Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = novel warhead

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4373 KiB  
Article
Discovery and Characterization of Novel Non-Hydroxamate HDAC11 Inhibitors
by Aleksandra Kopranovic and Franz-Josef Meyer-Almes
Int. J. Mol. Sci. 2025, 26(13), 5950; https://doi.org/10.3390/ijms26135950 - 20 Jun 2025
Viewed by 402
Abstract
Histone deacetylase 11 (HDAC11), the sole member of class IV HDACs, has gained prominence due to its unique enzymatic profile and pathological relevance in cancer, neurodegenerative, inflammatory diseases, and metabolic disorders. However, only a limited number of selective HDAC11 inhibitors have been identified, [...] Read more.
Histone deacetylase 11 (HDAC11), the sole member of class IV HDACs, has gained prominence due to its unique enzymatic profile and pathological relevance in cancer, neurodegenerative, inflammatory diseases, and metabolic disorders. However, only a limited number of selective HDAC11 inhibitors have been identified, and many of these contain a potentially mutagenic hydroxamic acid as a zinc-chelating motif. Consequently, there is an imperative to identify potent and selective non-hydroxamate HDAC11 inhibitors with improved physicochemical properties. In this study, we conducted an extensive experimental high-throughput screening of 10,281 structurally diverse compounds to identify novel HDAC11 inhibitors. Two promising candidates, caffeic acid phenethyl ester (CAPE) and compound 9SPC045H03, both lacking a hydroxamic acid warhead, were discovered, showing micromolar inhibitory potency (IC50 = 1.5 and 2.3 µM, respectively), fast and reversible binding, and remarkable isozyme selectivity. Molecular docking revealed distinct zinc-chelating mechanisms involving either carbonyl oxygen (CAPE) or pyridine nitrogen (9SPC045H03), in contrast to canonical hydroxamates. Both compounds are drug-like and exhibit favorable physicochemical and pharmacokinetic profiles, particularly beneficial water solubility and good adsorption, making them valuable starting points for further optimization. These findings open new avenues for the development of selective, non-hydroxamate HDAC11 inhibitors with potential therapeutic applications. Full article
(This article belongs to the Special Issue Advances in Protein Structure-Function and Drug Discovery)
Show Figures

Graphical abstract

35 pages, 7317 KiB  
Article
Fluorescent Probes to Image the KCa3.1 Channel in Tumor Cells
by Insa Thale, Elke Naß, Laura Vinnenberg, Luca Matteo Todesca, Thomas Budde, Ivan Maisuls, Cristian A. Strassert, Albrecht Schwab and Bernhard Wünsch
Pharmaceutics 2025, 17(2), 154; https://doi.org/10.3390/pharmaceutics17020154 - 23 Jan 2025
Viewed by 1019
Abstract
Background/Objectives: The Ca2+-activated K+ channel KCa3.1 is not only involved in physiological processes such as immune reactions and control of vascular tone, but is highly expressed in various tumor entities. Thus, imaging of KCa3.1 channels [...] Read more.
Background/Objectives: The Ca2+-activated K+ channel KCa3.1 is not only involved in physiological processes such as immune reactions and control of vascular tone, but is highly expressed in various tumor entities. Thus, imaging of KCa3.1 channels comes into focus for the localization of high channel density, i.e., for tumor diagnosis. In particular, the physicochemical properties of the fluorescent probes should be improved compared to existing probes. Methods: The small molecule inhibitor of the KCa3.1 channel, senicapoc, was used as a warhead and was coupled with different fluorescent dyes. After synthesis of the novel probes, their physicochemical properties (lipophilicity, photophysical properties) and their ability to image KCa3.1 channels in A549-3R lung tumor cells were determined. Results: In order to increase the polarity and quantum yield of reported fluorescent probes, three strategies were followed: (1) An F-atom at the B-atom of bodipy-labeled senicapoc derivatives 9a, 9b, and 15a was replaced by a OCH3 moiety, which decreased the logP value by one log-unit. (2) The p-phenylene moiety of the linker was replaced by an aliphatic tetramethylene linker decreasing the lipophilicity by 0.3–0.5 log-units. (3) Instead of bodipy dyes, fluorescein was coupled with the senicapoc warhead resulting in very polar probes 21a and 21b with low logP values of 1.5 and 1.3, respectively. Introduction of an ethyl moiety at the bodipy core increased the quantum yield, which resulted in the best punctate staining pattern of fixed and living A549-3R lung tumor cells with the ethylbodipy-labeled senicapoc derivative 10b. The specificity was shown by various control experiments. Co-staining with 10b and an antibody did not result in overlapping signals. Conclusions: The well-balanced lipophilicity and fluorescent quantum yield render the ethylbodipy-labeled senicapoc derivative 10b a very good probe to image selectively KCa3.1 ion channels in fixed and living tumor cells. It was hypothesized that the antibody binds selectively at the closed channel (58.5%), whereas the senicapoc–bodipy conjugate 10b binds selectively at the open channel (41.5%). The ratio 58.5:41.5 reflects the ratio of the ion channel in closed and open conformations. Full article
(This article belongs to the Special Issue Fluorescent Probes as a Tool in Diagnostic and Drug Delivery)
Show Figures

