Development of a Layer Made of Natural Fibers to Improve the Ecological Performance of the Face Mask Type II
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- 10/90 bleached cottonized flax/cotton;
- 20/80 bleached cottonized flax/cotton;
- 30/70 bleached cottonized flax/cotton.
2.1.1. Fibers’ Preparation
2.1.2. Development and Production of Nonwovens
2.1.3. Polymer Film Application
- polypropylene PP film with a thickness of 0.035 mm;
- polylactide PLA film with a thickness of 0.025 mm;
- polylactide PLA film with a thickness of 0.050 mm.
2.2. Methods
3. Results
Symbol | Description of Sample |
N | Flax/cotton nonwoven |
N+PP | Flax/cotton nonwoven covered by PP film |
N+25PLA | Flax/cotton nonwoven covered by PLA film with a thickness of 0.025 mm |
N+50PLA | Flax/cotton nonwoven covered by PLA film with a thickness of 0.050 mm |
3.1. Analysis of Structural Parameters
3.2. Analysis of Mechanical Properties
3.3. Analysis of Physical Properties
3.4. Analysis of Biophysical Parameters
3.5. Analysis of Sorption Properties
3.6. Cover Ratio Analysis of the Surface
3.7. Biodegradability Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Available online: https://www.who.int/news-room/speeches/item/who-director-general-s-opening-remarks-at-the-media-briefing---5-may-2023 (accessed on 5 May 2023).
- Adyel, T.M. Accumulation of plastic waste during COVID-19. Science 2020, 369, 1314–1315. [Google Scholar] [CrossRef]
- Matuschek, C.; Moll, F.; Fangerau, H.; Fischer, J.C.; Zänker, K.; Van Griensven, M.; Schneider, M.; Kindgen-Milles, D.; Knoefel, W.T.; Lichtenberg, A.; et al. The history and value of face masks. Eur. J. Med. Res. 2020, 25, 23. [Google Scholar] [CrossRef]
- EN 14683 2019+AC:2019; Medical Face Masks—Requirements and Test Methods. European Committee for Standardization: Brussels, Belgium, 2019.
- Allison, A.L.; Ambrose-Dempster, E.; Aparsi, T.D.; Bawn, M.; Miguel Casas Arredondo, C.C.; Chandler, K.; Dobrijevic, D.; Hailes, H.; Lettieri, P.; Liu, C.; et al. The environmental dangers of employing single-use face masks as part of a COVID-19 exit strategy. UCL Open Environ. 2020, 53, 1689–1699. [Google Scholar] [CrossRef]
- Stenmarck, Å.; Belleza, E.L.; Fråne, A.; Busch, N.; Larsen, Å.; Wahlström, M. Hazardous Substances in Plastics—Ways to Increase Recycling; Nordic Council of Ministers: Copenhagen, Denmark, 2017. [Google Scholar]
- Doi, Y.; Fukuda, F. Biodegradable Plastics and Polymers; Elsevier: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Wright, S.L.; Thompson, R.C.; Galloway, T.S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 2013, 178, 483–492. [Google Scholar] [CrossRef]
- Du, H.; Huang, S.; Wang, J. Environmental risks of polymer materials from disposable face masks linked to the COVID-19 pandemic. Sci. Total. Environ. 2022, 815, 152980. [Google Scholar] [CrossRef]
- Webb, H.K.; Arnott, J.; Crawford, R.J.; Ivanova, E.P. Plastic Degradation and Its Environmental Implications with Special Reference to Poly(ethylene terephthalate). Polymers 2013, 5, 1–18. [Google Scholar] [CrossRef]
- Du, H.; Xie, Y.; Wang, J. Environmental impacts of microplastics on fishery products: An overview. Gondwana Res. 2021, 108, 213–220. [Google Scholar] [CrossRef]
- Available online: https://wwf.org/ (accessed on 10 March 2021).
- Available online: https://www.europarl.europa.eu/doceo/document/TA-8-2019-0305_PL.html#title2 (accessed on 27 March 2019).
