A Comparison of Hemostatic Activities of Zeolite-Based Formulary Finishes on Cotton Dressings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabric Treatment Methods
2.2.1. Application Method 1: Pad-Dry
2.2.2. Application Method 2: Pad-Spray
2.3. Fourier-Transform Infrared Spectroscopy
2.4. Thromboelastography
2.5. Scanning Electron Microscopy (SEM)
2.6. Absorption Capacity
3. Results
FTIR Analysis to Characterize Formulary Structure and Quantity versus Function
4. Discussion
Comparison of the Effect of Zeolite Counterion Substitutions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bennett, B.L.; Littlejohn, L. Review of New Topical Hemostatic Dressings for Combat Casualty Care. Mil. Med. 2014, 179, 497–514. [Google Scholar] [CrossRef]
- Peng, T. Biomaterials for Hemorrhage Control. Trends Biomater. Artif. Organs 2010, 24, 27–68. [Google Scholar]
- Hickman, D.A.; Pawlowski, C.L.; Sekhon, U.D.S.; Marks, J.; Gupta, A.S. Biomaterials and Advanced Technologies for Hemostatic Management of Bleeding. Adv. Mater. 2018, 30, 1700859. [Google Scholar] [CrossRef] [PubMed]
- Sperling, C.; Fischer, M.; Maitz, M.F.; Werner, C. Blood coagulation on biomaterials requires the combination of distinct activation processes. Biomaterials 2009, 30, 4447–4456. [Google Scholar] [CrossRef] [PubMed]
- Sperling, C.; Maitz, M.F.; Grasso, S.; Werner, C.; Kanse, S.M. A Positively Charged Surface Triggers Coagulation Activation Through Factor VII Activating Protease (FSAP). ACS Appl. Mater. Interfaces 2017, 9, 40107–40116. [Google Scholar] [CrossRef]
- Fischer, T.H.; Vournakis, J.N.; Manning, J.E.; McCurdy, S.L.; Rich, P.B.; Nichols, T.C.; Scull, C.M.; McCord, M.G.; Decorta, J.A.; Johnson, P.C.; et al. The design and testing of a dual fiber textile matrix for accelerating surface hemostasis. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 91B, 381–389. [Google Scholar] [CrossRef]
- Edwards, J.V.; Graves, E.; Bopp, A.; Prevost, N.; Santiago, M.; Condon, B. Electrokinetic and Hemostatic Profiles of Nonwoven Cellulosic/Synthetic Fiber Blends with Unbleached Cotton. J. Funct. Biomater. 2014, 5, 273–287. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.V.; Prevost, N. Thrombin Production and Human Neutrophil Elastase Sequestration by Modified Cellulosic Dressings and Their Electrokinetic Analysis. J. Funct. Biomater. 2011, 2, 391–413. [Google Scholar] [CrossRef]
- Bennett, B.L. Bleeding Control Using Hemostatic Dressings: Lessons Learned. Wilderness Environ. Med. 2017, 28, S39–S49. [Google Scholar] [CrossRef]
- Chiara, O.; Cimbanassi, S.; Bellanova, G.; Chiarugi, M.; Mingoli, A.; Olivero, G.; Ribaldi, S.; Tugnoli, G.; Basilicò, S.; Bindi, F.; et al. A systematic review on the use of topical hemostats in trauma and emergency surgery. BMC Surg. 2018, 18, 68. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, C.; Liu, F.; Du, S.; Li, G.; Wang, X. Eliminating Heat Injury of Zeolite in Hemostasis via Thermal Conductivity of Graphene Sponge. ACS Appl. Mater. Interfaces 2019, 11, 23848–23857. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Shang, X.; Chen, H.; Xiao, L.; Zhu, Y.; Fan, J. A tightly-bonded and flexible mesoporous zeolite-cotton hybrid hemostat. Nat. Commun. 2019, 10, 1932. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wu, J.; Yu, L.; Chen, H.; Li, D.; Shi, C.; Xiao, L.; Fan, J. Paraffin-Coated Hydrophobic Hemostatic Zeolite Gauze for Rapid Coagulation with Minimal Adhesion. ACS Appl. Mater. Interfaces 2021, 13, 52174–52180. [Google Scholar] [CrossRef] [PubMed]
- Stucky, G.D.; Ostomel, T.A.; Shi, Q.; Stoimenov, P.K.; Holden, P.A. Inorganic Materials for Hemostatic Modulation and Therapeutic Wound Healing. U.S. Patent 7858,123,B2, 28 December 2010. [Google Scholar]
- Kheirabadi, B.S.; Mace, J.E.; Terrazas, I.B.; Fedyk, C.G.; Estep, J.S.; Dubick, M.A.; Blackbourne, L.H. Safety Evaluation of New Hemostatic Agents, Smectite Granules, and Kaolin-Coated Gauze in a Vascular Injury Wound Model in Swine. J. Trauma Acute Care Surg. 2010, 68, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Derakhshankhah, H.; Hosseini, A.; Taghavi, F.; Jafari, S.; Lotfabadi, A.; Ejtehadi, M.R.; Shahbazi, S.; Fattahi, A.; Ghasemi, A.; Barzegari, E.; et al. Molecular interaction of fibrinogen with zeolite nanoparticles. Sci. Rep. 2019, 9, 1558. [Google Scholar] [CrossRef]
- Peng, H.T. Thromboelastographic study of biomaterials. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 94B, 469–485. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Dodt, J.; Volkers, P.; Hethershaw, E.; Philippou, H.; Ivaskevicius, V.; Imhof, D.; Oldenburg, J.; Biswas, A. Structure functional insights into calcium binding during the activation of coagulation factor XIII A. Sci. Rep. 2019, 9, 11324. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cao, W.; Lv, X.-X.; Jiang, L.; Li, Y.-J.; Li, W.-Z.; Chen, S.-Z.; Li, X.-Y. Zeolite-based hemostat QuikClot releases calcium into blood and promotes blood coagulation in vitro. Acta Pharmacol. Sin. 2013, 34, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Cao, X.; Chen, X.; Wei, J.; Liu, C. Calcium-modified microporous starch with potent hemostatic efficiency and excellent degradability for hemorrhage control. J. Mater. Chem. B 2015, 3, 4017–4026. [Google Scholar] [CrossRef]
- Peng, H.T. Hemostatic agents for prehospital hemorrhage control: A narrative review. Mil. Med. Res. 2020, 7, 13. [Google Scholar] [CrossRef] [PubMed]
- Rembe, J.-D.; Böhm, J.K.; Fromm-Dornieden, C.; Schäfer, N.; Maegele, M.; Fröhlich, M.; Stuermer, E.K. Comparison of hemostatic dressings for superficial wounds using a new spectrophotometric coagulation assay. J. Transl. Med. 2015, 13, 375. [Google Scholar] [CrossRef] [PubMed]
- Ostomel, T.A.; Shi, Q.; Stucky, G.D. Oxide Hemostatic Activity. J. Am. Chem. Soc. 2006, 128, 8384–8385. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.V.; Prevost, N.T.; Santiago, M.; Von Hoven, T.; Condon, B.D.; Qureshi, H.; Yager, D.R. Hydrogen Peroxide Generation of Copper/Ascorbate Formulations on Cotton: Effect on Antibacterial and Fibroblast Activity for Wound Healing Application. Molecules 2018, 23, 2399. [Google Scholar] [CrossRef]
- Edwards, J.V.; Graves, E.; Prevost, N.; Condon, B.; Yager, D.; Dacorta, J.; Bopp, A. Development of a Nonwoven Hemostatic Dressing Based on Unbleached Cotton: A De Novo Design Approach. Pharmaceutics 2020, 12, 609. [Google Scholar] [CrossRef]
- Edwards, J.V.; Prevost, N.; Yager, D.; Nam, S.; Graves, E.; Santiago, M.; Condon, B.; Dacorta, J. Antimicrobial and Hemostatic Activities of Cotton-Based Dressings Designed to Address Prolonged Field Care Applications. Mil. Med. 2021, 186 (Suppl. S1), 116–121. [Google Scholar] [CrossRef]
- García, H.; Roth, H.D. Generation and Reactions of Organic Radical Cations in Zeolites. