Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,197)

Search Parameters:
Keywords = novel class

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1437 KiB  
Article
Age-Stratified Classification of Common Middle Ear Pathologies Using Pressure-Less Acoustic Immittance (PLAI™) and Machine Learning
by Aleksandar Miladinović, Francesco Bassi, Miloš Ajčević and Agostino Accardo
Healthcare 2025, 13(15), 1921; https://doi.org/10.3390/healthcare13151921 (registering DOI) - 6 Aug 2025
Abstract
Background/Objective: This study explores a novel approach for diagnosing common middle ear pathologies using Pressure-Less Acoustic Immittance (PLAI™), a non-invasive alternative to conventional tympanometry. Methods: A total of 516 ear measurements were collected and stratified into three age groups: 0–3, 3–12, and 12+ [...] Read more.
Background/Objective: This study explores a novel approach for diagnosing common middle ear pathologies using Pressure-Less Acoustic Immittance (PLAI™), a non-invasive alternative to conventional tympanometry. Methods: A total of 516 ear measurements were collected and stratified into three age groups: 0–3, 3–12, and 12+ years, reflecting key developmental stages. PLAI™-derived acoustic parameters, including resonant frequency, peak admittance, canal volume, and resonance peak frequency boundaries, were analyzed using Random Forest classifiers, with SMOTE addressing class imbalance and SHAP values assessing feature importance. Results: Age-specific models demonstrated superior diagnostic accuracy compared to non-stratified approaches, with macro F1-scores of 0.79, 0.84, and 0.78, respectively. Resonant frequency, ear canal volume, and peak admittance consistently emerged as the most informative features. Notably, age-based stratification significantly reduced false negative rates for conditions such as Otitis Media with Effusion and tympanic membrane retractions, enhancing clinical reliability. These results underscore the relevance of age-aware modeling in pediatric audiology and validate PLAI™ as a promising tool for early, pressure-free middle ear diagnostics. Conclusions: While further validation on larger, balanced cohorts is recommended, this study supports the integration of machine learning and acoustic immittance into more accurate, developmentally informed screening frameworks. Full article
Show Figures

Figure 1

17 pages, 54671 KiB  
Article
Pep-VGGNet: A Novel Transfer Learning Method for Pepper Leaf Disease Diagnosis
by Süleyman Çetinkaya and Amira Tandirovic Gursel
Appl. Sci. 2025, 15(15), 8690; https://doi.org/10.3390/app15158690 (registering DOI) - 6 Aug 2025
Abstract
The health of crops is a major challenge for productivity growth in agriculture, with plant diseases playing a key role in limiting crop yield. Identifying and understanding these diseases is crucial to preventing their spread. In particular, greenhouse pepper leaves are susceptible to [...] Read more.
The health of crops is a major challenge for productivity growth in agriculture, with plant diseases playing a key role in limiting crop yield. Identifying and understanding these diseases is crucial to preventing their spread. In particular, greenhouse pepper leaves are susceptible to diseases such as mildew, mites, caterpillars, aphids, and blight, which leave distinctive marks that can be used for disease classification. The study proposes a seven-class classifier for the rapid and accurate diagnosis of pepper diseases, with a primary focus on pre-processing techniques to enhance colour differentiation between green and yellow shades, thereby facilitating easier classification among the classes. A novel algorithm is introduced to improve image vibrancy, contrast, and colour properties. The diagnosis is performed using a modified VGG16Net model, which includes three additional layers for fine-tuning. After initialising on the ImageNet dataset, some layers are frozen to prevent redundant learning. The classification is additionally accelerated by introducing flattened, dense, and dropout layers. The proposed model is tested on a private dataset collected specifically for this study. Notably, this work is the first to focus on diagnosing aphid and caterpillar diseases in peppers. The model achieves an average accuracy of 92.00%, showing promising potential for seven-class deep learning-based disease diagnostics. Misclassifications in the aphid class are primarily due to the limited number of samples available. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

