Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (251)

Search Parameters:
Keywords = nuclear energy regulations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 602 KiB  
Review
Mitochondrial Regulation of Spermatozoa Function: Metabolism, Oxidative Stress and Therapeutic Insights
by Zhiqian Xu, Qi Yan, Ke Zhang, Ying Lei, Chen Zhou, Tuanhui Ren, Ning Gao, Fengyun Wen and Xiaoxia Li
Animals 2025, 15(15), 2246; https://doi.org/10.3390/ani15152246 - 31 Jul 2025
Viewed by 333
Abstract
Mitochondria are central to energy production and redox regulation in spermatozoa, supporting key functions such as progressive motility, capacitation, and the acrosome reaction. These processes are essential for successful fertilization and embryo development. However, species-specific differences exist in the reliance on oxidative phosphorylation [...] Read more.
Mitochondria are central to energy production and redox regulation in spermatozoa, supporting key functions such as progressive motility, capacitation, and the acrosome reaction. These processes are essential for successful fertilization and embryo development. However, species-specific differences exist in the reliance on oxidative phosphorylation versus glycolysis. Mitochondria also generate reactive oxygen species, which at physiological levels aid in sperm function but can cause oxidative stress and damage when overproduced. Mitochondrial dysfunction and excessive ROS can impair membrane potential, induce apoptosis, and damage nuclear and mitochondrial DNA, ultimately compromising sperm quality. Sperm mitochondrial DNA is highly susceptible to mutations and deletions, contributing to reduced motility and fertility. Targeted antioxidant strategies have emerged as promising therapeutic interventions to mitigate oxidative damage. This article provides a comprehensive overview of mitochondrial regulation in spermatozoa, the consequences of redox imbalance, and the potential of mitochondria-targeted antioxidants to improve sperm function and male fertility outcomes. The paper aims to deepen our understanding of mitochondrial roles in sperm physiology and contribute to the advancement of strategies for addressing male infertility. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Graphical abstract

11 pages, 1430 KiB  
Article
Determination of Trace 55Fe and 63Ni in Steel Samples via Liquid Scintillation Counting
by Giada Gandolfo, Maria Letizia Cozzella, Tiziana Guarcini and Giuseppe Augusto Marzo
Appl. Sci. 2025, 15(15), 8264; https://doi.org/10.3390/app15158264 - 25 Jul 2025
Viewed by 236
Abstract
In the decommissioning of nuclear facilities, activated steel often contains radionuclides such as 55Fe and 63Ni, which are categorized as hard-to-measure due to their emission of only low-energy beta particles or X-rays. In samples exhibiting very low radioactivity, close to background [...] Read more.
In the decommissioning of nuclear facilities, activated steel often contains radionuclides such as 55Fe and 63Ni, which are categorized as hard-to-measure due to their emission of only low-energy beta particles or X-rays. In samples exhibiting very low radioactivity, close to background levels, a large quantity of steel must undergo extensive physical and chemical processing to achieve the Minimum Detectable Activity Concentration (MDC) necessary for clearance, recycling, or reuse. Italian regulations set particularly stringent clearance levels for these radionuclides (1 Bq/g for both 55Fe and 63Ni), significantly lower than those specified in the EU Directive 2013/59 (1000 Bq/g for 55Fe and 100 Bq/g for 63Ni). Additionally, Italian authorities may enforce even stricter limits depending on specific circumstances. The analytical challenge is compounded by the presence of large amounts of non-radioactive Fe and Ni, which can cause color quenching, further extending analysis times. This study presents a reliable and optimized method for the quantitative determination of 55Fe and 63Ni in steel samples with activity levels approaching regulatory thresholds. The methodology was specifically developed and applied to steel from the Frascati Tokamak Upgrade (FTU) facility, under decommissioning by ENEA. The optimization process demonstrated that achieving the required MDCs necessitates acquisition times of approximately 5 days for 55Fe and 6 h for 63Ni, ensuring compliance with stringent regulatory requirements and supporting efficient laboratory workflows. Full article
(This article belongs to the Special Issue Radioactive Waste Treatment and Environment Recovery)
Show Figures

Figure 1

13 pages, 2212 KiB  
Article
Ablation of the Evolutionarily Acquired Functions of the Atp1b4 Gene Increases Metabolic Capacity and Reduces Obesity
by Nikolai N. Modyanov, Lucia Russo, Sumona Ghosh Lester, Tamara R. Castañeda, Himangi G. Marathe, Larisa V. Fedorova, Raymond E. Bourey, Sonia M. Najjar and Ivana L. de la Serna
Life 2025, 15(7), 1103; https://doi.org/10.3390/life15071103 - 14 Jul 2025
Viewed by 343
Abstract
In placental mammals, the co-option of vertebrate orthologous ATP1B4 genes has profoundly altered the properties of the encoded BetaM proteins, which function as bona fide β-subunits of Na,K-ATPases in lower vertebrates. Eutherian BetaM acquired an extended Glu-rich N-terminal domain resulting in the complete [...] Read more.
In placental mammals, the co-option of vertebrate orthologous ATP1B4 genes has profoundly altered the properties of the encoded BetaM proteins, which function as bona fide β-subunits of Na,K-ATPases in lower vertebrates. Eutherian BetaM acquired an extended Glu-rich N-terminal domain resulting in the complete loss of its ancestral function and became a skeletal and cardiac muscle-specific component of the inner nuclear membrane. BetaM is expressed at the highest level during perinatal development and is implicated in gene regulation. Here we report the long-term consequences of Atp1b4 ablation on metabolic parameters in adult mice. Male BetaM-deficient (Atp1b4−/Y) mice have remarkably lower body weight and adiposity than their wild-type littermates, despite higher food intake. Indirect calorimetry shows higher energy expenditure (heat production and oxygen consumption) with a greater spontaneous locomotor activity in Atp1b4−/Y males. Their lower respiratory exchange ratio suggests a greater reliance on fat metabolism compared to their wild-type counterparts. Consistently, Atp1b4−/Y KO mice exhibit enhanced β-oxidation in skeletal muscle, along with improved glucose and insulin tolerance. These robust metabolic changes induced by Atp1b4 disruption demonstrate that eutherian BetaM plays an important role in regulating adult mouse metabolism. This demonstrates that bypassing the co-option of Atp1b4 potentially reduces susceptibility to obesity. Thus, Atp1b4 ablation leading to the loss of evolutionarily acquired BetaM functions serves as a model for a potential alternative pathway in mammalian evolution. Full article
(This article belongs to the Section Evolutionary Biology)
Show Figures

Figure 1

30 pages, 1671 KiB  
Review
From Nuclear Receptor Regulation to Spleen Activating and Accumulation Resolving Therapy: A Review of Traditional Chinese Medicine Against Diabetes and Inflammation
by Jiawen Huang, Like Xu, Weiru Liu, Chuanquan Lin, Ying Tang, Chuangpeng Shen and Yong Gao
Int. J. Mol. Sci. 2025, 26(13), 6345; https://doi.org/10.3390/ijms26136345 - 30 Jun 2025
Viewed by 804
Abstract
Nuclear receptors are proteins located in the nucleus that are involved in gene transcription and play an important role in regulating metabolism and inflammation. Systemic metabolic abnormalities and chronic inflammation in diabetic patients are associated with gene expression and activity of bile acid [...] Read more.
Nuclear receptors are proteins located in the nucleus that are involved in gene transcription and play an important role in regulating metabolism and inflammation. Systemic metabolic abnormalities and chronic inflammation in diabetic patients are associated with gene expression and activity of bile acid metabolism, lipid and carbohydrate metabolism, energy expenditure, and inflammation regulated by nuclear receptors. As a major metabolic organ, the nuclear receptor regulation signal of the liver is the key to regulating the dialog between the liver and other organs. In this review, we discuss the newly discovered role of hepatic nuclear receptor signaling in diabetes metabolism and inflammation and focus on recent advances in drug research targeting nuclear receptors in diabetes, including the use of traditional Chinese medicine. Full article
(This article belongs to the Special Issue Molecular Diagnosis and Treatments of Diabetes Mellitus)
Show Figures