- Available online: https://www.europarl.europa.eu/news/pl/headlines/society/20181212STO21610/odpady-z-tworzyw-sztucznych-i-recykling-w-ue-fakty-i-liczby?at_campaign=20234-Economy&at_medium=Google_Ads&at_platform=Search&at_creation=DSA&at_goal=TR_G&at_audience=&at_topic=Plastic_Waste&gclid=EAIaIQobChMIkO206LKN_wIVGJeyCh1SiABLEAAYASAAEgLqxfD_BwE (accessed on 18 January 2023).
- Zimniewska, M.; Witmanowski, H.; Kicinska-Jakubowska, A.; Jundzill, A.; Kwiatkowska, E.; Romanowska, B.; Malinowski, L.B. Assessment of the possibility of surgical masks re-use after a sterilization process in the pandemic condition of COVID-Text. Res. J. 2021, 92, 3082–3096. [Google Scholar] [CrossRef]
- Klemeš, J.J.; Van Fan, Y.; Jiang, P. The energy and environmental footprints of COVID-19 fighting measures—PPE, disinfection, supply chains. Energy 2020, 211, 118701. [Google Scholar] [CrossRef]
- Prata, J.C.; Silva, A.L.P.; Duarte, A.C.; Rocha-Santos, T. Disposable over Reusable Face Masks: Public Safety or Environmental Disaster? Environments 2021, 8, 31. [Google Scholar] [CrossRef]
- Kołodziej, J.; Pudełko, K.; Mańkowski, J. Energy and Biomass Yield of Industrial Hemp (Cannabis sativa L.) as Influenced by Seeding Rate and Harvest Time in Polish Agro-Climatic Conditions. J. Nat. Fibers 2023, 20, 2159609. [Google Scholar] [CrossRef]
- Mańkowski, J.; Kubacki, A.; Kołodziej, J.; Cierpucha, W.; Pniewska, I.; Baraniecki, P.; Grabowska, L. Cultivation and Processing Technology of Industrial Hemp; Institute of Natural Fibers & Medicinal Plants: Poznań, Poland, 2013. [Google Scholar]
- Mańkowski, J.; Kołodziej, J.; Pudełko, K.; Kozłowski, R.M. Bast Fibres: The Role of Hemp (Cannabis sativa L.) in Remediation of Degraded Lands. In Handbook of Natural Fibres, 2nd ed.; Processing and Applications, The Textile Institute Book Series; Kozłowski, R.M., Mackiewicz-Talarczyk, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 2, pp. 393–417. [Google Scholar] [CrossRef]
- Zimniewska, M.; Pawlaczyk, M.; Krucińska, I.; Frydrych, I.; Mikołajczak, P.; Schmidt-Przewoźna, K.; Cichocka, A.; Urbaniak, M.; Herczyńska, L.; Kowalska, S.; et al. The influence of natural functional clothing on some biophysical parameters of the skin. Text. Res. J. 2018, 89, 1381–1393. [Google Scholar] [CrossRef]
- Zimniewska, M.; Krucińska, I. The effect of raw material composition of clothes on selected physiological parameters of human organism. J. Text. Inst. 2008, 101, 154–164. [Google Scholar] [CrossRef]
- Jhala, A.; Hall, L.M. Flax (Linum usitatissimum L.): Current Uses and Future Applications. Aust. J. Basic Appl. Sci. 2010, 4, 4304–4312. [Google Scholar]
- Manral, A.; Ahmad, F.; Chaudhary, V. Static and dynamic mechanical properties of PLA bio-composite with hybrid reinforcement of flax and jute. Mater. Today Proc. 2020, 25, 577–580. [Google Scholar] [CrossRef]
- Getme, A.S.; Patel, B. A Review: Bio-fiber’s as reinforcement in composites of polylactic acid (PLA). Mater. Today: Proc. 2019, 26, 2116–2122. [Google Scholar] [CrossRef]
- Cierpucha, W.; Kozłowski, R.; Mańkowski, J.; Waśko, J.; Mańkowski, T. Applicability of Flax and Hemp as Raw Materials for Production of Cotton-like Fibres and Blended Yarns in Poland. FibresTextiles East. Eur. 2004, 12, 13–18. Available online: http://www.fibtex.lodz.pl/47_06_13.pdf (accessed on 1 July 2004).