24 pages, 2345 KiB  
Article
Towards Intelligent 5G Infrastructures: Performance Evaluation of a Novel SDN-Enabled VANET Framework
by Abiola Ifaloye, Haifa Takruri and Rabab Al-Zaidi
Network 2025, 5(3), 28; https://doi.org/10.3390/network5030028 - 5 Aug 2025
Abstract
Critical Internet of Things (IoT) data in Fifth Generation Vehicular Ad Hoc Networks (5G VANETs) demands Ultra-Reliable Low-Latency Communication (URLLC) to support mission-critical vehicular applications such as autonomous driving and collision avoidance. Achieving the stringent Quality of Service (QoS) requirements for these applications [...] Read more.
Critical Internet of Things (IoT) data in Fifth Generation Vehicular Ad Hoc Networks (5G VANETs) demands Ultra-Reliable Low-Latency Communication (URLLC) to support mission-critical vehicular applications such as autonomous driving and collision avoidance. Achieving the stringent Quality of Service (QoS) requirements for these applications remains a significant challenge. This paper proposes a novel framework integrating Software-Defined Networking (SDN) and Network Functions Virtualisation (NFV) as embedded functionalities in connected vehicles. A lightweight SDN Controller model, implemented via vehicle on-board computing resources, optimised QoS for communications between connected vehicles and the Next-Generation Node B (gNB), achieving a consistent packet delivery rate of 100%, compared to 81–96% for existing solutions leveraging SDN. Furthermore, a Software-Defined Wide-Area Network (SD-WAN) model deployed at the gNB enabled the efficient management of data, network, identity, and server access. Performance evaluations indicate that SDN and NFV are reliable and scalable technologies for virtualised and distributed 5G VANET infrastructures. Our SDN-based in-vehicle traffic classification model for dynamic resource allocation achieved 100% accuracy, outperforming existing Artificial Intelligence (AI)-based methods with 88–99% accuracy. In addition, a significant increase of 187% in flow rates over time highlights the framework’s decreasing latency, adaptability, and scalability in supporting URLLC class guarantees for critical vehicular services. Full article
14 pages, 301 KiB  
Article
Oscillatory Analysis of Third-Order Hybrid Trinomial Delay Differential Equations via Binomial Transform
by Ganesh Purushothaman, Ekambaram Chandrasekaran, George E. Chatzarakis and Ethiraju Thandapani
Mathematics 2025, 13(15), 2520; https://doi.org/10.3390/math13152520 - 5 Aug 2025
Abstract
The oscillatory behavior of a class of third-order hybrid-type delay differential equations—used to model various real-world phenomena in fluid dynamics, control systems, biology, and beam deflection—is investigated in this study. A novel method is proposed, whereby these complex trinomial equations are reduced to [...] Read more.
The oscillatory behavior of a class of third-order hybrid-type delay differential equations—used to model various real-world phenomena in fluid dynamics, control systems, biology, and beam deflection—is investigated in this study. A novel method is proposed, whereby these complex trinomial equations are reduced to a simpler binomial form by employing solutions of the corresponding linear differential equations. Through the use of comparison techniques and integral averaging methods, new oscillation criteria are derived to ensure that all solutions exhibit oscillatory behavior. These results are shown to extend and enhance existing theories in the oscillation analysis of functional differential equations. The effectiveness and originality of the proposed approach are illustrated by means of two representative examples. Full article
(This article belongs to the Section C1: Difference and Differential Equations)
34 pages, 2291 KiB  
Article
A Study of Periodicities in a One-Dimensional Piecewise Smooth Discontinuous Map
by Rajanikant A. Metri, Bhooshan Rajpathak, Kethavath Raghavendra Naik and Mohan Lal Kolhe
Mathematics 2025, 13(15), 2518; https://doi.org/10.3390/math13152518 - 5 Aug 2025
Abstract
In this study, we investigate the nonlinear dynamical behavior of a one-dimensional linear piecewise-smooth discontinuous (LPSD) map with a negative slope, motivated by its occurrence in systems exhibiting discontinuities, such as power electronic converters. The objective of the proposed research is to develop [...] Read more.
In this study, we investigate the nonlinear dynamical behavior of a one-dimensional linear piecewise-smooth discontinuous (LPSD) map with a negative slope, motivated by its occurrence in systems exhibiting discontinuities, such as power electronic converters. The objective of the proposed research is to develop an analytical approach. Analytical conditions are derived for the existence of stable period-1 and period-2 orbits within the third quadrant of the parameter space defined by slope coefficients a<0 and b<0. The coexistence of multiple attractors is demonstrated. We also show that a novel class of orbits exists in which both points lie entirely in either the left or right domain. These orbits are shown to eventually exhibit periodic behavior, and a closed-form expression is derived to compute the number of iterations required for a trajectory to converge to such orbits. This method also enhances the ease of analyzing system stability by mapping the state–variable dynamics using a non-smooth discontinuous map. The analytical findings are validated using bifurcation diagrams, cobweb plots, and basin of attraction visualizations. Full article
Show Figures