Figure 1

25 pages, 13373 KiB  
Article
Development of Novel Imipridones with Alkyne- and Triazole-Linked Warheads on the Tricyclic Skeleton, Showing Superior Ability to Eradicate PANC-1 and Fadu Cells Compared to ONC201
by Tamás Czuczi, József Murányi, István Móra, Bianka Gurbi, Attila Varga, Dávid Papp, Gitta Schlosser, Miklós Csala and Antal Csámpai
Int. J. Mol. Sci. 2024, 25(23), 13176; https://doi.org/10.3390/ijms252313176 - 7 Dec 2024
Viewed by 1256
Abstract
Our ongoing research focuses on the development of new imipridone derivatives. We aim to design compounds that can completely and selectively eradicate cancer cells after relatively short treatment. We have synthetized systematically designed novel hybrids and evaluated their antiproliferative activity against PANC-1 and [...] Read more.
Our ongoing research focuses on the development of new imipridone derivatives. We aim to design compounds that can completely and selectively eradicate cancer cells after relatively short treatment. We have synthetized systematically designed novel hybrids and evaluated their antiproliferative activity against PANC-1 and Fadu cell lines. We have also conducted preliminary studies on the mechanism, including colony formation as well as dose–response tests in HEK293T wild-type (WT) and HEK293T CLPP−/− cells. Following gradual structural fine-tuning based on high throughput screening, we identified two imipridone hybrids as the most potent derivatives. Their unique substitution pattern includes N-methylated propargylamine and ferrocenyl/phenyltriazole moieties on the benzyl groups attached to opposite sides of the imipridone core. We found that the compounds with IC50 values similar to those of ONC201 completely eradicated cancer cells at about 4 μM, while ONC201 treatment at even higher concentrations left 30–50% of viable cells behind. Both compounds exerted equal activity in WT and CLPP−/− HEK293T cells, indicating a ClpP-independent mechanism. Further development is needed to improve the tumor selectivity of the two potent imipridone derivatives. By preserving tumor cytotoxicity, we aim to generate new drug candidates that evade resistance and can be applied in a sufficiently broad therapeutic window. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Pancreatic Cancer: 2nd Edition)
Show Figures

