Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (110)

Search Parameters:
Keywords = nozzle plates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3564 KiB  
Article
Three-Dimensional Deformation Calculation of Wind Tunnel Flexible Wall Using Orthogonal Beam Function
by Xiuxuan Yang, Yueyin Ma, Guishan Wang, Can Yang and Chengguo Yu
Materials 2025, 18(15), 3593; https://doi.org/10.3390/ma18153593 - 31 Jul 2025
Viewed by 161
Abstract
Transonic/supersonic wind tunnels are indispensable equipment for advanced aircraft to operate across subsonic, transonic, and supersonic regimes. The deformation of the flexible nozzle is the key to accurately controlling the Mach number of transonic wind tunnels. However, solving the deformation of flexible wall [...] Read more.
Transonic/supersonic wind tunnels are indispensable equipment for advanced aircraft to operate across subsonic, transonic, and supersonic regimes. The deformation of the flexible nozzle is the key to accurately controlling the Mach number of transonic wind tunnels. However, solving the deformation of flexible wall plates remains challenging due to the highly nonlinear relationship between wall loading and deformation, as well as the lack of simple yet effective mathematical models under complex boundary conditions. To accurately describe the deformation of flexible wall plates and improve computational efficiency, this study systematically investigates the deformation characteristics of flexible walls in two orthogonal directions and proposes an orthogonal beam function (OBF) model for characterizing small-deflection deformations. For large-deflection deformations in a flexible wall, an elliptic integral (EI) solution is introduced, and the OBF model is correspondingly modified. Experimental validation confirms that the OBF model effectively describes large-deflection deformations in a flexible wall. This research contributes to solving large-deflection deformation in flexible wall plates, enhancing both computational efficiency and accuracy. Full article
(This article belongs to the Special Issue Artificial Intelligence in Materials Science and Engineering)
Show Figures

Figure 1

16 pages, 3251 KiB  
Article
Numerical Simulation of High-Pressure Water Jets in Air by an Elliptic–Blending Turbulence Model: A Parametric Study
by Xianglong Yang and Lei Yang
Mathematics 2025, 13(10), 1646; https://doi.org/10.3390/math13101646 - 17 May 2025
Viewed by 434
Abstract
Numerical simulations were conducted to investigate high-pressure water jets in air. The Eulerian multiphase model was employed as the computational framework. Through simulating a high-pressure water jet impinging on a flat plate, two turbulence treatment methodologies were initially examined, demonstrating that the mixture [...] Read more.
Numerical simulations were conducted to investigate high-pressure water jets in air. The Eulerian multiphase model was employed as the computational framework. Through simulating a high-pressure water jet impinging on a flat plate, two turbulence treatment methodologies were initially examined, demonstrating that the mixture turbulence modeling approach exhibits superior predictive capability compared to the per-phase turbulence modeling approach. Subsequent analysis focused on evaluating turbulence model effects on the impact pressure distribution on the flat plate. The results obtained from the elliptic–blending turbulence model (the SST k-ω-φ-α model) and the other two industry-standard two-equation turbulence models (the realizable k-ε model and the SST k-ω model) were comparatively analyzed against experimental data. The analysis revealed that the SST k-ω-φ-α model demonstrates superior accuracy near the stagnation region. The effects of bubble diameter and surface tension were further examined. Quantitative analysis indicated that the impact pressure exhibits a decrease with decreasing bubble diameter until reaching a critical threshold, below which diameter variations exert negligible influence. Furthermore, surface tension effects were found to be insignificant for impact pressure predictions when the nozzle-to-plate distance was maintained below 100 nozzle diameters (100D). Simulations of free high-pressure water jets were performed to evaluate the model’s capability to predict long-distance jet dynamics. While the axial velocity profile showed satisfactory agreement with experimental measurements within 200D, discrepancies in water volume fraction prediction along the jet axis suggested limitations in phase interface modeling at extended propagation distances. Full article
(This article belongs to the Special Issue Modeling of Multiphase Flow Phenomena)
Show Figures

Figure 1

14 pages, 5938 KiB  
Article
Numerical Study of the Reinforcing Pads Geometry of Pressure Vessels
by Grzegorz Świt and Michał Szczecina
Materials 2025, 18(10), 2318; https://doi.org/10.3390/ma18102318 - 16 May 2025
Viewed by 436
Abstract
The structural design of pressure vessels is a rather complicated engineering task and demands on using finite element method (FEM) software to recreate many issues accompanying the design process. One of them is a choice of the shape of reinforcing pads, connecting a [...] Read more.
The structural design of pressure vessels is a rather complicated engineering task and demands on using finite element method (FEM) software to recreate many issues accompanying the design process. One of them is a choice of the shape of reinforcing pads, connecting a min shell of a vessel with nozzles. The mentioned issue is very rarely taken up by researchers. Some of them considered different reinforcement pads (circular and elliptical) using the finite element method (FEM), but they presented results of a nozzle-shell connection without describing results for the rest of the vessel. The other authors performed a thorough FEM analysis of a vessel, but they considered only circular reinforcing pads. The authors of this paper analyzed a pressure vessel without and with reinforcing plates with an elliptical shape. They performed FEM calculations of the vessels using a non-linear material model and a coupled thermal-stress analysis in Abaqus software. The use of the elliptic plate resulted in a considerable decrease in the thickness of the shell and turned out to be an interesting alternative to circular pads. In the presented example, the percentage decrease in thickness was equal to 36%, and the total mass savings was 30%. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

16 pages, 3950 KiB  
Article
Characteristics of High-Pressure Hydrogen Jet Dispersion Along a Horizontal Plate
by Zhonglong He, Qingxin Ba, Jiaxin Zhang, Chenyi Yao, Yujie Wang and Xuefang Li
Energies 2025, 18(9), 2242; https://doi.org/10.3390/en18092242 - 28 Apr 2025
Viewed by 472
Abstract
Creating and updating safety regulations and standards for industrial processes and end-uses related to hydrogen demand a solid scientific foundation, which requires extensive research on unignited hydrogen releases from high-pressure systems across different situations. This study focuses on high-pressure hydrogen releases along a [...] Read more.
Creating and updating safety regulations and standards for industrial processes and end-uses related to hydrogen demand a solid scientific foundation, which requires extensive research on unignited hydrogen releases from high-pressure systems across different situations. This study focuses on high-pressure hydrogen releases along a horizontal plate to investigate the surface effects on hydrogen dispersion. Hydrogen releases from high-pressure sources up to 30 MPa were modeled using a computational fluid dynamics (CFD) method, with the CFD models validated by experimental data. The hydrogen dispersion characteristics along the plate were studied for various source pressures and leak nozzle diameters. The results show that the maximum flammable extent along the plate increases linearly with both the source pressure and nozzle diameter, while the combustible mass increases to the power of 1.5 with the increase in leakage flow rate. The locations where the jet centerline attach to the plate are identical (about 0.41 m away from the nozzle exit in the axial direction) for different source pressures (10~30 MPa) and nozzle diameters (0.5~1.5 mm). The flow region was divided into pre-attachment and attachment zones by the attachment point, and the self-similarity characteristics of both zones were analyzed. Finally, correlations for the centerline and lateral concentration distributions were developed for both the pre- and post-attachment zones. The results can help users quickly assess safety distance when hydrogen leaks along the plate. Full article
(This article belongs to the Special Issue Sustainable Development of Fuel Cells and Hydrogen Technologies)
Show Figures