- Guthane, S.S.; Turukmane, R. Hydroentangling process and properties of spunlace nonwovens. Chem. Fibers Int. 2018, 68, 190–192. [Google Scholar]
- EN 29073-1:1994; Textiles—Test Methods for Nonwovens—Part 1: Determination of Mass per Unit Area. European Committee for Standardization: Brussels, Belgium, 1994.
- EN ISO 9073-2:2002; Textiles—Test Methods for Nonwovens—Part 2: Determination of Thickness. European Committee for Standardization: Brussels, Belgium, 2002.
- EN 29073-3:1994; Textiles—Test Methods for Nonwovens—Part 3: Determination of Tensile Strength and Elongation. European Committee for Standardization: Brussels, Belgium, 1994.
- EN ISO 9073-7:2011; Textiles—Test Methods for Nonwovens—Part 7: Determination of Bending Length (ISO 9073-7:1995). European Committee for Standardization: Brussels, Belgium, 2011.
- EN ISO 2313-2:2021-12; Textiles—Determination of the Recovery from Creasing of a Folded Specimen of Fabric by Measuring the Angle of Recovery—Part 2: Method of the Vertically Folded Specimen (ISO 2313-2:2021). European Committee for Standardization: Brussels, Belgium, 2021.
- EN ISO 9237:1998; Textiles—Determination of Permeability of Fabrics to Air (ISO 9237:1995). European Committee for Standardization: Brussels, Belgium, 1998.
- EN ISO 11092:2014-11; Textiles—Physiological Effects—Measurement of Thermal and Water-Vapour Resistance under Steady-State Conditions (Sweating Guarded-Hotplate Test) (ISO 11092:2014). European Committee for Standardization: Brussels, Belgium, 2014.
- PN-P-04635:1980; Test Methods for Textiles—Determination of Hygroscopicity. Polish Committee for Standardization: Warszawa, Poland, 1980.
- JIS 1090:1990; Ability to Water Sorption (Drop Method). Japanese Industrial Standards: Tokyo, Japan, 1990.
- ISO 846:2019; Plastics—Evaluation of the Action of Microorganisms. International Organization for Standardization: Geneva, Switzerland, 2019.
- Maddah, H.A. Polypropylene as a Promising Plastic: A Review. Am. J. Polym. Sci. 2016, 6, 1–11. [Google Scholar] [CrossRef]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef]
- Ding, J.; Liang, L.; Meng, X.; Yang, F.; Pu, Y.; Ragauskas, A.J.; Yoo, C.G.; Yu, C. The physiochemical alteration of flax fibers structuring components after different scouring and bleaching treatments. Ind. Crop. Prod. 2021, 160, 113112. [Google Scholar] [CrossRef]
- Kim, H.S. Orthotropic theory for the prediction of mechanical performance in thermally point-bonded nonwovens. Fibers Polym. 2004, 5, 139–144. [Google Scholar] [CrossRef]
- Zisopol, D.G.; Portoaca, A.I.; Nae, I.; Ramadan, I. A Comparative Analysis of the Mechanical Properties of Annealed PLA. Eng. Technol. Appl. Sci. Res. 2022, 12, 8978–8981. [Google Scholar] [CrossRef]
- Gericke, A.; Venkataraman, M.; Militky, J.; Steyn, H.; Vermaas, J. Unmasking the Mask: Investigating the Role of Physical Properties in the Efficacy of Fabric Masks to Prevent the Spread of the COVID-19 Virus. Materials 2021, 14, 7756. [Google Scholar] [CrossRef]
- Sawers, A.M.; Parsons, S.M.; Geil, M.; Hovorka, C.M. Positive Model Temperature and Its Effect on Stiffness and Percent Crystallinity of Polypropylene. JPO J. Prosthetics Orthot. 2007, 19, 75–83. [Google Scholar] [CrossRef]
