s epidermis, impacting the ripening process and rendering tomatoes unsuitable for marketing. YSD poses a significant challenge in high-tunnel (HT) tomato production, a system that has gained prominence for its ability to extend growing seasons and enhance crop quality. This review delves into the various factors influencing YSD occurrence, including soil nutritional status, weather, plant variety, and the interactions between these factors, contributing to the occurrence of YSD in HT microclimate. The severity of YSD symptoms, ranging from minor to significant discoloration, highlights the complexity of this disorder. This review highlights research gaps on the effects of temperature, relative humidity, nutrient imbalance, soil water management, clay minerals, and how their interactions influence YSD in HT microclimates, emphasizing the need for comprehensive studies to understand the complex relationships between soil health, nutrient management, and tomato quality in HT microclimates and the need for further research to sustain high-quality tomato production in HTs. Full article
(This article belongs to the Section Plant Pathology and Disease Management (PPDM))
Show Figures

Figure 1

20 pages, 2581 KiB  
Review
Nutritional Management of Functioning GEP-NENs
by Maribel del Olmo-García, Lorena Hernandez-Rienda, Maria Argente Pla and Juan F. Merino-Torres
Nutrients 2025, 17(13), 2175; https://doi.org/10.3390/nu17132175 - 30 Jun 2025
Viewed by 461
Abstract
Background: Functioning gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are rare tumors that secrete biologically active hormones, leading to complex clinical syndromes such as carcinoid syndrome, VIPoma, glucagonoma, gastrinoma, insulinoma, and somatostatinoma. These syndromes frequently induce profound metabolic, gastrointestinal, and nutritional disturbances. Objective: This review aims [...] Read more.
Background: Functioning gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are rare tumors that secrete biologically active hormones, leading to complex clinical syndromes such as carcinoid syndrome, VIPoma, glucagonoma, gastrinoma, insulinoma, and somatostatinoma. These syndromes frequently induce profound metabolic, gastrointestinal, and nutritional disturbances. Objective: This review aims to provide a comprehensive overview of the physiopathology of malnutrition in functioning GEP-NENs and to highlight nutritional and supportive care strategies, including how medical, surgical, and locoregional treatments can indirectly improve nutritional outcomes. Methods: We analyzed the current literature and clinical guidelines to identify key mechanisms of malnutrition across different functioning syndromes and their clinical manifestations. Nutritional recommendations and the impact of treatment modalities on nutritional status were summarized. Results: The pathophysiology of malnutrition in functioning NENs is multifactorial and syndrome-specific. Hormonal hypersecretion may cause diarrhea, electrolyte imbalances, catabolic states, steatorrhea, or hypoglycemia, among other effects. These lead to nutrient loss, malabsorption, or altered intake. Tailored dietary interventions, micronutrient supplementation (e.g., niacin, calcium, vitamin B12), and symptom-guided nutritional support are essential. Somatostatin analogs, PRRT, and cytoreductive approaches often contribute to symptom control, thereby enhancing nutritional status and patient quality of life. Conclusions: Malnutrition in functioning GEP-NENs is a significant clinical issue that requires early recognition and a multidisciplinary, individualized management plan. Integrating nutrition into the comprehensive care of these patients is essential to improve outcomes and quality of life. Full article
Show Figures

Figure 1

Back to TopTop