Figure 1

23 pages, 85184 KiB  
Article
MB-MSTFNet: A Multi-Band Spatio-Temporal Attention Network for EEG Sensor-Based Emotion Recognition
by Cheng Fang, Sitong Liu and Bing Gao
Sensors 2025, 25(15), 4819; https://doi.org/10.3390/s25154819 - 5 Aug 2025
Abstract
Emotion analysis based on electroencephalogram (EEG) sensors is pivotal for human–machine interaction yet faces key challenges in spatio-temporal feature fusion and cross-band and brain-region integration from multi-channel sensor-derived signals. This paper proposes MB-MSTFNet, a novel framework for EEG emotion recognition. The model constructs [...] Read more.
Emotion analysis based on electroencephalogram (EEG) sensors is pivotal for human–machine interaction yet faces key challenges in spatio-temporal feature fusion and cross-band and brain-region integration from multi-channel sensor-derived signals. This paper proposes MB-MSTFNet, a novel framework for EEG emotion recognition. The model constructs a 3D tensor to encode band–space–time correlations of sensor data, explicitly modeling frequency-domain dynamics and spatial distributions of EEG sensors across brain regions. A multi-scale CNN-Inception module extracts hierarchical spatial features via diverse convolutional kernels and pooling operations, capturing localized sensor activations and global brain network interactions. Bi-directional GRUs (BiGRUs) model temporal dependencies in sensor time-series, adept at capturing long-range dynamic patterns. Multi-head self-attention highlights critical time windows and brain regions by assigning adaptive weights to relevant sensor channels, suppressing noise from non-contributory electrodes. Experiments on the DEAP dataset, containing multi-channel EEG sensor recordings, show that MB-MSTFNet achieves 96.80 ± 0.92% valence accuracy, 98.02 ± 0.76% arousal accuracy for binary classification tasks, and 92.85 ± 1.45% accuracy for four-class classification. Ablation studies validate that feature fusion, bidirectional temporal modeling, and multi-scale mechanisms significantly enhance performance by improving feature complementarity. This sensor-driven framework advances affective computing by integrating spatio-temporal dynamics and multi-band interactions of EEG sensor signals, enabling efficient real-time emotion recognition. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

21 pages, 4331 KiB  
Article
Research on Lightweight Tracking of Small-Sized UAVs Based on the Improved YOLOv8N-Drone Architecture
by Yongjuan Zhao, Qiang Ma, Guannan Lei, Lijin Wang and Chaozhe Guo
Drones 2025, 9(8), 551; https://doi.org/10.3390/drones9080551 - 5 Aug 2025
Abstract
Traditional unmanned aerial vehicle (UAV) detection and tracking methods have long faced the twin challenges of high cost and poor efficiency. In real-world battlefield environments with complex backgrounds, occlusions, and varying speeds, existing techniques struggle to track small UAVs accurately and stably. To [...] Read more.
Traditional unmanned aerial vehicle (UAV) detection and tracking methods have long faced the twin challenges of high cost and poor efficiency. In real-world battlefield environments with complex backgrounds, occlusions, and varying speeds, existing techniques struggle to track small UAVs accurately and stably. To tackle these issues, this paper presents an enhanced YOLOv8N-Drone-based algorithm for improved target tracking of small UAVs. Firstly, a novel module named C2f-DSFEM (Depthwise-Separable and Sobel Feature Enhancement Module) is designed, integrating Sobel convolution with depthwise separable convolution across layers. Edge detail extraction and multi-scale feature representation are synchronized through a bidirectional feature enhancement mechanism, and the discriminability of target features in complex backgrounds is thus significantly enhanced. For the feature confusion problem, the improved lightweight Context Anchored Attention (CAA) mechanism is integrated into the Neck network, which effectively improves the system’s adaptability to complex scenes. By employing a position-aware weight allocation strategy, this approach enables adaptive suppression of background interference and precise focus on the target region, thereby improving localization accuracy. At the level of loss function optimization, the traditional classification loss is replaced by the focal loss (Focal Loss). This mechanism effectively suppresses the contribution of easy-to-classify samples through a dynamic weight adjustment strategy, while significantly increasing the priority of difficult samples in the training process. The class imbalance that exists between the positive and negative samples is then significantly mitigated. Experimental results show the enhanced YOLOv8 boosts mean average precision (Map@0.5) by 12.3%, hitting 99.2%. In terms of tracking performance, the proposed YOLOv8 N-Drone algorithm achieves a 19.2% improvement in Multiple Object Tracking Accuracy (MOTA) under complex multi-scenario conditions. Additionally, the IDF1 score increases by 6.8%, and the number of ID switches is reduced by 85.2%, indicating significant improvements in both accuracy and stability of UAV tracking. Compared to other mainstream algorithms, the proposed improved method demonstrates significant advantages in tracking performance, offering a more effective and reliable solution for small-target tracking tasks in UAV applications. Full article
Show Figures

