Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = nonwoven cotton

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 861 KiB  
Article
Evaluating the Potential for Different Fabrics to Protect Grapes from Contamination by Smoke
by Tingting Shi, Renata Ristic and Kerry Wilkinson
Foods 2025, 14(9), 1550; https://doi.org/10.3390/foods14091550 - 28 Apr 2025
Viewed by 360
Abstract
Vineyard smoke exposure can lead to the accumulation of free and glycosylated volatile phenols (VPs) in grapes, negatively affecting wine quality. Activated carbon fibre (ACF) cloth has proven effective in mitigating smoke contamination of grapes, but its commercial use is hindered by low [...] Read more.
Vineyard smoke exposure can lead to the accumulation of free and glycosylated volatile phenols (VPs) in grapes, negatively affecting wine quality. Activated carbon fibre (ACF) cloth has proven effective in mitigating smoke contamination of grapes, but its commercial use is hindered by low tensile strength and light transmission. This study therefore compared the efficacy of different fabrics (polyester, polypropylene, cotton and viscose) to mitigate the smoke contamination of grapes (benchmarking against ACF cloth), alongside their physical properties (i.e., tensile strength and air permeability). Polyester and polypropylene provided limited protection, whereas grapes enclosed in cotton or viscose had VP profiles that were comparable to grapes enclosed in ACF cloth (i.e., VP concentrations ≤ 5.3 µg/kg). In a subsequent trial, ACF cloth prevented the uptake of >90% of smoke-derived VPs during ten successive smoke treatments, but after repeated smoke exposure, VP concentrations had increased in grapes enclosed in cotton and viscose, presumably due to saturation. Washing and drying restored the protection afforded by cotton and viscose but resulted in the disintegration of the ACF cloth. However, the application of a non-woven fabric to one or both sides of the ACF cloth improved tensile strength, without significantly compromising air permeability. These findings demonstrate the potential for fabric coverings to be used to mitigate the occurrence of smoke taint in the vineyard, with ACF affording superior protection. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

21 pages, 7970 KiB  
Article
Production of Decolorized Mushroom Pulp for Nonwoven Cotton Composite
by Ho-Seong Im, Satomi Tagawa, Jae-Seok Jeong and Hyun-Jae Shin
Fibers 2025, 13(3), 30; https://doi.org/10.3390/fib13030030 - 5 Mar 2025
Viewed by 1421
Abstract
Cotton, widely used in the textile industry, has a significant environmental impact due to soil degradation and excessive water consumption during cultivation. As a result, there is a growing need for biodegradable alternatives. This study pioneers the development of decolorized mushroom pulps (DMPs) [...] Read more.
Cotton, widely used in the textile industry, has a significant environmental impact due to soil degradation and excessive water consumption during cultivation. As a result, there is a growing need for biodegradable alternatives. This study pioneers the development of decolorized mushroom pulps (DMPs) from edible mushrooms as a sustainable replacement for cotton. Decolorization of fruiting bodies showed the highest reactivity with hydrogen peroxide (H2O2). At the same time, mycelium responded more effectively to sodium hypochlorite (NaClO), though this led to structural changes such as melting and twisting. Potassium was detected in fruiting bodies but absent in mycelium, and higher salt content was noted in Agaricus bisporus and Trametes orientalis compared to Pleurotus ostreatus and Flammulina velutipes. Future research should focus on preserving mycelial integrity or developing strains that eliminate the need for decolorization treatments, advancing DMPs as viable biotextile materials. Full article
Show Figures