Figure 1

20 pages, 6378 KiB  
Article
Study on the Mechanism of High-Pressure Spraying of Water-Based Release Agent by External Mixing
by Qian Zhang, Ziyang Liu, Yuhan Xu, Lei Huang, Dagui Wang, Liai Chen and Song Chen
Processes 2025, 13(4), 1224; https://doi.org/10.3390/pr13041224 - 17 Apr 2025
Viewed by 379
Abstract
In the casting and stamping process of automobile, ship, aerospace, and other fields, improving the atomization quality of the spray release agent can effectively solve the problems of difficult film removal, low efficiency, and poor surface finish, and greatly improve the efficiency of [...] Read more.
In the casting and stamping process of automobile, ship, aerospace, and other fields, improving the atomization quality of the spray release agent can effectively solve the problems of difficult film removal, low efficiency, and poor surface finish, and greatly improve the efficiency of production and manufacturing. The geometric model of the external mixing nozzle was constructed, and the calculation domain and grid were divided. The atomization flow field velocity, liquid film thickness, particle distribution, and cooling amount were calculated using fluid simulation software. Finally, an experimental platform was set up for verification. With the increase in the distance between the iron plate and the nozzle, the velocity of the flow field decreases from the nozzle exit to the periphery, and the frequency distribution of D60–70 increases gradually. With the increase in the pressure ratio (K), the particle velocity increases gradually, the liquid film thickness increases first, and then gently decreases, and the D60–70 frequency distribution decreases. The influence of gas pressure on atomized particle velocity and liquid film thickness is greater than that of liquid phase pressure, and the ion velocity reaches the peak value when K = 2. When K = 1.5, the average thickness increment of absolute liquid film is small, the atomized particle diameter changes the least, the frequency distribution of D65 particles is approximately the same, and the atomization effect is the most stable. When the spraying time is 1 s, the K value is larger, and the smaller the temperature drop will be. In 2–4 s, the change in K value has little influence on the cooling amount. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

13 pages, 5967 KiB  
Article
Ultrasonic Spray Coating of Carbon Fibers for Composite Cathodes in Structural Batteries
by Thomas Burns, Liliana DeLatte, Gabriela Roman-Martinez, Kyra Glassey, Paul Ziehl, Monirosadat Sadati, Ralph E. White and Paul T. Coman
Electrochem 2025, 6(2), 13; https://doi.org/10.3390/electrochem6020013 - 1 Apr 2025
Viewed by 1058
Abstract
Structural batteries, also known as “massless batteries”, integrate energy storage directly into load-bearing materials, offering a transformative alternative to traditional Li-ion batteries. Unlike conventional systems that serve only as energy storage devices, structural batteries replace passive structural components, reducing overall weight while providing [...] Read more.
Structural batteries, also known as “massless batteries”, integrate energy storage directly into load-bearing materials, offering a transformative alternative to traditional Li-ion batteries. Unlike conventional systems that serve only as energy storage devices, structural batteries replace passive structural components, reducing overall weight while providing mechanical reinforcement. However, achieving uniform and efficient coatings of active materials on carbon fibers remains a major challenge, limiting their scalability and electrochemical performance. This study investigates ultrasonic spray coating as a precise and scalable technique for fabricating composite cathodes in structural batteries. Using a computer-controlled ultrasonic nozzle, this method ensures uniform deposition with minimal material waste while maintaining the mechanical integrity of carbon fibers. Compared to traditional techniques such as electrophoretic deposition, vacuum bag hot plate processing, and dip-coating, ultrasonic spray coating achieved superior coating consistency and reproducibility. Electrochemical testing revealed a specific capacity of 100 mAh/gLFP with 80% retention for more than 350 cycles at 0.5 C, demonstrating its potential as a viable coating solution. While structural batteries are not yet commercially viable, these findings represent a step toward their practical implementation. Further research and optimization will be essential in advancing this technology for next-generation aerospace and transportation applications. Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
Show Figures

Figure 1

14 pages, 1909 KiB  
Article
Large-Deflection Mechanical Modeling and Surrogate Model Optimization Method for Deformation Control of Flexible Pneumatic Structures
by Guishan Wang, Peiyuan Wang, Xiuxuan Yang, Can Yang and Chengguo Yu
Appl. Sci. 2025, 15(6), 3169; https://doi.org/10.3390/app15063169 - 14 Mar 2025
Viewed by 552
Abstract
Advances in material science and intelligent systems have led to an increasing use of large-deflection flexible structures in the aerospace industry, including flexible-wall wind tunnel nozzles, deformable wings, and variable nozzles for aircraft engines. These structures have attracted significant research interest due to [...] Read more.
Advances in material science and intelligent systems have led to an increasing use of large-deflection flexible structures in the aerospace industry, including flexible-wall wind tunnel nozzles, deformable wings, and variable nozzles for aircraft engines. These structures have attracted significant research interest due to their variable aerodynamic performance, functional diversity, and dynamic response characteristics that distinguish them from rigid structures. Large-deflection flexible aerodynamic structures typically consist of flexible structural surfaces and actuators. Precise deformation control and optimized structural design are crucial for achieving their full performance potential. However, few existing technological tools can effectively guide the implementation of such deformation control and optimized design. In this paper, we first established a mechanical model of a multi-pivot flexible nozzle based on a typical wind tunnel flexible nozzle. We then derived a theoretical model of beam deformation with multi-point dynamic constraints using the principle of variability. Next, we created a deformation solution method based on radial basis point interpolation to evaluate nozzle profile accuracy. Finally, we established a complete surrogate-based optimization process for a large-deflection flexible nozzle and experimentally verified it using a wind tunnel nozzle prototype equipped with laser tracking and flexible sensors. The results show that the nozzle’s profile accuracy remains within ±0.2 mm under specified operational conditions. Full article
(This article belongs to the Special Issue Ultra-Precision Machining Technology and Equipments)
Show Figures

Figure 1

18 pages, 5277 KiB  
Article
Investigation of the Influence of Manufacturing on Filament Production and Its Impact on Additive Manufactured Structures
by Mohamed Refat, Robert Maertens, Patrick Weiss, Frank Henning, Volker Schulze and Wilfried V. Liebig
Polymers 2025, 17(5), 651; https://doi.org/10.3390/polym17050651 - 28 Feb 2025
Viewed by 1047
Abstract
In this study, the effect of various parameters of a single screw extruder on the rheology and mechanical properties of a polylactic acid (PLA) filament with a 1.75 mm diameter was investigated. The barrel temperature, nozzle and cooling bath temperature, screw speed, nozzle [...] Read more.
In this study, the effect of various parameters of a single screw extruder on the rheology and mechanical properties of a polylactic acid (PLA) filament with a 1.75 mm diameter was investigated. The barrel temperature, nozzle and cooling bath temperature, screw speed, nozzle diameter, water bath length, and distance to the nozzle were the process variables. A Taguchi experimental design was implemented using an L8 orthogonal matrix with seven factors and two levels, and their influence on roundness and diameter were evaluated. Among the various processing parameters, the temperature of the cooling bath affected the roundness the most. The mechanical properties and surface roughness of the PLA filament were examined using a tensile test and nanofocus optical system, respectively. Moreover, to assess the filament’s reliability and investigate its behavior further, the filament was used to print 0° plates, and then dog-bone samples were cut from them to evaluate the mechanical properties of the printed specimens. Finally, the results indicate that improved-roundness filaments of 0.004 mm can lead to enhanced mechanical properties in 3D-printed samples with 3.54 MPa. Full article
(This article belongs to the Special Issue Mechanical and Physical Properties of 3D Printed Polymer Materials)
Show Figures

Figure 1

11 pages, 9628 KiB  
Article
Shear Stress Distribution of the Separation Region on a Plate in Supersonic Jet Flow
by Yun Jiao, Weijun Li, Yu Ji, Puchen Hou, Ye Yuan, Longsheng Xue, Keming Cheng and Chengpeng Wang
Aerospace 2025, 12(3), 179; https://doi.org/10.3390/aerospace12030179 - 24 Feb 2025
Viewed by 672
Abstract
An experimental study is conducted on the surface shear stress vector distribution on a plate in a supersonic jet flow, with a focus on the separation region. The shear-sensitive liquid crystal coating (SSLCC) technique is employed for the flow visualization and measurement, which [...] Read more.
An experimental study is conducted on the surface shear stress vector distribution on a plate in a supersonic jet flow, with a focus on the separation region. The shear-sensitive liquid crystal coating (SSLCC) technique is employed for the flow visualization and measurement, which is based on the shear stress distribution, and the flow pattern on the plate is captured. The results demonstrate that the nozzle pressure ratio (NPR) is the main inducement to flow evolution, and a high NPR causes a separation region on the plate, where the adverse flow is challenging to the SSLCC technique. Therefore, an improved measurement method for the SSLCC is proposed to successfully obtain the wall shear stress distribution inside the separation and reattachment area. The flow structures on the plate, including the separation and reattachment positions and vortex and adverse flows, are accurately captured in detail, which indicates that this method is practical for measuring the wall shear stress in separated flow. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