Figure 1

22 pages, 7733 KiB  
Article
Parsing-Guided Differential Enhancement Graph Learning for Visible-Infrared Person Re-Identification
by Xingpeng Li, Huabing Liu, Chen Xue, Nuo Wang and Enwen Hu
Electronics 2025, 14(15), 3118; https://doi.org/10.3390/electronics14153118 - 5 Aug 2025
Abstract
Visible-Infrared Person Re-Identification (VI-ReID) is of crucial importance in applications such as monitoring and security. However, challenges faced from intra-class variations and cross-modal differences are often exacerbated by inaccurate infrared analysis and insufficient structural modeling. To address these issues, we propose Parsing-guided Differential [...] Read more.
Visible-Infrared Person Re-Identification (VI-ReID) is of crucial importance in applications such as monitoring and security. However, challenges faced from intra-class variations and cross-modal differences are often exacerbated by inaccurate infrared analysis and insufficient structural modeling. To address these issues, we propose Parsing-guided Differential Enhancement Graph Learning (PDEGL), a novel framework that learns discriminative representations through a dual-branch architecture synergizing global feature refinement with part-based structural graph analysis. In particular, we introduce a Differential Infrared Part Enhancement (DIPE) module to correct infrared parsing errors and a Parsing Structural Graph (PSG) module to model high-order topological relationships between body parts for structural consistency matching. Furthermore, we design a Position-sensitive Spatial-Channel Attention (PSCA) module to enhance global feature discriminability. Extensive evaluations on the SYSU-MM01, RegDB, and LLCM datasets demonstrate that our PDEGL method achieves competitive performance. Full article
Show Figures

Figure 1

20 pages, 4095 KiB  
Article
Integrated Explainable Diagnosis of Gear Wear Faults Based on Dynamic Modeling and Data-Driven Representation
by Zemin Zhao, Tianci Zhang, Kang Xu, Jinyuan Tang and Yudian Yang
Sensors 2025, 25(15), 4805; https://doi.org/10.3390/s25154805 - 5 Aug 2025
Abstract
Gear wear degrades transmission performance, necessitating highly reliable fault diagnosis methods. To address the limitations of existing approaches—where dynamic models rely heavily on prior knowledge, while data-driven methods lack interpretability—this study proposes an integrated bidirectional verification framework combining dynamic modeling and deep learning [...] Read more.
Gear wear degrades transmission performance, necessitating highly reliable fault diagnosis methods. To address the limitations of existing approaches—where dynamic models rely heavily on prior knowledge, while data-driven methods lack interpretability—this study proposes an integrated bidirectional verification framework combining dynamic modeling and deep learning for interpretable gear wear diagnosis. First, a dynamic gear wear model is established to quantitatively reveal wear-induced modulation effects on meshing stiffness and vibration responses. Then, a deep network incorporating Gradient-weighted Class Activation Mapping (Grad-CAM) enables visualized extraction of frequency-domain sensitive features. Bidirectional verification between the dynamic model and deep learning demonstrates enhanced meshing harmonics in wear faults, leading to a quantitative diagnostic index that achieves 0.9560 recognition accuracy for gear wear across four speed conditions, significantly outperforming comparative indicators. This research provides a novel approach for gear wear diagnosis that ensures both high accuracy and interpretability. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