Figure 1

36 pages, 9346 KiB  
Article
Synthesis and Structure–Activity Relationship (SAR) Studies on New 4-Aminoquinoline-Hydrazones and Isatin Hybrids as Promising Antibacterial Agents
by Ayesha Ubaid, Mohd. Shakir, Asghar Ali, Sobia Khan, Jihad Alrehaili, Razique Anwer and Mohammad Abid
Molecules 2024, 29(23), 5777; https://doi.org/10.3390/molecules29235777 - 6 Dec 2024
Cited by 1 | Viewed by 2628
Abstract
In response to the escalating crisis of antimicrobial resistance (AMR), there is an urgent need to research and develop novel antibiotics. This study presents the synthesis and assessment of innovative 4-aminoquinoline-benzohydrazide-based molecular hybrids bearing aryl aldehydes (HD1-23) and substituted isatin warheads [...] Read more.
In response to the escalating crisis of antimicrobial resistance (AMR), there is an urgent need to research and develop novel antibiotics. This study presents the synthesis and assessment of innovative 4-aminoquinoline-benzohydrazide-based molecular hybrids bearing aryl aldehydes (HD1-23) and substituted isatin warheads (HS1-12), characterized using multispectroscopic techniques with high purity confirmed by HRMS. The compounds were evaluated against a panel of clinically relevant antibacterial strains including the Gram-positive Enterococcus faecium, Bacillus subtilis, and Staphylococcus aureus and a Gram-negative Pseudomonas aeruginosa bacterial strain. Preliminary screenings revealed that several test compounds had significant antimicrobial effects, with HD6 standing out as a promising compound. Additionally, HD6 demonstrated impressively low minimum inhibitory concentrations (MICs) in the range of (8–128 μg/mL) against the strains B. subtilis, S. aureus and P. aeruginosa. Upon further confirmation, HD6 not only showed bactericidal properties with low minimum bactericidal concentrations (MBCs) such as (8 μg/mL against B. subtilis) but also displayed a synergistic effect when combined with the standard drug ciprofloxacin (CIP), highlighted by its FICI value of (0.375) against P. aeruginosa, while posing low toxicity risk. Remarkably, HD6 also inhibited a multidrug-resistant (MDR) bacterial strain, marking it as a critical addition to our antimicrobial arsenal. Computation studies were performed to investigate the possible mechanism of action of the most potent hybrid HD6 on biofilm-causing protein (PDB ID: 7C7U). The findings suggested that HD6 exhibits favorable binding free energy, which is supported by the MD simulation studies, presumably responsible for the bacterial growth inhibition. Overall, this study provides a suitable core for further synthetic alterations for their optimization as an antibacterial agent. Full article
Show Figures

Figure 1

29 pages, 7395 KiB  
Article
Identification of Phytochemicals from Arabian Peninsula Medicinal Plants as Strong Binders to SARS-CoV-2 Proteases (3CLPro and PLPro) by Molecular Docking and Dynamic Simulation Studies
by Quaiser Saquib, Ahmed H. Bakheit, Sarfaraz Ahmed, Sabiha M. Ansari, Abdullah M. Al-Salem and Abdulaziz A. Al-Khedhairy
Molecules 2024, 29(5), 998; https://doi.org/10.3390/molecules29050998 - 25 Feb 2024
Cited by 5 | Viewed by 2118
Abstract
We provide promising computational (in silico) data on phytochemicals (compounds 110) from Arabian Peninsula medicinal plants as strong binders, targeting 3-chymotrypsin-like protease (3CLPro) and papain-like proteases (PLPro) of SARS-CoV-2. Compounds 110 followed the Lipinski [...] Read more.
We provide promising computational (in silico) data on phytochemicals (compounds 110) from Arabian Peninsula medicinal plants as strong binders, targeting 3-chymotrypsin-like protease (3CLPro) and papain-like proteases (PLPro) of SARS-CoV-2. Compounds 110 followed the Lipinski rules of five (RO5) and ADMET analysis, exhibiting drug-like characters. Non-covalent (reversible) docking of compounds 110 demonstrated their binding with the catalytic dyad (CYS145 and HIS41) of 3CLPro and catalytic triad (CYS111, HIS272, and ASP286) of PLPro. Moreover, the implementation of the covalent (irreversible) docking protocol revealed that only compounds 7, 8, and 9 possess covalent warheads, which allowed the formation of the covalent bond with the catalytic dyad (CYS145) in 3CLPro and the catalytic triad (CYS111) in PLPro. Root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), and radius of gyration (Rg) analysis from molecular dynamic (MD) simulations revealed that complexation between ligands (compounds 7, 8, and 9) and 3CLPro and PLPro was stable, and there was less deviation of ligands. Overall, the in silico data on the inherent properties of the above phytochemicals unravel the fact that they can act as reversible inhibitors for 3CLPro and PLPro. Moreover, compounds 7, 8, and 9 also showed their novel properties to inhibit dual targets by irreversible inhibition, indicating their effectiveness for possibly developing future drugs against SARS-CoV-2. Nonetheless, to confirm the theoretical findings here, the effectiveness of the above compounds as inhibitors of 3CLPro and PLPro warrants future investigations using suitable in vitro and in vivo tests. Full article
Show Figures