Figure 1

17 pages, 6537 KiB  
Article
Development of Acoustic Insulating Carpets from Milkweed Fibers Using Air-Laid Spike Process
by Deborah Lupescu, Mathieu Robert and Said Elkoun
Fibers 2025, 13(1), 4; https://doi.org/10.3390/fib13010004 - 7 Jan 2025
Cited by 1 | Viewed by 1221
Abstract
Fibers from milkweed, which grows in Quebec (Canada), offer a distinct and outstanding advantage compared to other natural fibers: their ultra-lightweight hollow structure provides excellent acoustic and thermal insulation properties for the automobile industry. To highlight the properties of milkweed fibers and reduce [...] Read more.
Fibers from milkweed, which grows in Quebec (Canada), offer a distinct and outstanding advantage compared to other natural fibers: their ultra-lightweight hollow structure provides excellent acoustic and thermal insulation properties for the automobile industry. To highlight the properties of milkweed fibers and reduce the use of synthetic materials in vehicles, nonwoven carpeting made from a blend of milkweed fibers and polylactic acid (PLA) fibers was produced using the air-laid process. Some of the nonwovens were compressed to investigate the effects of increased mass per unit area on their thermal, acoustic, and mechanical properties. The nonwovens’ mass per unit area, thermal insulation, sound absorption coefficient, airflow resistivity, compression, and resistance to moisture were evaluated and compared to other carpets made of natural and synthetic fibers. The findings indicate that milkweed and PLA carpets have lower thermal conductivity values of 37.45 (mW/m·K), (mW/m·K) less than carpets made from cotton and polypropylene. At low frequencies, none of the carpets absorbed sound. At high frequencies, milkweed and PLA carpets showed sound absorption values of at least 0.6, which provide better acoustic insulation than nonwoven materials made from jute and polyethylene (PE) fibers. Milkweed and PLA carpets exhibited better compression values than polypropylene (PP) carpets. Full article
Show Figures

Figure 1

24 pages, 8238 KiB  
Article
Modeling and Testing of ESD Protective Textiles
by Stanisław Hałgas, Bożena Wilbik-Hałgas and Piotr Sidyk
Appl. Sci. 2024, 14(16), 7376; https://doi.org/10.3390/app14167376 - 21 Aug 2024
Viewed by 2692
Abstract
This article discusses the important issue of designing textiles for electrostatic discharge (ESD) protection. ESD protective textiles are used to prevent the failure of electronic circuits. They also safeguard human health and life in explosive environments. The textiles are usually made of woven, [...] Read more.
This article discusses the important issue of designing textiles for electrostatic discharge (ESD) protection. ESD protective textiles are used to prevent the failure of electronic circuits. They also safeguard human health and life in explosive environments. The textiles are usually made of woven, knitted, or nonwoven fabrics incorporating a grid or strips of conductive fibers within a base material made of cotton, polyester, or blends of these materials. Various testing standards have been developed to evaluate the suitability of textiles for ESD protection. One of the most widely used is the EN 1149-3 standard, which outlines procedures for recording charge decay plots. The procedure can be used to evaluate all types of textiles. This paper discusses models corresponding to the standard developed in the general-purpose COMSOL Multiphysics software. Using the advanced numerical methods of the software, it is possible to graphically present the phenomena occurring during the application of the standard procedure and to determine the influence of the grid and material parameters on the shape of the charge decay plots. Furthermore, this article compares charge decay plots and shielding effectiveness measured in an accredited laboratory with simulation results. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

17 pages, 14891 KiB  
Article
Development and Evaluation of Biodegradable Weed Control Mulch Mats from End-of-Use Cotton Waste
by Huantian Cao, Kendall Ludwig, Kelly Cobb, Carmyia Scott, Yan Jin, Bridget Knight, Mary Burrichter and Hongqing Shen
Sustainability 2024, 16(16), 7083; https://doi.org/10.3390/su16167083 - 18 Aug 2024
Cited by 2 | Viewed by 2411
Abstract
This research used end-of-use cotton apparel to develop mulch mats, a type of agrotextiles. The researchers collected and sorted end-of-use garments to obtain cotton textile waste. These end-of-use garments were deconstructed to obtain shredded textiles and big pieces of textiles. Using the textiles [...] Read more.
This research used end-of-use cotton apparel to develop mulch mats, a type of agrotextiles. The researchers collected and sorted end-of-use garments to obtain cotton textile waste. These end-of-use garments were deconstructed to obtain shredded textiles and big pieces of textiles. Using the textiles from deconstructed end-of-use garments, together with a small amount of new cotton fibers, the researchers used a Feltloom to develop needle-punched nonwoven fabrics that can be used as mulch mats. The researchers tested textile properties of these mulch mats and conducted agricultural field tests for weed control and pot tests for biodegradation. The researchers also tested the mulch mats’ soil moisture infiltration, and impact on water evaporation. The nonwoven mulch mats made from end-of-use garments have excellent weed inhibition capability and biodegradability. Compared to plastic mulch sheet, the nonwoven mulch mats are better for water utilization in rainfall watering and sprinkle irrigation but poorer in water conservation in drip irrigation. Considering durability, biodegradability, and soil temperature regulation, it is recommended to use 100% cotton and felt four times to produce mulch mats from end-of-use garments. Full article
Show Figures