12 pages, 21873 KiB  
Article
Multi-Sensor System for Analysis of Maneuver Performance in Olympic Sailing
by Eirik E. Semb, Erlend Stendal, Karen Dahlhaug and Martin Steinert
Appl. Sci. 2025, 15(15), 8629; https://doi.org/10.3390/app15158629 (registering DOI) - 4 Aug 2025
Abstract
This paper presents a novel multi-sensor system for enhanced maneuver analysis in Olympic dinghy sailing. In the ILCA class, there is an increasing demand for precise in-field measurement and analysis of physical properties beyond well-established velocity and course metrics. The low-cost setup presented [...] Read more.
This paper presents a novel multi-sensor system for enhanced maneuver analysis in Olympic dinghy sailing. In the ILCA class, there is an increasing demand for precise in-field measurement and analysis of physical properties beyond well-established velocity and course metrics. The low-cost setup presented in this study consists of a combination of commercially available sensor systems, such as the AdMos sensor for IMU and GNSS measurement, in combination with custom measurement systems for rudder and mast rotations using fully waterproofed potentiometers. Data streams are synchronized using GNSS time stamping for streamlined analysis. The resulting analysis presents a selection of 12 upwind tacks, with corresponding path overlays, detailed timeseries data, and performance metrics. The system has demonstrated the value of extended data analysis of in situ data with an elite ILCA 7 sailor. The addition of rudder and mast rotations has enabled enhanced analysis of on-water maneuvers for single-handed Olympic dinghies like the ILCA 7, on a level of detail previously reserved for simulated environments. Full article
(This article belongs to the Special Issue Applied Sports Performance Analysis)
Show Figures

Figure 1

34 pages, 1543 KiB  
Review
Treatment Strategies for Cutaneous and Oral Mucosal Side Effects of Oncological Treatment in Breast Cancer: A Comprehensive Review
by Sanja Brnić, Bruno Špiljak, Lucija Zanze, Ema Barac, Robert Likić and Liborija Lugović-Mihić
Biomedicines 2025, 13(8), 1901; https://doi.org/10.3390/biomedicines13081901 - 4 Aug 2025
Abstract
Cutaneous and oral mucosal adverse events (AEs) are among the most common non-hematologic toxicities observed during breast cancer treatment. These complications arise across various therapeutic modalities including chemotherapy, targeted therapy, hormonal therapy, radiotherapy, and immunotherapy. Although often underrecognized compared with systemic side effects, [...] Read more.
Cutaneous and oral mucosal adverse events (AEs) are among the most common non-hematologic toxicities observed during breast cancer treatment. These complications arise across various therapeutic modalities including chemotherapy, targeted therapy, hormonal therapy, radiotherapy, and immunotherapy. Although often underrecognized compared with systemic side effects, dermatologic and mucosal toxicities can severely impact the patients’ quality of life, leading to psychosocial distress, pain, and reduced treatment adherence. In severe cases, these toxicities may necessitate dose reductions, treatment delays, or discontinuation, thereby compromising oncologic outcomes. The growing use of precision medicine and novel targeted agents has broadened the spectrum of AEs, with some therapies linked to distinct dermatologic syndromes and mucosal complications such as mucositis, xerostomia, and lichenoid reactions. Early detection, accurate classification, and timely multidisciplinary management are essential for mitigating these effects. This review provides a comprehensive synthesis of current knowledge on cutaneous and oral mucosal toxicities associated with modern breast cancer therapies. Particular attention is given to clinical presentation, underlying pathophysiology, incidence, and evidence-based prevention and management strategies. We also explore emerging approaches, including nanoparticle-based delivery systems and personalized interventions, which may reduce toxicity without compromising therapeutic efficacy. By emphasizing the integration of dermatologic and mucosal care, this review aims to support clinicians in preserving treatment adherence and enhancing the overall therapeutic experience in breast cancer patients. The novelty of this review lies in its dual focus on cutaneous and oral complications across all major therapeutic classes, including recent biologic and immunotherapeutic agents, and its emphasis on multidisciplinary, patient-centered strategies. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