- Wu, W.Z.; Ye, W.L.; Wu, Z.C.; Geng, P.; Wang, Y.L.; Zhao, J. Influence of Layer Thickness, Raster Angle, Deformation Temperature and Recovery Temperature on the Shape-Memory Effect of 3D-Printed Polylactic Acid Samples. Materials 2017, 10, 970. [Google Scholar] [CrossRef] [PubMed]
- Solerno-Kochan, R. Analysis of Selected Indices Defining Healthiness of Clothes. Zesz. Nauk. Akad. Ekon. Krakowie 2006, 718, 127–145. [Google Scholar]
- Skenderi, Z.; Salopek Čubrić, I.; Srdjak, M. Water Vapour Resistance of Knitted Fabrics under Different Environmental Con-ditions. Fibres Text. East. Eur. 2009, 17, 72–75. [Google Scholar]
- Reljic, M.; Stepanovic, J.; Lazic, B.; Cirkovic, N.; Cerovic, D. The change of water vapour resistance of materials used for the clothing production during exploitation. Adv. Technol. 2016, 5, 73–78. [Google Scholar] [CrossRef]
- Parsons, K.C. Human Thermal Environments; Taylor & Francis Group: London, UK, 1993. [Google Scholar]
- Marszałek, R.; Binkowska, B.; Sapieja, A.; Hernik, T.; Marcinowska, B. Modification of Linen Fabrics with Health Promoting Products and its Effect on the Use Properties of the Fabrics and Natural Environment. Fibres Text. East. Eur. 2014, 22, 63–68. [Google Scholar]
Parameter | Variants | ||||
---|---|---|---|---|---|
10/90 | 20/80 | 30/70 | |||
Air permeability | AV | mm/s | 1196 | 1268 | 1343 |
SD | 53 | 63 | 68 | ||
Thermal resistant | AV | m2K/W | 0.0446 | 0.0470 | 0.0428 |
SD | 0.0065 | 0.003 | 0.004 | ||
Water vapor resistant | AV | m2Pa/W | 4.6196 a | 3.7773 a,b | 3.3119 b |
SD | 0.2968 | 0.3898 | 0.1646 | ||
Hygroscopicity at 65% | AV | % | 7.48 | 7.64 | 7.10 |
SD | 0.2 | 0.21 | 0.36 | ||
Hygroscopicity at 100% | AV | % | 14.46 a | 14.82 a,b | 15.42 b |
SD | 0.31 | 0.38 | 0.24 | ||
Water sorption | AV | s | 0.2 a | 0.3 a,b | 0.4 b |
SD | 0.1 | 0.1 | 0.2 | ||
Cover ratio | AV | % | 99.6 a | 99.1 a,b | 98.9 b |
SD | 3.1 | 3.0 | 3.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mańkowski, J.; Zimniewska, M.; Gieparda, W.; Romanowska, B.; Kicińska-Jakubowska, A.; Kołodziej, J.; Foksowicz-Flaczyk, J.; Rojewski, S.; Bujnowicz, K.; Przybylska, P.; et al. Development of a Layer Made of Natural Fibers to Improve the Ecological Performance of the Face Mask Type II. Materials 2023, 16, 5668. https://doi.org/10.3390/ma16165668
Mańkowski J, Zimniewska M, Gieparda W, Romanowska B, Kicińska-Jakubowska A, Kołodziej J, Foksowicz-Flaczyk J, Rojewski S, Bujnowicz K, Przybylska P, et al. Development of a Layer Made of Natural Fibers to Improve the Ecological Performance of the Face Mask Type II. Materials. 2023; 16(16):5668. https://doi.org/10.3390/ma16165668
Chicago/Turabian StyleMańkowski, Jerzy, Małgorzata Zimniewska, Weronika Gieparda, Barbara Romanowska, Anna Kicińska-Jakubowska, Jacek Kołodziej, Joanna Foksowicz-Flaczyk, Szymon Rojewski, Krzysztof Bujnowicz, Patrycja Przybylska, and et al. 2023. "Development of a Layer Made of Natural Fibers to Improve the Ecological Performance of the Face Mask Type II" Materials 16, no. 16: 5668. https://doi.org/10.3390/ma16165668
APA StyleMańkowski, J., Zimniewska, M., Gieparda, W., Romanowska, B., Kicińska-Jakubowska, A., Kołodziej, J., Foksowicz-Flaczyk, J., Rojewski, S., Bujnowicz, K., Przybylska, P., Kwiatkowska, E., Alam, M. M., Różańska, W., Wawro, A., & Hołderna-Kędzia, E. (2023). Development of a Layer Made of Natural Fibers to Improve the Ecological Performance of the Face Mask Type II. Materials, 16(16), 5668. https://doi.org/10.3390/ma16165668