18 pages, 10143 KiB  
Article
Features of Supersonic Flow Around a Blunt Body in the Area of Junction with a Flat Surface
by T. A. Lapushkina, E. V. Kolesnik, N. A. Monahov, P. A. Popov and K. I. Belov
Fluids 2025, 10(2), 28; https://doi.org/10.3390/fluids10020028 - 26 Jan 2025
Viewed by 799
Abstract
This work studies the influence of a growing boundary layer on the process of supersonic flow around an aerodynamic body. The task is to select and implement in an experiment the parameters of a supersonic flow and to study the flow pattern near [...] Read more.
This work studies the influence of a growing boundary layer on the process of supersonic flow around an aerodynamic body. The task is to select and implement in an experiment the parameters of a supersonic flow and to study the flow pattern near the surface of an aerodynamic body at different viscosity values for the incoming flow. Visualization of the shock wave configuration in front of the body and studying the change in the pressure field in the flow region under these conditions is the main goal of this work. The experiment was carried out on an experimental stand created on the basis of a shock tube. The aerodynamic body under study (a semi-cylinder pointed along a circle or an ellipse) was placed in a supersonic nozzle. The model was clamped by lateral transparent walls, which were simultaneously a source of boundary layer growth and the viewing windows for visualizing the flow. For selected modes with Reynolds numbers from 8200 to 45,000, schlieren flow patterns and pressure distribution fields near the surface of the streamlined models and the plate of the growing boundary layer were obtained. The data show a complex, unsteady flow pattern realized near the model which was caused by the viscous-inviscid interaction of the boundary layer with the bow shock wave near the wall. Full article
Show Figures

Figure 1

15 pages, 18440 KiB  
Article
Evaluation of Continuous GMA Welding Characteristics Based on the Copper-Plating Method of Solid Wire Surfaces
by Dong-Yoon Kim and Jiyoung Yu
Metals 2024, 14(11), 1300; https://doi.org/10.3390/met14111300 - 18 Nov 2024
Cited by 1 | Viewed by 1173
Abstract
Gas metal arc welding (GMAW) is widely used in various industries, such as automotive and heavy equipment manufacturing, because of its high productivity and speed, with solid wires being selected based on the mechanical properties required for welded joints. GMAW consists of various [...] Read more.
Gas metal arc welding (GMAW) is widely used in various industries, such as automotive and heavy equipment manufacturing, because of its high productivity and speed, with solid wires being selected based on the mechanical properties required for welded joints. GMAW consists of various components, among which consumables such as the contact tip and continuously fed solid wire have a significant impact on the weld quality. In particular, the copper-plating method can affect the conductivity and arc stability of the solid wire, causing differences in the continuous welding performance. This study evaluated the welding performance during 60 min continuous GMAW using an AWS A5.18 ER70S-3 solid wire, which was copper-plated using chemical plating (C-wire) and electroplating (E-wire). The homogeneity and adhesion of the copper-plated surface of the E-wire were superior to those of the C-wire. The E-wire exhibited better performance in terms of arc stability. The wear rate of the contact tip was approximately 45% higher when using the E-wire for 60 min of welding compared with the C-wire, which was attributed to the larger variation rate in the cast and helix in the E-wire. Additionally, the amount of spatter adhered to the nozzle during 60 min, with the E-wire averaging 5.9 g, approximately half that of the C-wire at 12.9 g. The E-wire exhibits superior arc stability compared with the C-wire based on the spatter amount adhered to the nozzle. This study provides an important reference for understanding the impact of copper plating methods and wire morphology on the replacement cycles of consumable welding parts in automated welding processes such as continuous welding and wire-arc additive manufacturing. Full article
(This article belongs to the Special Issue Welding and Joining of Advanced High-Strength Steels (2nd Edition))
Show Figures