25 pages, 7748 KiB  
Article
A Deep Learning Approach to Identify Rock Bolts in Complex 3D Point Clouds of Underground Mines Captured Using Mobile Laser Scanners
by Dibyayan Patra, Pasindu Ranasinghe, Bikram Banerjee and Simit Raval
Remote Sens. 2025, 17(15), 2701; https://doi.org/10.3390/rs17152701 - 4 Aug 2025
Abstract
Rock bolts are crucial components in the subterranean support systems in underground mines that provide adequate structural reinforcement to the rock mass to prevent unforeseen hazards like rockfalls. This makes frequent assessments of such bolts critical for maintaining rock mass stability and minimising [...] Read more.
Rock bolts are crucial components in the subterranean support systems in underground mines that provide adequate structural reinforcement to the rock mass to prevent unforeseen hazards like rockfalls. This makes frequent assessments of such bolts critical for maintaining rock mass stability and minimising risks in underground mining operations. Where manual surveying of rock bolts is challenging due to the low-light conditions in the underground mines and the time-intensive nature of the process, automated detection of rock bolts serves as a plausible solution. To that end, this study focuses on the automatic identification of rock bolts within medium- to large-scale 3D point clouds obtained from underground mines using mobile laser scanners. Existing techniques for automated rock bolt identification primarily rely on feature engineering and traditional machine learning approaches. However, such techniques lack robustness as these point clouds present several challenges due to data noise, varying environments, and complex surrounding structures. Moreover, the target rock bolts are extremely small objects within large-scale point clouds and are often partially obscured due to the application of reinforcement shotcrete. Addressing these challenges, this paper proposes an approach termed DeepBolt, which employs a novel two-stage deep learning architecture specifically designed for handling severe class imbalance for the automatic and efficient identification of rock bolts in complex 3D point clouds. The proposed method surpasses state-of-the-art semantic segmentation models by up to 42.5% in Intersection over Union (IoU) for rock bolt points. Additionally, it outperforms existing rock bolt identification techniques, achieving a 96.41% precision and 96.96% recall in classifying rock bolts, demonstrating its robustness and effectiveness in complex underground environments. Full article
(This article belongs to the Special Issue New Perspectives on 3D Point Cloud (Third Edition))
Show Figures

Figure 1

27 pages, 1766 KiB  
Article
A Novel Optimized Hybrid Deep Learning Framework for Mental Stress Detection Using Electroencephalography
by Maithili Shailesh Andhare, T. Vijayan, B. Karthik and Shabana Urooj
Brain Sci. 2025, 15(8), 835; https://doi.org/10.3390/brainsci15080835 (registering DOI) - 4 Aug 2025
Abstract
Mental stress is a psychological or emotional strain that typically occurs because of threatening, challenging, and overwhelming conditions and affects human behavior. Various factors, such as professional, environmental, and personal pressures, often trigger it. In recent years, various deep learning (DL)-based schemes using [...] Read more.
Mental stress is a psychological or emotional strain that typically occurs because of threatening, challenging, and overwhelming conditions and affects human behavior. Various factors, such as professional, environmental, and personal pressures, often trigger it. In recent years, various deep learning (DL)-based schemes using electroencephalograms (EEGs) have been proposed. However, the effectiveness of DL-based schemes is challenging because of the intricate DL structure, class imbalance problems, poor feature representation, low-frequency resolution problems, and complexity of multi-channel signal processing. This paper presents a novel hybrid DL framework, BDDNet, which combines a deep convolutional neural network (DCNN), bidirectional long short-term memory (BiLSTM), and deep belief network (DBN). BDDNet provides superior spectral–temporal feature depiction and better long-term dependency on the local and global features of EEGs. BDDNet accepts multiple EEG features (MEFs) that provide the spectral and time-domain features of EEGs. A novel improved crow search algorithm (ICSA) was presented for channel selection to minimize the computational complexity of multichannel stress detection. Further, the novel employee optimization algorithm (EOA) is utilized for the hyper-parameter optimization of hybrid BDDNet to enhance the training performance. The outcomes of the novel BDDNet were assessed using a public DEAP dataset. The BDDNet-ICSA offers improved recall of 97.6%, precision of 97.6%, F1-score of 97.6%, selectivity of 96.9%, negative predictive value NPV of 96.9%, and accuracy of 97.3% to traditional techniques. Full article
Show Figures