Figure 1

17 pages, 2175 KiB  
Article
Rutin Attenuates Oxidative Stress Responses and Hepatocyte Metabolomics in β-Hydroxybutyric Acid-Induced Hepatocyte Injury in Calves
by Kun Yang, Haixia Zhao, Min Gao, Honglian Hu and Dabiao Li
Int. J. Mol. Sci. 2025, 26(12), 5878; https://doi.org/10.3390/ijms26125878 - 19 Jun 2025
Viewed by 422
Abstract
: Negative energy balance (NEB) in dairy cows induces excessive lipolysis, leading to elevated levels of β-hydroxybutyric acid (BHBA), which, when accumulated, can cause liver damage. Rutin (RT), a natural flavonoid with antioxidant and anti-inflammatory properties, has demonstrated potential hepatoprotective effects; however, its [...] Read more.
: Negative energy balance (NEB) in dairy cows induces excessive lipolysis, leading to elevated levels of β-hydroxybutyric acid (BHBA), which, when accumulated, can cause liver damage. Rutin (RT), a natural flavonoid with antioxidant and anti-inflammatory properties, has demonstrated potential hepatoprotective effects; however, its ability to mitigate BHBA-induced hepatocellular injury in calves remains unclear. This study first assessed the impact of various BHBA concentrations on oxidative stress in calf hepatocytes, then explored the protective effects and underlying mechanisms of RT, and finally employed untargeted metabolomics to further elucidate RT’s mode of action. The results showed that exposure to 1.2 mM BHBA significantly increased malondialdehyde (MDA), nitric oxide (NO) contents, and reactive oxygen species (ROS) levels, while markedly decreasing glutathione (GSH) content and catalase (CAT) activity compared with the blank control. Notably, pretreatment with 100 μg/mL RT resulted in the greatest increase in GSH contents (180%) compared to BHBA treatment alone, while 150 μg/mL RT led to the most pronounced reduction in MDA contents (220%). Furthermore, BHBA treatment significantly upregulated the expression of Kelch-like ECH-associated protein 1 (Keap1) and downregulated nuclear factor erythroid 2-related factor 2 (Nrf2), NAD(P)H quinone dehydrogenase 1 (NQO1), and heme oxygenase-1 (HO-1) at both the mRNA and protein levels. These alterations were effectively reversed by pretreatment with 100 μg/mL RT. Non-targeted metabolomics identified 1525 metabolites in total. Based on OPLS-DA, metabolites with a variable importance in projection (VIP) > 1 and p < 0.05 were considered significantly altered. Compared with the blank control, BHBA treatment upregulated 47 metabolites—including 8-hydroxy-2′-deoxyguanosine, 3-hydroxyisovaleric acid, and N-palmitoyl-sphingosine—and downregulated 58 metabolites, such as betaine, linolenic acid, and arachidonic acid. In contrast, RT pretreatment upregulated 207 metabolites relative to the BHBA treatment, including linolenic acid, taurocholic acid, and 4-hydroxybenzoic acid, and downregulated 126 metabolites, including 3-hydroxyisovaleric acid, 8-hydroxy-2′-deoxyguanosine, and pyruvaldehyde. Pathway enrichment analysis indicated that RT alleviated BHBA-induced hepatocyte injury primarily by modulating the fatty acid degradation pathway. In summary, RT mitigated BHBA-induced oxidative stress in calf hepatocytes by regulating the Keap1/Nrf2 signaling pathway and further exerted protective effects through metabolic reprogramming. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

34 pages, 2456 KiB  
Review
Liver Metabolism at the Crossroads: The Reciprocal Control of Nutrient-Sensing Nuclear Receptors and Autophagy
by Eun Young Kim and Jae Man Lee
Int. J. Mol. Sci. 2025, 26(12), 5825; https://doi.org/10.3390/ijms26125825 - 18 Jun 2025
Viewed by 876
Abstract
Peroxisome proliferator-activated receptor α (PPARα, encoded by NR1C1) and farnesoid X receptor (FXR, encoded by NR1H4) are the two prominent nutrient-sensing nuclear receptors essential for maintaining hepatic metabolism during fasting and fed states, respectively. These nuclear receptors comprehensively regulate the transcription of numerous [...] Read more.
Peroxisome proliferator-activated receptor α (PPARα, encoded by NR1C1) and farnesoid X receptor (FXR, encoded by NR1H4) are the two prominent nutrient-sensing nuclear receptors essential for maintaining hepatic metabolism during fasting and fed states, respectively. These nuclear receptors comprehensively regulate the transcription of numerous genes involved in fatty acid oxidation (FAO), ketogenesis, bile acid (BA) biosynthesis, and other metabolic processes critical for liver energy homeostasis. These receptors have been shown to have opposite impacts on autophagy, which is triggered by PPARα activation but inhibited by FXR activation. Recent studies have further revealed that liver-specific genetic ablation of key autophagic genes tremendously impairs the activation of these nuclear receptors, thereby profoundly affecting hepatic metabolism in both fasting and feeding states. This review explores the roles and mechanisms of PPARα and FXR in regulating liver metabolism and autophagy, highlighting the necessity of basal autophagic activity in ensuring the proper signaling of these nutrient-sensing nuclear receptors. Finally, we examine the potential therapeutic strategies that leverage the interplay between PPARα, FXR, and autophagy for the treatment of metabolic liver disorders. We also delve into the clinical implications of this complex relationship, emphasizing its significance for translational medicine and future therapeutic interventions. Full article
(This article belongs to the Special Issue Nuclear Receptors in Diseases)
Show Figures