Figure 1

19 pages, 24785 KiB  
Article
Added-Value of Cotton Textile Waste for Nonwoven Applications
by Lúcia Rodrigues, Rita Marques, Juliana C. Dias, Beatriz Magalhães, Anabela Santos, Cláudia Amorim, Ana Margarida Carta, Paula Pinto and Carla J. Silva
Textiles 2024, 4(3), 309-327; https://doi.org/10.3390/textiles4030018 - 1 Jul 2024
Cited by 2 | Viewed by 2935
Abstract
Due to the continuous optimization of cutting plans, the cotton scrap size resulting from the cutting of components for clothing production (post-industrial residues) is often considered insufficient to obtain fibres with the proper length to produce a new yarn through mechanical recycling processes; [...] Read more.
Due to the continuous optimization of cutting plans, the cotton scrap size resulting from the cutting of components for clothing production (post-industrial residues) is often considered insufficient to obtain fibres with the proper length to produce a new yarn through mechanical recycling processes; so it is important to search for other applications for these wastes. In this context, small pieces of cotton were submitted to a shredding process to obtain recycled fibres. Cotton small pieces and recycled fibres were then submitted to a refining process to achieve refined fibres. Using these materials alone and in blends with refined and unrefined bleached eucalyptus kraft pulp (BEKP), wet-laid nonwovens were developed and characterized. An analysis of the results revealed that the replacement of unrefined BEKP by 70% cotton waste fibres in wet-laid nonwovens, reducing the use of virgin raw material, enhances the structures’ mechanical properties by 80% and 14%, for small pieces or recycled fibres, respectively. Additionally, refining small pieces of cotton seems to be more promising than refining recycled fibres, because less steps are required to obtain wet-laid nonwovens with better mechanical properties. These results highlight the potential of this approach to be explored further for different products and end applications. Full article
Show Figures

Figure 1

25 pages, 25209 KiB  
Article
A Facile Approach to Produce Activated Carbon from Waste Textiles via Self-Purging Microwave Pyrolysis and FeCl3 Activation for Electromagnetic Shielding Applications
by Sema Sert, Şirin Siyahjani Gultekin, Burak Gültekin, Deniz Duran Kaya and Ayşegül Körlü
Polymers 2024, 16(7), 915; https://doi.org/10.3390/polym16070915 - 26 Mar 2024
Cited by 9 | Viewed by 2083
Abstract
This study aims to convert composite textile structures composed of nonwoven and woven fabrics produced from cotton–jute wastes into activated carbon textile structures and investigate the possibilities of using them for electromagnetic shielding applications. To this end, the novel contribution of this study [...] Read more.
This study aims to convert composite textile structures composed of nonwoven and woven fabrics produced from cotton–jute wastes into activated carbon textile structures and investigate the possibilities of using them for electromagnetic shielding applications. To this end, the novel contribution of this study is that it shows that directly carbonized nonwoven textile via self-purging microwave pyrolysis can provide Electromagnetic Interference (EMI) shielding without any processing, including cleaning. Textile carbonization is generally achieved with conventional heating methods, using inert gas and long processing times. In the present study, nonwoven fabric from cotton–jute waste was converted into an activated carbon textile structure in a shorter time via microwaves without inert gas. Due to its polar structure, FeCl3 has been used as a microwave absorbent, providing homogeneous heating in the microwave and acting as an activating agent to serve dual purposes in the carbonization process. The maximum surface area (789.9 m2/g) was obtained for 5% FeCl3. The carbonized composite textile structure has a maximum of 39.4 dB at 1 GHz of EMI shielding effectiveness for 10% FeCl3, which corresponds to an excellent grade for general use and a moderate grade for professional use, exceeding the acceptable range for industrial and commercial applications of 20 dB, according to FTTS-FA-003. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

20 pages, 7417 KiB  
Article
Facile-Solution-Processed Silicon Nanofibers Formed on Recycled Cotton Nonwovens as Multifunctional Porous Sustainable Materials
by Muhammad Shoaib, Hafsa Jamshaid, Rajesh Kumar Mishra, Mumtaz Ali, Vijay Chandan, Viktor Kolar, Shabnam Nazari, Akshat TM, Petr Jirku, Miroslav Muller and Tatiana Alexiou Ivanova
Materials 2024, 17(2), 412; https://doi.org/10.3390/ma17020412 - 14 Jan 2024
Cited by 3 | Viewed by 2351
Abstract
Limited efficiency, lower durability, moisture absorbance, and pest/fungal/bacterial interaction/growth are the major issues relating to porous nonwovens used for acoustic and thermal insulation in buildings. This research investigated porous nonwoven textiles composed of recycled cotton waste (CW) fibers, with a specific emphasis on [...] Read more.
Limited efficiency, lower durability, moisture absorbance, and pest/fungal/bacterial interaction/growth are the major issues relating to porous nonwovens used for acoustic and thermal insulation in buildings. This research investigated porous nonwoven textiles composed of recycled cotton waste (CW) fibers, with a specific emphasis on the above-mentioned problems using the treatment of silicon coating and formation of nanofibers via facile-solution processing. The findings revealed that the use of an economic and eco-friendly superhydrophobic (contact angle higher than 150°) modification of porous nonwovens with silicon nanofibers significantly enhanced their intrinsic characteristics. Notable improvements in their compactness/density and a substantial change in micro porosity were observed after a nanofiber network was formed on the nonwoven material. This optimized sample exhibited a superior performance in terms of stiffness, surpassing the untreated samples by 25–60%. Additionally, an significant enhancement in tear strength was observed, surpassing the untreated samples with an impressive margin of 70–90%. Moreover, the nanofibrous network of silicon fibers on cotton waste (CW) showed significant augmentation in heat resistance ranging from 7% to 24% and remarkable sound absorption capabilities. In terms of sound absorption, the samples exhibited a performance comparable to the commercial standard material and outperformed the untreated samples by 20% to 35%. Enhancing the micro-roughness of fabric via silicon nanofibers induced an efficient resistance to water absorption and led to the development of inherent self-cleaning characteristics. The antibacterial capabilities observed in the optimized sample were due to its superhydrophobic nature. These characteristics suggest that the proposed nano fiber-treated nonwoven fabric is ideal for multifunctional applications, having features like enhanced moisture resistance, pest resistance, thermal insulation, and sound absorption which are essential for wall covers in housing. Full article
(This article belongs to the Special Issue Preparation and Application of Regularly Structured Porous Materials)
Show Figures

Figure 1

23 pages, 3859 KiB  
Review
Recent Advances in Electrospun Nanofiber-Based Strategies for Diabetic Wound Healing Application
by Kun Li, Zhijun Zhu, Yanling Zhai and Shaojuan Chen
Pharmaceutics 2023, 15(9), 2285; https://doi.org/10.3390/pharmaceutics15092285 - 5 Sep 2023
Cited by 24 | Viewed by 4010
Abstract
Diabetic ulcers are the second largest complication caused by diabetes mellitus. A great number of factors, including hyperchromic inflammation, susceptible microbial infection, inferior vascularization, the large accumulation of free radicals, and other poor healing-promoting microenvironments hold back the healing process of chronic diabetic [...] Read more.
Diabetic ulcers are the second largest complication caused by diabetes mellitus. A great number of factors, including hyperchromic inflammation, susceptible microbial infection, inferior vascularization, the large accumulation of free radicals, and other poor healing-promoting microenvironments hold back the healing process of chronic diabetic ulcer in clinics. With the increasing clinical cases of diabetic ulcers worldwide, the design and development of advanced wound dressings are urgently required to accelerate the treatment of skin wounds caused by diabetic complications. Electrospinning technology has been recognized as a simple, versatile, and cost-reasonable strategy to fabricate dressing materials composed of nanofibers, which possess excellent extracellular matrix (ECM)-mimicking morphology, structure, and biological functions. The electrospinning-based nanofibrous dressings have been widely demonstrated to promote the adhesion, migration, and proliferation of dermal fibroblasts, and further accelerate the wound healing process compared with some other dressing types like traditional cotton gauze and medical sponges, etc. Moreover, the electrospun nanofibers are commonly harvested in the structure of nonwoven-like mats, which possess small pore sizes but high porosity, resulting in great microbial barrier performance as well as excellent moisture and air permeable properties. They also serve as good carriers to load various bioactive agents and/or even living cells, which further impart the electrospinning-based dressings with predetermined biological functions and even multiple functions to significantly improve the healing outcomes of different chronic skin wounds while dramatically shortening the treatment procedure. All these outstanding characteristics have made electrospun nanofibrous dressings one of the most promising dressing candidates for the treatment of chronic diabetic ulcers. This review starts with a brief introduction to diabetic ulcer and the electrospinning process, and then provides a detailed introduction to recent advances in electrospinning-based strategies for the treatment of diabetic wounds. Importantly, the synergetic application of combining electrospinning with bioactive ingredients and/or cell therapy was highlighted. The review also discussed the advantages of hydrogel dressings by using electrospun nanofibers. At the end of the review, the challenge and prospects of electrospinning-based strategies for the treatment of diabetic wounds are discussed in depth. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