Figure 1

17 pages, 2732 KiB  
Review
The Design, Synthesis and Mechanism of Action of Paxlovid, a Protease Inhibitor Drug Combination for the Treatment of COVID-19
by Miklós Bege and Anikó Borbás
Pharmaceutics 2024, 16(2), 217; https://doi.org/10.3390/pharmaceutics16020217 - 2 Feb 2024
Cited by 22 | Viewed by 7971
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has presented an enormous challenge to health care systems and medicine. As a result of global research efforts aimed at preventing and effectively treating SARS-CoV-2 infection, vaccines with fundamentally new mechanisms [...] Read more.
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has presented an enormous challenge to health care systems and medicine. As a result of global research efforts aimed at preventing and effectively treating SARS-CoV-2 infection, vaccines with fundamentally new mechanisms of action and some small-molecule antiviral drugs targeting key proteins in the viral cycle have been developed. The most effective small-molecule drug approved to date for the treatment of COVID-19 is PaxlovidTM, which is a combination of two protease inhibitors, nirmatrelvir and ritonavir. Nirmatrelvir is a reversible covalent peptidomimetic inhibitor of the main protease (Mpro) of SARS-CoV-2, which enzyme plays a crucial role in viral reproduction. In this combination, ritonavir serves as a pharmacokinetic enhancer, it irreversibly inhibits the cytochrome CYP3A4 enzyme responsible for the rapid metabolism of nirmatrelvir, thereby increasing the half-life and bioavailability of nirmatrelvir. In this tutorial review, we summarize the development and pharmaceutical chemistry aspects of Paxlovid, covering the evolution of protease inhibitors, the warhead design, synthesis and the mechanism of action of nirmatrelvir, as well as the synthesis of ritonavir and its CYP3A4 inhibition mechanism. The efficacy of Paxlovid to novel virus mutants is also overviewed. Full article
(This article belongs to the Special Issue Recent Advances in Prevention and Treatment of Infectious Diseases)
Show Figures

Figure 1

25 pages, 5555 KiB  
Article
An Antiherpesviral Host-Directed Strategy Based on CDK7 Covalently Binding Drugs: Target-Selective, Picomolar-Dose, Cross-Virus Reactivity
by DongHoon Yu, Sabrina Wagner, Martin Schütz, Yeejin Jeon, Mooyoung Seo, Jaeseung Kim, Nadine Brückner, Jintawee Kicuntod, Julia Tillmanns, Christina Wangen, Friedrich Hahn, Benedikt B. Kaufer, Frank Neipel, Jan Eickhoff, Bert Klebl, Kiyean Nam and Manfred Marschall
Pharmaceutics 2024, 16(2), 158; https://doi.org/10.3390/pharmaceutics16020158 - 23 Jan 2024
Cited by 6 | Viewed by 2777
Abstract
The repertoire of currently available antiviral drugs spans therapeutic applications against a number of important human pathogens distributed worldwide. These include cases of the pandemic severe acute respiratory coronavirus type 2 (SARS-CoV-2 or COVID-19), human immunodeficiency virus type 1 (HIV-1 or AIDS), and [...] Read more.
The repertoire of currently available antiviral drugs spans therapeutic applications against a number of important human pathogens distributed worldwide. These include cases of the pandemic severe acute respiratory coronavirus type 2 (SARS-CoV-2 or COVID-19), human immunodeficiency virus type 1 (HIV-1 or AIDS), and the pregnancy- and posttransplant-relevant human cytomegalovirus (HCMV). In almost all cases, approved therapies are based on direct-acting antivirals (DAAs), but their benefit, particularly in long-term applications, is often limited by the induction of viral drug resistance or side effects. These issues might be addressed by the additional use of host-directed antivirals (HDAs). As a strong input from long-term experiences with cancer therapies, host protein kinases may serve as HDA targets of mechanistically new antiviral drugs. The study demonstrates such a novel antiviral strategy by targeting the major virus-supportive host kinase CDK7. Importantly, this strategy focuses on highly selective, 3D structure-derived CDK7 inhibitors carrying a warhead moiety that mediates covalent target binding. In summary, the main experimental findings of this study are as follows: (1) the in vitro verification of CDK7 inhibition and selectivity that confirms the warhead covalent-binding principle (by CDK-specific kinase assays), (2) the highly pronounced antiviral efficacies of the hit compounds (in cultured cell-based infection models) with half-maximal effective concentrations that reach down to picomolar levels, (3) a particularly strong potency of compounds against strains and reporter-expressing recombinants of HCMV (using infection assays in primary human fibroblasts), (4) additional activity against further herpesviruses such as animal CMVs and VZV, (5) unique mechanistic properties that include an immediate block of HCMV replication directed early (determined by Western blot detection of viral marker proteins), (6) a substantial drug synergism in combination with MBV (measured by a Loewe additivity fixed-dose assay), and (7) a strong sensitivity of clinically relevant HCMV mutants carrying MBV or ganciclovir resistance markers. Combined, the data highlight the huge developmental potential of this host-directed antiviral targeting concept utilizing covalently binding CDK7 inhibitors. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