Figure 1

17 pages, 6100 KiB  
Article
Effects of Modified Messenger RNA of Adiponectin Delivered by Lipid Nanoparticles on Adipogenesis and Bone Metabolism In Vitro and In Vivo
by Ying Xie, Qian Ma, Jinghao Wang, Zoe Xiaofang Zhu, Rady E. El-Araby, Maxwell Tu, Zhongyu Li, Xiaoyang Xu, Qisheng Tu and Jake Chen
Cells 2025, 14(12), 891; https://doi.org/10.3390/cells14120891 - 13 Jun 2025
Viewed by 868
Abstract
Adiponectin (APN) is a secreted adipokine that plays a key role in modulating energy and bone metabolism, as well as regulating inflammatory responses. The overexpression of APN has been proposed as a potential therapeutic strategy for treating obesity and related disorders. Lipid nanoparticles [...] Read more.
Adiponectin (APN) is a secreted adipokine that plays a key role in modulating energy and bone metabolism, as well as regulating inflammatory responses. The overexpression of APN has been proposed as a potential therapeutic strategy for treating obesity and related disorders. Lipid nanoparticles (LNPs) are promising vectors for transporting messenger ribonucleic acid (mRNA) molecules. This study tested whether delivering a stabilized version of adiponectin mRNA (APN mRNA) using lipid nanoparticles could reduce fat formation and promote bone repair in vitro and in vivo. We demonstrated that transfection with APN-LNP upregulated the mRNA and protein expression of APN, while inhibiting adipogenesis in 3T3-L1 adipocytes. APN-LNP enhanced osteogenic gene expression in MC3T3-E1 cells in a dose-dependent manner. It also reduced matrix metalloproteinase 9 expression in receptor activator of nuclear factor-kappaB ligand (RANKL)-stimulated RAW264.7 cells, suggesting an anti-resorptive effect. In vivo, a femoral fracture model was established to explore the application of APN-LNP in promoting bone healing in diet-induced obese mice. Micro-computed tomography and histology analysis indicated that intravenous injection with APN-LNP promoted bone healing. Fasting blood glucose and body weight were decreased in the APN-LNP group. Moreover, APN-LNP increased bone sialoprotein and runt-related transcription factor 2 expression in contralateral femurs, as well as interleukin-10 expression in white adipose tissues. Thus, our study provides promising preclinical data on the potential use of APN-LNP for treating bone disorders in obesity. Full article
Show Figures

Figure 1

16 pages, 1400 KiB  
Review
Factors Contributing to Resistance to Ischemia-Reperfusion Injury in Olfactory Mitral Cells
by Choong-Hyun Lee, Ji Hyeon Ahn and Moo-Ho Won
Int. J. Mol. Sci. 2025, 26(11), 5079; https://doi.org/10.3390/ijms26115079 - 25 May 2025
Viewed by 770
Abstract
Brain ischemia-reperfusion (IR) injury is a critical pathological process that leads to extensive neuronal death, with hippocampal pyramidal cells, particularly those in the cornu Ammonis 1 (CA1) subfield, being highly vulnerable. Until now, human olfactory mitral cell resistance to IR injury has not [...] Read more.
Brain ischemia-reperfusion (IR) injury is a critical pathological process that leads to extensive neuronal death, with hippocampal pyramidal cells, particularly those in the cornu Ammonis 1 (CA1) subfield, being highly vulnerable. Until now, human olfactory mitral cell resistance to IR injury has not been directly studied, but olfactory dysfunction in humans is frequently reported in systemic vascular conditions such as ischemic heart failure and may serve as an early clinical marker of neurological or cardiovascular disease. Mitral cells, the principal neurons of the olfactory bulb (OB), exhibit remarkable resistance to IR injury, suggesting the presence of unique molecular adaptations that support their survival under ischemic stress. Several factors may contribute to the resilience of mitral cells. They have a lower susceptibility to excitotoxicity, mitigating the harmful effects of excessive glutamate signaling. Additionally, they maintain efficient calcium homeostasis, preventing calcium overload—a major trigger for cell death in vulnerable neurons. Mitral cells may also express high baseline levels of antioxidant enzymes and their activities, counteracting oxidative stress. Their robust mitochondrial function enhances energy production and reduces susceptibility to metabolic failure. Furthermore, neuroprotective signaling pathways, including phosphatidylinositol-3-kinase (PI3K)/Akt, mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK), and nuclear factor erythroid-2-related factor 2 (Nrf2)-mediated antioxidative responses, further bolster their resistance. In addition to these intrinsic mechanisms, the unique microvascular architecture and metabolic support within the olfactory bulb provide an extra layer of protection. By comparing mitral cells to ischemia-sensitive neurons, key vulnerabilities—such as oxidative stress, excitotoxicity, calcium dysregulation, and mitochondrial dysfunction—can be identified and potentially mitigated in other brain regions. Understanding these molecular determinants of neuronal survival may offer valuable insights for developing novel neuroprotective strategies to combat IR injury in highly vulnerable areas, such as the hippocampus and cortex. Full article
(This article belongs to the Special Issue New Molecular Insights into Ischemia/Reperfusion: 2nd Edition)
Show Figures