Figure 1

18 pages, 7004 KiB  
Article
Orifice versus Converging-Nozzle Grid Turbulence: A Wavelet Perspective
by Ankit Raj, David S.-K. Ting and Yang Yang
Appl. Sci. 2024, 14(20), 9255; https://doi.org/10.3390/app14209255 - 11 Oct 2024
Viewed by 1563
Abstract
Grids such as perforated plates are of fundamental importance in flow turbulence study and are commonly utilised to promote mixing. An orificed perforated plate (OPP) and its reversed counterpart, the converging-nozzle perforated plate (CNPP), were applied to produce quasi-isotropic turbulence inside a wind [...] Read more.
Grids such as perforated plates are of fundamental importance in flow turbulence study and are commonly utilised to promote mixing. An orificed perforated plate (OPP) and its reversed counterpart, the converging-nozzle perforated plate (CNPP), were applied to produce quasi-isotropic turbulence inside a wind tunnel. The three orthogonal velocity components were measured using a triple hotwire at 10D downstream of the perforated plate for Reynolds numbers, ReD, 18,700 and 28,400, where D is the diameter of the perforated holes. The statistics of the grid-generated turbulence was analysed using the time-averaged local velocity profile and turbulence intensity, which revealed a more homogeneous distribution of the flow field with a higher level of turbulence for the OPP. Fourier and wavelet analyses were employed to investigate the energy of the eddies as a function of frequency and multiscale characteristics of the fluctuating velocity, respectively. At ReD = 18,700, the turbulent energy remains prominently with large-scale vortical structures which are non-intermittently present in the flow for both perforated plates. The thickness of the converging channels of the CNPP appears to provide the venue for spawning intermittent fluctuations. At higher ReD 28,400, the effect of this intermittent behaviour becomes evident for the CNPP, leading to a multiscale distribution of turbulent energy. Full article
Show Figures

Figure 1

18 pages, 2627 KiB  
Article
Numerical Simulation Study on Rotary Air Preheater Considering the Influences of Steam Soot Blowing
by Youfu Chen, Yaou Wang, Bo Chen, Hongda Zhu and Lingling Zhao
Energies 2024, 17(18), 4618; https://doi.org/10.3390/en17184618 - 14 Sep 2024
Cited by 1 | Viewed by 1050
Abstract
The ash deposition is a general problem that needs to be solved effectively for the rotary air preheater of the coal-fired boiler. Taking the rotary air preheater of a 600 MW power station as the object, the mesh model of the flue gas [...] Read more.
The ash deposition is a general problem that needs to be solved effectively for the rotary air preheater of the coal-fired boiler. Taking the rotary air preheater of a 600 MW power station as the object, the mesh model of the flue gas side of the air preheater, considering the influences of steam soot blowing, is established using the Gambit 2.4.6 software. Based on the SIMPLE algorithm, the velocity field and the temperature field in the air preheater under varied working conditions are simulated using the software of Ansys Fluent 2021R1, and the influences of the boiler load, the operation parameters of the steam soot blower, and the running and outage of the soot blower on the flue gas velocity distribution in the depth direction of the corrugated plates, the soot-blowing coverage area, the inlet flue gas velocity, and the inlet flue gas temperature of the corrugated plates are analyzed. Under the base working condition, the flue gas velocity on the axis of the steam nozzle first decreases rapidly with increasing the corrugated plate depth (Z < 1.0 m), and then it decreases slowly with an almost equal slope. The longitudinal flue gas velocity has a positive correlation with the boiler load. The longitudinal flue gas velocity obviously decreases when the boiler load is decreased, and its reduction increases as the corrugated plate depth increases. It is one reason that the ash deposition is prone to occur on the cold end surface of corrugated plates under the condition of low boiler load. The longitudinal flue gas velocity increases with the soot-blowing steam velocity increasing when the corrugated plate depth is less than 1.5 m, but after that, it is almost not affected by the change in soot-blowing steam velocity. The soot-blowing coverage area has a negative correlation with the boiler load but a slight positive correlation with the steam velocity of the soot blower on the whole. The inlet flue gas velocity of the corrugated plates has a positive correlation with the boiler load and the inlet steam velocity of the soot blower. The average inlet flue gas velocity decreases by 21.7% when the boiler load is reduced by 50%. For every 5 m/s variation in the inlet steam velocity, the inlet flue gas velocity changes by about 10–14% whether the steam soot blower is put into operation or not, which has an obvious effect on the inlet gas velocity of the corrugated plates. The inlet flue gas temperature of the corrugated plates is, respectively, positively correlated with the boiler load and the inlet steam temperature of the soot blower. When the boiler load is reduced from 100% BMCR to 50% BMCR, the average inlet flue gas temperature of the corrugated plates is reduced by 44.2 K; however, when the soot-blowing steam temperature varies by 20 K, the average inlet flue gas temperature of the corrugated plates varies by only about 1.8 K. It means that it is difficult to enhance the cold end flue gas temperature of the corrugated plates only by raising the soot-blowing steam temperature at low boiler load. Adding a soot blower using high-temperature steam or hot air at the outlet of the corrugated plates may be an option to solve the ash deposition of the corrugated plates. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

17 pages, 68513 KiB  
Article
Computational Evaluation of Turbulent Supersonic Jet Impinging on Inclined Plate
by Antonio Mezzacapo and Giuliano De Stefano
Appl. Sci. 2024, 14(17), 7910; https://doi.org/10.3390/app14177910 - 5 Sep 2024
Cited by 2 | Viewed by 1844
Abstract
A computational fluid dynamics investigation of a turbulent supersonic jet impacting a solid flat plate is conducted utilizing the OpenFOAM software. The research focuses on simulating the three-dimensional mean compressible flow for jet impingement on an inclined plate by analyzing the complex flow [...] Read more.
A computational fluid dynamics investigation of a turbulent supersonic jet impacting a solid flat plate is conducted utilizing the OpenFOAM software. The research focuses on simulating the three-dimensional mean compressible flow for jet impingement on an inclined plate by analyzing the complex flow field and the surface distribution of pressure. Various simulations are carried out at a jet Mach number of 2.2 maintaining a constant nozzle-to-plate distance while varying the angle of inclination of the plate. In contrast to earlier numerical studies, this work employs a modern turbulence modeling technique known as detached eddy simulation (DES), along with a traditional unsteady Reynolds-averaged Navier–Stokes model. Making a comparison with experimental findings, the current analysis reveals that both turbulence modeling techniques effectively predict the mean pressure distribution on the plate. However, the DES approach offers deeper insights into the turbulent flow field, showing notable consistency with the experiments. The complex compressible flow patterns are simulated with higher accuracy compared to the traditional approach. Enhanced turbulence resolution is attained by utilizing the same computational grid with a limited increase in computational complexity. Full article
(This article belongs to the Special Issue Applied Computational Fluid Dynamics and Thermodynamics)
Show Figures

Figure 1

14 pages, 6789 KiB  
Article
Multi-Physics Simulation and Optimization of Jet Electrodeposition for Ni–Diamond Composite Coatings
by Xiaoli Wang, Chau-Chang Chou, Xin Zhou, Xin Bao and Qian Zhang
Metals 2024, 14(8), 868; https://doi.org/10.3390/met14080868 - 28 Jul 2024
Cited by 1 | Viewed by 1789
Abstract
This work investigated the influence of current density, plating solution flow rate, and nozzle outlet-to-cathode distance on the properties of Ni–diamond composite coatings. A multi-physics field simulation was employed to analyze the interplay between current density, plating solution flow rate, and nozzle outlet-to-cathode [...] Read more.
This work investigated the influence of current density, plating solution flow rate, and nozzle outlet-to-cathode distance on the properties of Ni–diamond composite coatings. A multi-physics field simulation was employed to analyze the interplay between current density, plating solution flow rate, and nozzle outlet-to-cathode distance on the flow field and electric field distribution. Additionally, particle tracing simulations were incorporated into the model to evaluate the incorporation efficiency of diamond particles during composite electrodeposition. It was found that when the inlet flow rate of the electrolyte was 5 L/min, the distance between the nozzle outlet and the cathode was 3 mm, and the current density was 60 A/dm2, the composite electrodeposited coating had a higher particle content and better uniformity. The simulation results were validated through experimental preparation and performance testing. This combined approach provides valuable insights for optimizing the jet electrodeposition process for Ni–diamond composite coatings with superior properties. Full article
Show Figures

Figure 1

Back to TopTop