20 pages, 6790 KiB  
Article
Discovery of a SHP2 Degrader with In Vivo Anti-Tumor Activity
by Jinmin Miao, Yunpeng Bai, Yiming Miao, Zihan Qu, Jiajun Dong, Ruo-Yu Zhang, Devesh Aggarwal, Brenson A. Jassim, Quyen Nguyen and Zhong-Yin Zhang
Molecules 2023, 28(19), 6947; https://doi.org/10.3390/molecules28196947 - 6 Oct 2023
Cited by 5 | Viewed by 4132
Abstract
Src homology 2 domain-containing phosphatase 2 (SHP2) is an attractive target for cancer therapy due to its multifaceted roles in both tumor and immune cells. Herein, we designed and synthesized a novel series of proteolysis targeting chimeras (PROTACs) using a SHP2 allosteric inhibitor [...] Read more.
Src homology 2 domain-containing phosphatase 2 (SHP2) is an attractive target for cancer therapy due to its multifaceted roles in both tumor and immune cells. Herein, we designed and synthesized a novel series of proteolysis targeting chimeras (PROTACs) using a SHP2 allosteric inhibitor as warhead, with the goal of achieving SHP2 degradation both inside the cell and in vivo. Among these molecules, compound P9 induces efficient degradation of SHP2 (DC50 = 35.2 ± 1.5 nM) in a concentration- and time-dependent manner. Mechanistic investigation illustrates that the P9-mediated SHP2 degradation requires the recruitment of the E3 ligase and is ubiquitination- and proteasome-dependent. P9 shows improved anti-tumor activity in a number of cancer cell lines over its parent allosteric inhibitor. Importantly, administration of P9 leads to a nearly complete tumor regression in a xenograft mouse model, as a result of robust SHP2 depletion and suppression of phospho-ERK1/2 in the tumor. Hence, P9 represents the first SHP2 PROTAC molecule with excellent in vivo efficacy. It is anticipated that P9 could serve not only as a new chemical tool to interrogate SHP2 biology but also as a starting point for the development of novel therapeutics targeting SHP2. Full article
(This article belongs to the Special Issue Small Molecules in Targeted Cancer Therapy)
Show Figures

Graphical abstract

22 pages, 8105 KiB  
Article
Study on the Comprehensive Optimization of Quantum Radar Stealth Based on the Waverider Warhead
by Shaoze Lu, Zhijun Meng, Jun Huang and Mingxu Yi
Aerospace 2023, 10(7), 602; https://doi.org/10.3390/aerospace10070602 - 30 Jun 2023
Cited by 1 | Viewed by 1655
Abstract
Quantum radar is a novel detection method that combines radar and quantum technologies. It exceeds the detection threshold and poses a threat to conventional stealth targets. This work aims to derive the expression of the quantum radar cross-section of a new complex target. [...] Read more.
Quantum radar is a novel detection method that combines radar and quantum technologies. It exceeds the detection threshold and poses a threat to conventional stealth targets. This work aims to derive the expression of the quantum radar cross-section of a new complex target. The calculation formula of QRCS was derived after introducing the relative photon parameters and vector dot product. Subsequently, a comprehensive optimization model of quantum stealth and lift–drag ratio based on a genetic algorithm was proposed for the waverider warhead. During the optimization process, we proposed an optimization method with the objective function of the QRCS pioneering design value and achieved better outcomes than the optimization method using the average value in terms of QRCS performance and lift–drag ratio in the important azimuths of the waverider. By changing the design variables of the waverider warhead and using this new optimization method, the QRCS of the waverider in the forward and lateral angles were minimized, remarkably improving the aerodynamic performance of the waverider. Similarly, the optimization results show that the proposed design value optimization method is feasible. Full article
Show Figures

Figure 1

11 pages, 1421 KiB  
Communication
HyperCys: A Structure- and Sequence-Based Predictor of Hyper-Reactive Druggable Cysteines
by Mingjie Gao and Stefan Günther
Int. J. Mol. Sci. 2023, 24(6), 5960; https://doi.org/10.3390/ijms24065960 - 22 Mar 2023
Cited by 5 | Viewed by 2865
Abstract
The cysteine side chain has a free thiol group, making it the amino acid residue most often covalently modified by small molecules possessing weakly electrophilic warheads, thereby prolonging on-target residence time and reducing the risk of idiosyncratic drug toxicity. However, not all cysteines [...] Read more.
The cysteine side chain has a free thiol group, making it the amino acid residue most often covalently modified by small molecules possessing weakly electrophilic warheads, thereby prolonging on-target residence time and reducing the risk of idiosyncratic drug toxicity. However, not all cysteines are equally reactive or accessible. Hence, to identify targetable cysteines, we propose a novel ensemble stacked machine learning (ML) model to predict hyper-reactive druggable cysteines, named HyperCys. First, the pocket, conservation, structural and energy profiles, and physicochemical properties of (non)covalently bound cysteines were collected from both protein sequences and 3D structures of protein–ligand complexes. Then, we established the HyperCys ensemble stacked model by integrating six different ML models, including K-nearest neighbors, support vector machine, light gradient boost machine, multi-layer perceptron classifier, random forest, and the meta-classifier model logistic regression. Finally, based on the hyper-reactive cysteines’ classification accuracy and other metrics, the results for different feature group combinations were compared. The results show that the accuracy, F1 score, recall score, and ROC AUC values of HyperCys are 0.784, 0.754, 0.742, and 0.824, respectively, after performing 10-fold CV with the best window size. Compared to traditional ML models with only sequenced-based features or only 3D structural features, HyperCys is more accurate at predicting hyper-reactive druggable cysteines. It is anticipated that HyperCys will be an effective tool for discovering new potential reactive cysteines in a wide range of nucleophilic proteins and will provide an important contribution to the design of targeted covalent inhibitors with high potency and selectivity. Full article
(This article belongs to the Special Issue Early-Stage Drug Discovery: Advances and Challenges)
Show Figures

Figure 1

22 pages, 9838 KiB  
Article
Peptidic Inhibitors and a Fluorescent Probe for the Selective Inhibition and Labelling of Factor XIIIa Transglutaminase
by Eric W. J. Gates, Kian Mansour, Sahar Ebrahimi Samani, Sammir Shad, Mari T. Kaartinen and Jeffrey W. Keillor
Molecules 2023, 28(4), 1634; https://doi.org/10.3390/molecules28041634 - 8 Feb 2023
Cited by 3 | Viewed by 3005
Abstract
Factor XIIIa (FXIIIa) is a transglutaminase of major therapeutic interest for the development of anticoagulants due to its essential role in the blood coagulation cascade. While numerous FXIIIa inhibitors have been reported, they failed to reach clinical evaluation due to their lack of [...] Read more.
Factor XIIIa (FXIIIa) is a transglutaminase of major therapeutic interest for the development of anticoagulants due to its essential role in the blood coagulation cascade. While numerous FXIIIa inhibitors have been reported, they failed to reach clinical evaluation due to their lack of metabolic stability and low selectivity over transglutaminase 2 (TG2). Furthermore, the chemical tools available for the study of FXIIIa activity and localization are extremely limited. To combat these shortcomings, we designed, synthesised, and evaluated a library of 21 novel FXIIIa inhibitors. Electrophilic warheads, linker lengths, and hydrophobic units were varied on small molecule and peptidic scaffolds to optimize isozyme selectivity and potency. A previously reported FXIIIa inhibitor was then adapted for the design of a probe bearing a rhodamine B moiety, producing the innovative KM93 as the first known fluorescent probe designed to selectively label active FXIIIa with high efficiency (kinact/KI = 127,300 M−1 min−1) and 6.5-fold selectivity over TG2. The probe KM93 facilitated fluorescent microscopy studies within bone marrow macrophages, labelling FXIIIa with high efficiency and selectivity in cell culture. The structure–activity trends with these novel inhibitors and probes will help in the future study of the activity, inhibition, and localization of FXIIIa. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