Figure 1

26 pages, 4181 KiB  
Article
Alleviating the Effect of Branched-Chain Fatty Acids on the Lipopolysaccharide-Induced Inflammatory Response in Calf Small Intestinal Epithelial Cells
by Siqi Zhang, Qingyuan Yu, Yukun Sun, Guangning Zhang, Yonggen Zhang and Hangshu Xin
Antioxidants 2025, 14(5), 608; https://doi.org/10.3390/antiox14050608 - 19 May 2025
Viewed by 830
Abstract
This study examined branched-chain fatty acids (BCFAs)’ effects on oxidative stress, energy metabolism, inflammation, tight junction disruption, apoptosis, and Toll-like receptor 4/nuclear factor kappa-B (TLR4/NF-κB) signaling in lipopolysaccharide (LPS)-induced calf small intestinal epithelial cells (CSIECs). Eight groups were used: a control [...] Read more.
This study examined branched-chain fatty acids (BCFAs)’ effects on oxidative stress, energy metabolism, inflammation, tight junction disruption, apoptosis, and Toll-like receptor 4/nuclear factor kappa-B (TLR4/NF-κB) signaling in lipopolysaccharide (LPS)-induced calf small intestinal epithelial cells (CSIECs). Eight groups were used: a control group, an LPS-induced group, and six BCFA treatment groups (12-methyltridecanoic acid (iso-C14:0), 13-methyltetradecanoic acid (iso-C15:0), 14-methylpentadecanoic acid (iso-C16:0), 15-methylhexadecanoic acid (iso-C17:0), 12-methyltetradecanoic acid (anteiso-C15:0), and 14-methylhexadecanoic acid (anteiso-C17:0)) with LPS. The BCFA pretreatments significantly increased CSIEC activity compared to the LPS-induced group, with iso-C14:0 showing the highest activity (89.73%). BCFA reduced Reactive Oxygen Species (ROS) generation and malondialdehyde (MDA) levels and improved the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities and glutathione (GSH) levels. Iso-C16:0 optimized total antioxidant capacity (T-AOC). BCFA enhanced the mitochondrial membrane potential, Adenosine Triphosphate (ATP) enzyme activity, and ATP content, with iso-C14:0 increasing ATP by 27.01%. BCFA downregulated interleukin (IL)-1β, IL-8, tumor necrosis factor (TNF)-α, and interferon (INF)-γ gene expression, reduced IL-6 levels, and increased IL-10 expression. Myeloid differentiation factor 88 (MyD88) mRNA levels were reduced. BCFA alleviated Zonula Occludin (ZO-1), Claudin-1, and Claudin-4 decrease and increased Occludin levels. BCFA mitigated LPS-induced increases in Caspase-3 and BCL2-Associated X (BAX) mRNA levels, reduced Caspase-8 and Caspase-9 expression, and increased B-Cell Lymphoma-2 (BCL-2) mRNA levels. The Entropy Weight-TOPSIS method was adopted, and it was discovered that iso-C15:0 has the best effect. In summary, BCFA supplementation mitigated oxidative stress and enhanced mitochondrial function. BCFA inhibited TLR4/NF-κB signaling pathway overactivation, regulated inflammatory cytokine gene expression, reduced cellular apoptosis, preserved tight junction integrity, and supported barrier function. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

20 pages, 8050 KiB  
Article
Investigating Natural Product Inhibitors of IKKα: Insights from Integrative In Silico and Experimental Validation
by Muhammad Yasir, Jinyoung Park, Eun-Taek Han, Jin-Hee Han, Won Sun Park, Jongseon Choe and Wanjoo Chun
Molecules 2025, 30(9), 2025; https://doi.org/10.3390/molecules30092025 - 2 May 2025
Viewed by 665
Abstract
Nuclear factor-κB (NF-κB) signaling plays a pivotal role in regulating immune responses and is strongly implicated in cancer progression and inflammation-related diseases. The inhibitory κB kinases (IKKs), particularly IKKα, are central to modulating NF-κB activity, with distinct roles in the canonical and non-canonical [...] Read more.
Nuclear factor-κB (NF-κB) signaling plays a pivotal role in regulating immune responses and is strongly implicated in cancer progression and inflammation-related diseases. The inhibitory κB kinases (IKKs), particularly IKKα, are central to modulating NF-κB activity, with distinct roles in the canonical and non-canonical signaling pathways. This study investigates the potential of selectively targeting IKKα to develop novel therapeutic strategies. A receptor–ligand interaction pharmacophore model was generated based on the co-crystallized structure of IKKα, incorporating six key features, two hydrogen bond acceptors, two hydrogen bond donors, one hydrophobic region, and one hydrophobic aromatic region. This model was used to virtually screen a diverse natural compound library of 5540 molecules, yielding 82 candidates that matched the essential pharmacophore features. Molecular docking and molecular dynamics simulations were subsequently employed to evaluate binding conformations, stability, and dynamic behavior of the top hits. The end-state free energy calculations (gmx_MMPBSA) further validated the interaction strength and stability of selected compounds. To experimentally confirm their inhibitory potential, key compounds were tested in LPS-stimulated RAW 264.7 cells, where they significantly reduced IκBα phosphorylation. These findings validate the integrative computational-experimental approach and identify promising natural compounds as selective IKKα inhibitors for further therapeutic development in cancer and inflammatory diseases. Full article
(This article belongs to the Special Issue Role of Natural Products in Inflammation)
Show Figures

Figure 1

16 pages, 7129 KiB  
Article
Estrogen-Related Receptor Potential Target Genes in Silkworm (Bombyx mori): Insights into Metabolic Regulation
by Luyu Hou, Jinxin Wu, Die Liu, Haoran Xu, Hongbo Yao, Yiwen Liang, Qingyou Xia, Ping Lin and Guanwang Shen
Insects 2025, 16(5), 469; https://doi.org/10.3390/insects16050469 - 29 Apr 2025
Cited by 1 | Viewed by 714
Abstract
Estrogen-related receptors (ERRs) are important transcription factors within the nuclear receptor family that regulate cellular energy storage and consumption by binding to estrogen-related receptor response elements (ERREs) on gene promoters. While ERRs’ role in vertebrates is well-studied, their molecular mechanisms in insect metabolism [...] Read more.
Estrogen-related receptors (ERRs) are important transcription factors within the nuclear receptor family that regulate cellular energy storage and consumption by binding to estrogen-related receptor response elements (ERREs) on gene promoters. While ERRs’ role in vertebrates is well-studied, their molecular mechanisms in insect metabolism and development remain unclear. This study systematically summarizes the functions of ERRs in insects, focusing on silkworms by analyzing gene functions and comparing databases. ERRE-like elements were identified in the 2000 bp upstream promoter regions of 69 metabolism-related silkworm genes. Furthermore, electrophoretic mobility shift assays (EMSAs) revealed that ERREs within the promoters of 15 genes related to sugar, fat, and protein metabolism specifically bind to ERR. Notably, an ERRE in the promoter of the trehalose transporter 1 gene (BmTret1), crucial for trehalose homeostasis in insect hemolymph, exhibited significantly enhanced activity in ERR-overexpressing cells. These findings suggest that ERR is a potential regulatory factor in silkworm metabolism and refine its metabolic regulatory network. This study highlights the broader and more critical role of ERR in insects than that previously recognized, contributing to a deeper understanding of insect metabolism and its potential applications in related fields. Full article
(This article belongs to the Special Issue Genomics and Molecular Biology in Silkworm)
Show Figures

Graphical abstract

37 pages, 8170 KiB  
Article
Drug Repurposing to Inhibit Oncostatin M in Crohn’s Disease
by Faranak Bahramimehr, Axel Guthart, Stefanie Kurz, Yuanping Hai, Mona Dawood, Rümeysa Yücer, Nasim Shahhamzehei, Ralf Weiskirchen, Wilfried Roth, Wolfgang Stremmel, Gerhard Bringmann and Thomas Efferth
Molecules 2025, 30(9), 1897; https://doi.org/10.3390/molecules30091897 - 24 Apr 2025
Viewed by 1063
Abstract
Crohn’s disease is an inflammatory bowel disease (IBD) that currently lacks satisfactory treatment options. Therefore, new targets for new drugs are urgently needed to combat this disease. In the present study, we investigated the transcriptomics-based mRNA expression of intestinal biopsies from patients with [...] Read more.
Crohn’s disease is an inflammatory bowel disease (IBD) that currently lacks satisfactory treatment options. Therefore, new targets for new drugs are urgently needed to combat this disease. In the present study, we investigated the transcriptomics-based mRNA expression of intestinal biopsies from patients with Crohn’s disease. We compared the mRNA expression profiles of the ileum and colon of patients with those of healthy individuals. A total of 72 genes in the ileum and 33 genes in the colon were differentially regulated. Among these, six genes were overexpressed in both tissues, including IL1B, TCL1A, HCAR3, IGHG1, S100AB, and OSM. We further focused on OSM/oncostatin M. To confirm the responsiveness of intestinal tissues from patients with Crohn’s disease to oncostatin M inhibition, we examined the expression of the oncostatin M using immunohistochemistry in patient biopsies as well as in kindlin-1−/− and kindlin-2−/− knockout mice, which exhibit an inflammatory bowel disease (IBD) phenotype, and found strong oncostatin M expression in all samples examined. Next, we conducted a drug-repurposing study using the supercomputer MOGON and bioinformatic methods. A total of 13 candidate compounds out of 1577 FDA-approved drugs were identified by PyRx-based virtual drug screening and AutoDock-based molecular docking. Their lowest binding energies (LBEs) ranged from −10.46 (±0.08) to −8.77 (±0.08) kcal/mol, and their predicted inhibition constants (pKi) ranged from 21.62 (±2.97) to 373.78 (±36.78) nM. Ecamsule has an interesting stereostructure with two C2-symmetric enantiomers (1S,4R-1′S,4′R and 1R,4S-1′R,4′S) (1a and 1b) and one meso diastereomer (1S,4R-1′R,4′S) (1c). These three stereoisomers showed strong, albeit differing, binding affinities in molecular docking. As examined by nuclear magnetic resonance and polarimetry, the 1S,4R-1′S,4′R isomer was the stereoisomer present in our commercially available preparations used for microscale thermophoresis. Ecamsule (1a) was chosen for in vitro validation using recombinant oncostatin M and microscale thermophoresis. Considerable dissociation constants were obtained for ecamsule after three repetitions with a Kd value of 11.36 ± 2.83 µM. Subsequently, we evaluated, by qRT-PCR, the efficacy of ecamsule (1a) as a potential drug that could prevent oncostatin M activation by inhibiting downstream inflammatory marker genes (IL6, TNFA, and CXCL11). In conclusion, we have identified oncostatin M as a promising new drug target for Crohn’s disease through transcriptomics and ecamsule as a potential new drug candidate for Crohn’s disease through a drug-repurposing approach both in silico and in vitro. Full article
(This article belongs to the Special Issue Bioorganic Chemistry in Europe)
Show Figures

Figure 1

18 pages, 6741 KiB  
Article
Competitive Ligand-Induced Recruitment of Coactivators to Specific PPARα/δ/γ Ligand-Binding Domains Revealed by Dual-Emission FRET and X-Ray Diffraction of Cocrystals
by Shotaro Kamata, Akihiro Honda, Sayaka Yashiro, Chihiro Kaneko, Yuna Komori, Ayumi Shimamura, Risa Masuda, Takuji Oyama and Isao Ishii
Antioxidants 2025, 14(4), 494; https://doi.org/10.3390/antiox14040494 - 20 Apr 2025
Viewed by 830
Abstract
Peroxisome proliferator-activated receptors (PPARs), composed of the α/δ/γ subtypes, are ligand-activated nuclear receptors/transcription factors that sense endogenous fatty acids or therapeutic drugs to regulate lipid/glucose metabolism and oxidative stress. PPAR forms a multiprotein complex with a retinoid X receptor and corepressor complex in [...] Read more.
Peroxisome proliferator-activated receptors (PPARs), composed of the α/δ/γ subtypes, are ligand-activated nuclear receptors/transcription factors that sense endogenous fatty acids or therapeutic drugs to regulate lipid/glucose metabolism and oxidative stress. PPAR forms a multiprotein complex with a retinoid X receptor and corepressor complex in an unliganded/inactive state, and ligand binding induces the replacement of the corepressor complex with the coactivator complex to initiate the transcription of various genes, including the metabolic and antioxidant ones. We investigated the processes by which the corepressor is replaced with the coactivator or in which two coactivators compete for the PPARα/δ/γ-ligand-binding domains (LBDs) using single- and dual-emission fluorescence resonance energy transfer (FRET) assays. Single-FRET revealed that the respective PPARα/δ/γ-selective agonists (pemafibrate, seladelpar, and pioglitazone) induced the dissociation of the two corepressor peptides, NCoR1 and NCoR2, from the PPARα/δ/γ-LBDs and the recruitment of the two coactivator peptides, CBP and TRAP220. Meanwhile, dual-FRET demonstrated that these processes are simultaneous and that the four coactivator peptides, CBP, TRAP220, PGC1α, and SRC1, were competitively recruited to the PPARα/δ/γ-LBDs with different preferences upon ligand activation. Furthermore, the five newly obtained cocrystal structures using X-ray diffraction, PPARα-LBDs–NCoR2/CBP/TRAP220/PGC1α and PPARγ-LBD–NCoR2, were co-analyzed with those from our previous studies. This illustrates that these coactivators bound to the same PPARα-LBD loci via their consensus LXXLL motifs in the liganded state; that NCoR1/NCoR2 corepressors bound to the same loci via the IXXXL sequences within their consensus LXXXIXXXL motifs in the unliganded state; and that ligand activation induced AF-2 helix 12 formation that interfered with corepressor binding and created a binding space for the coactivator. These PPARα/γ-related biochemical and physicochemical findings highlight the coregulator dynamics on limited PPARα/δ/γ-LBDs loci. Full article
Show Figures

Graphical abstract

15 pages, 6490 KiB  
Article
Metabolomics-Based Analysis of Adaptive Mechanism of Eleutheronema tetradactylum to Low-Temperature Stress
by Minxuan Jin, Anna Zheng, Evodia Moses Mkulo, Linjuan Wang, Huijuan Zhang, Baogui Tang, Hui Zhou, Bei Wang, Jiansheng Huang and Zhongliang Wang
Animals 2025, 15(8), 1174; https://doi.org/10.3390/ani15081174 - 19 Apr 2025
Viewed by 445
Abstract
Temperature is a critical environmental factor that influences the growth, development, metabolism, and overall physiological performance of fish. Eleutheronema tetradactylum is an economically significant fish species; however, its molecular mechanism’s response to long-term cold stress is still unclear. In this study, we investigated [...] Read more.
Temperature is a critical environmental factor that influences the growth, development, metabolism, and overall physiological performance of fish. Eleutheronema tetradactylum is an economically significant fish species; however, its molecular mechanism’s response to long-term cold stress is still unclear. In this study, we investigated the physiological responses of the liver in E. tetradactylum exposed to a constant temperature of 18 °C for durations of both 7 and 14 days, utilizing liquid chromatography–mass spectrometry (LC-MS), metabolomics, and conventional biochemical assays. The antioxidant status, liver histology, and metabolite profiles were examined at different time points. Our results revealed that, following sustained cold exposure, the activities of key antioxidant enzymes—superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)—initially increased and then decreased. Additionally, levels of malondialdehyde (MDA), a marker of oxidative damage, significantly elevated after 7 and 14 days of cold stress. Histopathological examination of liver tissues showed varying degrees of vacuolation and nuclear atrophy in hepatocytes, indicating oxidative damage. Metabolomic profiling identified 87 and 116 differentially expressed metabolites in the liver on days 7 and 14, respectively. Pathway enrichment analysis revealed significant alterations in pathways related to carbohydrate digestion and absorption, glutathione metabolism, and glycerolipid metabolism. These findings suggest that mechanisms regulating cell membrane fluidity, energy metabolism, autophagy, and antioxidant defense are crucial for the adaptation of E. tetradactylum to cold stress. Overall, this study provides valuable insights into the molecular and physiological adaptations of E. tetradactylum to low temperature, highlighting the activation of protective antioxidant responses and modifications of metabolic pathways in the liver. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

26 pages, 1674 KiB  
Review
Branched-Chain Amino Acids and Inflammation Management in Endurance Sports: Molecular Mechanisms and Practical Implications
by Miaomiao Xu, Danting Hu, Xiaoguang Liu, Zhaowei Li and Liming Lu
Nutrients 2025, 17(8), 1335; https://doi.org/10.3390/nu17081335 - 12 Apr 2025
Viewed by 4196
Abstract
Endurance athletes frequently experience muscle damage and inflammation due to prolonged, high-intensity exercise, which can impair recovery and hinder performance. This review examines the role of branched-chain amino acid (BCAA) supplementation in muscle repair, inflammation modulation, and immune regulation. BCAAs—particularly leucine and isoleucine—activate [...] Read more.
Endurance athletes frequently experience muscle damage and inflammation due to prolonged, high-intensity exercise, which can impair recovery and hinder performance. This review examines the role of branched-chain amino acid (BCAA) supplementation in muscle repair, inflammation modulation, and immune regulation. BCAAs—particularly leucine and isoleucine—activate key molecular pathways, including the mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK), to promote muscle protein synthesis and enhance energy metabolism. They also attenuate inflammatory responses by modulating the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), mitogen-activated protein kinase (MAPK), and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways, reducing levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). In addition, BCAAs influence immune function via mechanistic target of rapamycin complex 1 (mTORC1) signaling, enhance autophagy, and mitigate exercise-induced apoptosis. These molecular effects result in reduced muscle soreness, lower muscle damage biomarker levels (e.g., creatine kinase, lactate dehydrogenase), and improved recovery. Practical considerations such as optimal dosage, timing, and co-supplementation with carbohydrates, proteins, or omega-3s are also addressed. While BCAAs show promise as a nutritional strategy for enhancing recovery and controlling inflammation in endurance athletes, further research is needed to refine personalized protocols and clarify long-term effects. Full article
(This article belongs to the Section Proteins and Amino Acids)
Show Figures

Figure 1

Back to TopTop