16 pages, 12943 KiB  
Article
Development of a Layer Made of Natural Fibers to Improve the Ecological Performance of the Face Mask Type II
by Jerzy Mańkowski, Małgorzata Zimniewska, Weronika Gieparda, Barbara Romanowska, Anna Kicińska-Jakubowska, Jacek Kołodziej, Joanna Foksowicz-Flaczyk, Szymon Rojewski, Krzysztof Bujnowicz, Patrycja Przybylska, Edyta Kwiatkowska, MD Masud Alam, Wanda Różańska, Aleksandra Wawro and Elżbieta Hołderna-Kędzia
Materials 2023, 16(16), 5668; https://doi.org/10.3390/ma16165668 - 17 Aug 2023
Cited by 1 | Viewed by 2402
Abstract
The aim of this study was to develop a natural nonwoven layer made of cottonized bleached flax and cotton fibers which is suitable to replace one of the three polypropylene layers of face mask type II in order to reduce non-biodegradable waste production [...] Read more.
The aim of this study was to develop a natural nonwoven layer made of cottonized bleached flax and cotton fibers which is suitable to replace one of the three polypropylene layers of face mask type II in order to reduce non-biodegradable waste production and limit the negative impact of used masks on the environment. The work focused on the design of a nonwoven structure based on properly blending cotton and flax fibers as well as ensuring the cover factor, which can support the mask’s barrier properties against air dust particles and does not make breathing difficult. Additionally, a biodegradable film was developed to connect the nonwoven layer with the other polypropylene filtering layers. The effectiveness of the biodeterioration of the flax/cotton nonwoven was evaluated based on a test of the susceptibility of materials to the action of soil microorganisms. The flax/cotton nonwoven layer was tested in terms of mechanical, physical, and biophysical properties, and an analysis of the covering of the nonwoven surface with fibers was conducted as well. The results confirmed that the structure of flax/cotton nonwovens is suitable to replace the nondegradable polypropylene layer of the face mask type II to improve its environmental performance. Full article
(This article belongs to the Special Issue Green Textile Materials: Fibers, Processing and Applications)
Show Figures