12 pages, 4647 KiB  
Article
Covalently Targeted Highly Conserved Tyr318 to Improve the Drug Resistance Profiles of HIV-1 NNRTIs: A Proof-of-Concept Study
by Zhenzhen Zhou, Bairu Meng, Jiaqi An, Fabao Zhao, Yanying Sun, Dan Zeng, Wenna Wang, Shenghua Gao, Yu Xia, Caiyun Dun, Erik De Clercq, Christophe Pannecouque, Peng Zhan, Dongwei Kang and Xinyong Liu
Int. J. Mol. Sci. 2023, 24(2), 1215; https://doi.org/10.3390/ijms24021215 - 7 Jan 2023
Cited by 5 | Viewed by 2628
Abstract
This study presents proof of concept for designing a novel HIV-1 covalent inhibitor targeting the highly conserved Tyr318 in the HIV-1 non-nucleoside reverse transcriptase inhibitors binding pocket to improve the drug resistance profiles. The target inhibitor ZA-2 with a fluorosulfate warhead in the [...] Read more.
This study presents proof of concept for designing a novel HIV-1 covalent inhibitor targeting the highly conserved Tyr318 in the HIV-1 non-nucleoside reverse transcriptase inhibitors binding pocket to improve the drug resistance profiles. The target inhibitor ZA-2 with a fluorosulfate warhead in the structure was found to be a potent inhibitor (EC50 = 11–246 nM) against HIV-1 IIIB and a panel of NNRTIs-resistant strains, being far superior to those of NVP and EFV. Moreover, ZA-2 was demonstrated with lower cytotoxicity (CC50 = 125 µM). In the reverse transcriptase inhibitory assay, ZA-2 exhibited an IC50 value of 0.057 µM with the ELISA method, and the MALDI-TOF MS data demonstrated the covalent binding mode of ZA-2 with the enzyme. Additionally, the molecular simulations have also demonstrated that compounds can form covalent binding to the Tyr318. Full article
(This article belongs to the Special Issue Antiviral Drug Discovery)
Show Figures

Figure 1

38 pages, 4308 KiB  
Article
Seleno-Analogs of Scaffolds Resembling Natural Products a Novel Warhead toward Dual Compounds
by Nora Astrain-Redin, Irene Talavera, Esther Moreno, María J. Ramírez, Nuria Martínez-Sáez, Ignacio Encío, Arun K. Sharma, Carmen Sanmartín and Daniel Plano
Antioxidants 2023, 12(1), 139; https://doi.org/10.3390/antiox12010139 - 6 Jan 2023
Cited by 14 | Viewed by 3312
Abstract
Nowadays, oxidative cell damage is one of the common features of cancer and Alzheimer’s disease (AD), and Se-containing molecules, such as ebselen, which has demonstrated strong antioxidant activity, have demonstrated well-established preventive effects against both diseases. In this study, a total of 39 [...] Read more.
Nowadays, oxidative cell damage is one of the common features of cancer and Alzheimer’s disease (AD), and Se-containing molecules, such as ebselen, which has demonstrated strong antioxidant activity, have demonstrated well-established preventive effects against both diseases. In this study, a total of 39 Se-derivatives were synthesized, purified, and spectroscopically characterized by NMR. Antioxidant ability was tested using the DPPH assay, while antiproliferative activity was screened in breast, lung, prostate, and colorectal cancer cell lines. In addition, as a first approach to evaluate their potential anti-Alzheimer activity, the in vitro acetylcholinesterase inhibition (AChEI) was tested. Regarding antioxidant properties, compound 13a showed concentration- and time-dependent radical scavenging activity. Additionally, compounds 14a and 17a showed high activity in the melanoma and ovarian cancer cell lines, with LD50 values below 9.2 µM. Interestingly, in the AChEI test, compound 14a showed almost identical inhibitory activity to galantamine along with a 3-fold higher in vitro BBB permeation (Pe = 36.92 × 10−6 cm/s). Molecular dynamics simulations of the aspirin derivatives (14a and 14b) confirm the importance of the allylic group instead of the propargyl one. Altogether, it is concluded that some of these newly synthesized Se-derivatives, such as 14a, might become very promising candidates to treat both cancer and AD. Full article
Show Figures