Figure 1

18 pages, 5052 KiB  
Article
Slope Stability Assessment Using an Optuna-TPE-Optimized CatBoost Model
by Liangcheng Wang, Chengliang Zhang, Wei Wang, Tao Deng, Tao Ma and Pei Shuai
Eng 2025, 6(8), 185; https://doi.org/10.3390/eng6080185 - 4 Aug 2025
Abstract
Slope stability assessment is a critical component of engineering safety. Conventional analytical methods frequently struggle to integrate heterogeneous slope data and model intricate failure mechanisms, thereby constraining their efficacy in practical engineering scenarios. To tackle these issues, this study presents a novel slope [...] Read more.
Slope stability assessment is a critical component of engineering safety. Conventional analytical methods frequently struggle to integrate heterogeneous slope data and model intricate failure mechanisms, thereby constraining their efficacy in practical engineering scenarios. To tackle these issues, this study presents a novel slope stability classification model grounded in the Optuna-TPE-CatBoost framework. By leveraging the Tree-structured Parzen Estimator (TPE) within the Optuna framework, the model adaptively optimizes CatBoost hyperparameters, thus enhancing prediction accuracy and robustness. It incorporates six key features—slope height, slope angle, unit weight, cohesion, internal friction angle, and the pore pressure ratio—to establish a comprehensive and intelligent assessment system. Utilizing a dataset of 272 slope cases, the model was trained with k-fold cross-validation and dynamic class imbalance strategies to ensure its generalizability. The optimized model achieved impressive performance metrics: an area under the receiver operating characteristic curve (AUC) of 0.926, an accuracy of 0.901, a recall of 0.874, and an F1-score of 0.881, outperforming benchmark algorithms such as XGBoost, LightGBM, and the unoptimized CatBoost. Validation via engineering case studies confirms that the model accurately evaluates slope stability across diverse scenarios and effectively captures the complex interactions between key parameters. This model offers a reliable and interpretable solution for slope stability assessment under complex failure mechanisms. Full article
Show Figures

Figure 1

20 pages, 547 KiB  
Article
An Efficient Spectral Method for a Class of Asymmetric Functional-Order Diffusion–Wave Equations Using Generalized Chelyshkov Wavelets
by Quan H. Do and Hoa T. B. Ngo
Symmetry 2025, 17(8), 1230; https://doi.org/10.3390/sym17081230 - 4 Aug 2025
Viewed by 47
Abstract
Asymmetric functional-order (variable-order) fractional diffusion–wave equations (FO-FDWEs) introduce considerable computational challenges, as the fractional order of the derivatives can vary spatially or temporally. To overcome these challenges, a novel spectral method employing generalized fractional-order Chelyshkov wavelets (FO-CWs) is developed to efficiently solve such [...] Read more.
Asymmetric functional-order (variable-order) fractional diffusion–wave equations (FO-FDWEs) introduce considerable computational challenges, as the fractional order of the derivatives can vary spatially or temporally. To overcome these challenges, a novel spectral method employing generalized fractional-order Chelyshkov wavelets (FO-CWs) is developed to efficiently solve such equations. In this approach, the Riemann–Liouville fractional integral operator of variable order is evaluated in closed form via a regularized incomplete Beta function, enabling the transformation of the governing equation into a system of algebraic equations. This wavelet-based spectral scheme attains extremely high accuracy, yielding significantly lower errors than existing numerical techniques. In particular, numerical results show that the proposed method achieves notably improved accuracy compared to existing methods under the same number of basis functions. Its strong convergence properties allow high precision to be achieved with relatively few wavelet basis functions, leading to efficient computations. The method’s accuracy and efficiency are demonstrated on several practical diffusion–wave examples, indicating its suitability for real-world applications. Furthermore, it readily applies to a wide class of fractional partial differential equations (FPDEs) with spatially or temporally varying order, demonstrating versatility for diverse applications. Full article
(This article belongs to the Topic Numerical Methods for Partial Differential Equations)
Show Figures

Figure 1

Back to TopTop