Figure 1

24 pages, 19255 KiB  
Article
Antibacterial and Antifungal Properties of Polyester, Polylactide, and Cotton Nonwovens and Fabrics, by Means of Stable Aqueous Dispersions Containing Copper Silicate and Some Metal Oxides
by Jerzy J. Chruściel, Joanna Olczyk, Marcin H. Kudzin, Piotr Kaczmarek, Paulina Król and Nina Tarzyńska
Materials 2023, 16(16), 5647; https://doi.org/10.3390/ma16165647 - 16 Aug 2023
Cited by 6 | Viewed by 2610
Abstract
Literature reviews have described the applications of silver, copper, and zinc ions and metallic particles of Cu, Ti, and Zn oxides, which have been found to be useful antimicrobial reagents for the biofunctionalization of various materials and their surfaces. For this purpose, compositions [...] Read more.
Literature reviews have described the applications of silver, copper, and zinc ions and metallic particles of Cu, Ti, and Zn oxides, which have been found to be useful antimicrobial reagents for the biofunctionalization of various materials and their surfaces. For this purpose, compositions of water dispersions containing emulsions of synthetic copolymers based on acrylic and vinyl monomers, polysaccharides (hydroxyethyl cellulose and starch), and various additives with wetting and stabilizing properties were used. Many stable water dispersions of different chemical compositions containing bioactive chemical compounds (copper silicate hydrate, titanium dioxide, and zinc oxide (and other auxiliary substances)) were developed. They were used for the preparation of thin hybrid coatings having good antimicrobial properties against Gram-negative bacteria (Escherichia coli), Gram-positive bacteria (Staphylococcus aureus), and yeast fungus (Candida albicans). Polyester (PES) and polylactide (PLA) nonwovens were modified using the dip-coating method, while PES and cotton fabrics were biofunctionalized by means of dip-coating and coating methods. The antimicrobial (antibacterial and antifungal) properties of the textile materials (nonwovens and fabrics) biofunctionalized with the above-mentioned bioactive agents exhibiting antimicrobial properties (CuSiO3, TiO2, ZnO, or ZnO∙SiO2) were strongly dependent on the agents’ content in the water dispersions. The PES and PLA nonwovens, modified on the surface with water compositions containing copper silicate hydrate, showed good antibacterial properties against the Gram-negative bacteria Escherichia coli, even at a content of 1 wt.% CuSiO3∙xH2O, and against the Gram-positive bacteria Staphylococcus aureus, at the content of at least 5 wt.% CuSiO3∙xH2O. The bacterial growth reduction factor (R) was greater than 99% for most of the samples tested. Good antifungal properties against the fungus Candida albicans were found for the PES and PLA nonwoven fabrics modified with dispersions containing 5–7 wt.% CuSiO3∙xH2O and 4.2–5.0 wt.% TiO2. The addition of TiO2 led to a significant improvement in the antifungal properties of the PES and PLA nonwovens modified in this way. For the samples of PES WIFP-270 and FS F-5 nonwovens, modified with water dispersions containing 5.0 wt.% CuSiO3∙xH2O and 4.2–5.0 wt.% TiO2, the growth reduction factor for the fungus Candida albicans (R) reached values in the range of 80.9–98.0%. These new biofunctionalized polymeric nonwoven textile materials can find practical applications in the manufacture of filters for hospital air-conditioning systems and for the automotive industry, as well as in air purification devices. Moreover, similar antimicrobial modification of fabrics with the dip-coating or coating methods can be applied, for example, in the fabrication of fungi- and mold-resistant garden furniture. Full article
Show Figures

Figure 1

13 pages, 4488 KiB  
Article
A Comparison of Hemostatic Activities of Zeolite-Based Formulary Finishes on Cotton Dressings
by J. Vincent Edwards, Nicolette T. Prevost and Michael Santiago Cintron
J. Funct. Biomater. 2023, 14(5), 255; https://doi.org/10.3390/jfb14050255 - 4 May 2023
Cited by 12 | Viewed by 2159
Abstract
The need for affordable effective prehospital hemostatic dressings to control hemorrhage has led to an increased interest in new dressing design approaches. Here we consider the separate components of fabric, fiber, and procoagulant nonexothermic zeolite-based formulations on design approaches to accelerated hemostasis. The [...] Read more.
The need for affordable effective prehospital hemostatic dressings to control hemorrhage has led to an increased interest in new dressing design approaches. Here we consider the separate components of fabric, fiber, and procoagulant nonexothermic zeolite-based formulations on design approaches to accelerated hemostasis. The design of the fabric formulations was based on incorporation of zeolite Y as the principal procoagulant, with calcium and pectin to adhere and enhance the activity. Unbleached nonwoven cotton when combined with bleached cotton displays enhanced properties related to hemostasis. Here, we compare sodium zeolite with ammonium zeolite formulated on fabrics utilizing pectin with pad versus spray-dry-cure and varied fiber compositions. Notably, ammonium as a counterion resulted in shorter times to fibrin and clot formation comparable to the procoagulant standard. The time to fibrin formation as measured by thromboelastography was found to be within a range consistent with modulating severe hemorrhage control. The results indicate a correlation between fabric add-on and accelerated clotting as measured by both time to fibrin and clot formation. A comparison between the time to fibrin formation in calcium/pectin formulations and pectin alone revealed an enhanced clotting effect with calcium decreasing by one minute the time to fibrin formation. Infra-red spectra were employed to characterize and quantify the zeolite formulations on the dressings. Full article
Show Figures

Figure 1

13 pages, 4648 KiB  
Article
The Capabilities of Honeycomb Core Structures Made of Kenaf/Polylactic Acid Composite under Compression Loading
by M. A. H. M. Yusri, M. Y. M. Zuhri, M. R. Ishak and M. A. Azman
Polymers 2023, 15(9), 2179; https://doi.org/10.3390/polym15092179 - 3 May 2023
Cited by 7 | Viewed by 2995
Abstract
This study investigated the capability of honeycomb core structures made of kenaf fibre-reinforced polylactic acid (PLA) composite. Two types of kenaf fibre were used in this study, these being woven kenaf and non-woven cotton/kenaf. Initially, the corrugated shape panel was manufactured using a [...] Read more.
This study investigated the capability of honeycomb core structures made of kenaf fibre-reinforced polylactic acid (PLA) composite. Two types of kenaf fibre were used in this study, these being woven kenaf and non-woven cotton/kenaf. Initially, the corrugated shape panel was manufactured using a hot moulding compression method. The panel was then cut into corrugated strips, bonded together using epoxy resin to form the honeycomb core structure, and balsa wood used as their skins. The effects of core height and crosshead displacement rate were investigated. The honeycomb core consisted of 20 mm, 30 mm and 40 mm core heights, and the crosshead displacement rate ranged from 2 mm/min to 500 min/min. Of all the samples, core structure with a height of 20 mm tested at 500 mm/min offered the highest value of compressive strength and specific energy absorption, which were 6.23 MPa and 12.36 kJ/kg, respectively. It was also discovered that the core height and loading rate have significant effects on the mechanical properties of the kenaf/PLA honeycomb core structure. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

19 pages, 9175 KiB  
Article
Nonwoven Fabrics from Agricultural and Industrial Waste for Acoustic and Thermal Insulation Applications
by Aravin Prince Periyasamy
Textiles 2023, 3(2), 182-200; https://doi.org/10.3390/textiles3020013 - 30 Apr 2023
Cited by 7 | Viewed by 4326
Abstract
Natural fibers are increasingly being used to make nonwoven fabrics, substituting synthetic materials for environmental and economic reasons. In this study, a series of needle-punched nonwoven fabrics were made by extracting fibers from coffee husks and blending them with a proportion of spinning [...] Read more.
Natural fibers are increasingly being used to make nonwoven fabrics, substituting synthetic materials for environmental and economic reasons. In this study, a series of needle-punched nonwoven fabrics were made by extracting fibers from coffee husks and blending them with a proportion of spinning waste consisting of cotton fibers and another five different natural fibers. This work investigates the coefficient of sound absorption, thermal conductivity, areal density, thickness, and air permeability. Overall, the sound absorption properties of the produced nonwoven fabric depend on the blend proportion and the number of layers. The results from the fabric containing nettle and banana fibers demonstrate a much-improved sound absorption coefficient. These results have been compared with those of commercially available nonwoven fabrics that are manufactured from polyester and polyurethane foam. The thermal conductivities of the fabrics made with nettle and coir were the highest and lowest, respectively. This is because of the fiber linear density, but all in all, fibers extracted from coffee husks show significantly promising potential for scaling up to replace existing synthetic fibers. Full article
(This article belongs to the Special Issue Fibrous Materials (Textiles) for Functional Applications II)
Show Figures

Graphical abstract

12 pages, 2505 KiB  
Article
A Mathematical Approach for Sound Insulation Characteristics and Cost Optimization of Double-Layer Composite Structures
by Liang Zhang, Huawei Zhang, Qiyu Chen and Danfeng Long
J. Compos. Sci. 2023, 7(3), 110; https://doi.org/10.3390/jcs7030110 - 9 Mar 2023
Cited by 3 | Viewed by 3158
Abstract
The compressor is the primary source of noise in a refrigeration system. Most compressors are wrapped with multi-layer sound insulation cotton for noise reduction and sound insulation. We explore the sound insulation law of different polyvinyl chloride thicknesses and non-woven fibers. Polyvinyl chloride [...] Read more.
The compressor is the primary source of noise in a refrigeration system. Most compressors are wrapped with multi-layer sound insulation cotton for noise reduction and sound insulation. We explore the sound insulation law of different polyvinyl chloride thicknesses and non-woven fibers. Polyvinyl chloride with varying thicknesses and non-woven fibers are then combined by bonding to study the sound insulation characteristics of a two-layer composite structure. A sound insulation prediction model is established using the multi-parameter nonlinear regression method. An optimal cost mathematical model is established based on experimental and mathematical methods that can quickly determine the optimal cost scheme for different designs with the same effect. Full article
(This article belongs to the Special Issue Characterization and Modelling of Composites, Volume III)
Show Figures

Figure 1

Back to TopTop