Figure 1

22 pages, 1485 KiB  
Review
Reactivity of Covalent Fragments and Their Role in Fragment Based Drug Discovery
by Kirsten McAulay, Alan Bilsland and Marta Bon
Pharmaceuticals 2022, 15(11), 1366; https://doi.org/10.3390/ph15111366 - 8 Nov 2022
Cited by 23 | Viewed by 10813
Abstract
Fragment based drug discovery has long been used for the identification of new ligands and interest in targeted covalent inhibitors has continued to grow in recent years, with high profile drugs such as osimertinib and sotorasib gaining FDA approval. It is therefore unsurprising [...] Read more.
Fragment based drug discovery has long been used for the identification of new ligands and interest in targeted covalent inhibitors has continued to grow in recent years, with high profile drugs such as osimertinib and sotorasib gaining FDA approval. It is therefore unsurprising that covalent fragment-based approaches have become popular and have recently led to the identification of novel targets and binding sites, as well as ligands for targets previously thought to be ‘undruggable’. Understanding the properties of such covalent fragments is important, and characterizing and/or predicting reactivity can be highly useful. This review aims to discuss the requirements for an electrophilic fragment library and the importance of differing warhead reactivity. Successful case studies from the world of drug discovery are then be examined. Full article
Show Figures

Figure 1

16 pages, 5824 KiB  
Article
In Silico Analysis of Peptide-Based Derivatives Containing Bifunctional Warheads Engaging Prime and Non-Prime Subsites to Covalent Binding SARS-CoV-2 Main Protease (Mpro)
by Simone Brogi, Sara Rossi, Roberta Ibba, Stefania Butini, Vincenzo Calderone, Giuseppe Campiani and Sandra Gemma
Computation 2022, 10(5), 69; https://doi.org/10.3390/computation10050069 - 1 May 2022
Cited by 7 | Viewed by 3823
Abstract
Despite the progress of therapeutic approaches for treating COVID-19 infection, the interest in developing effective antiviral agents is still high, due to the possibility of the insurgence of viable SARS-CoV-2-resistant strains. Accordingly, in this article, we describe a computational protocol for identifying possible [...] Read more.
Despite the progress of therapeutic approaches for treating COVID-19 infection, the interest in developing effective antiviral agents is still high, due to the possibility of the insurgence of viable SARS-CoV-2-resistant strains. Accordingly, in this article, we describe a computational protocol for identifying possible SARS-CoV-2 Mpro covalent inhibitors. Combining several in silico techniques, we evaluated the potential of the peptide-based scaffold with different warheads as a significant alternative to nitriles and aldehyde electrophilic groups. We rationally designed four potential inhibitors containing difluorstatone and a Michael acceptor as warheads. In silico analysis, based on molecular docking, covalent docking, molecular dynamics simulation, and FEP, indicated that the conceived compounds could act as covalent inhibitors of Mpro and that the investigated warheads can be used for designing covalent inhibitors against serine or cysteine proteases such as SARS-CoV-2 Mpro. Our work enriches the knowledge on SARS-CoV-2 Mpro, providing a novel potential strategy for its inhibition, paving the way for the development of effective antivirals. Full article
(This article belongs to the Special Issue Computation to Fight SARS-CoV-2 (CoVid-19))
Show Figures

Figure 1

Back to TopTop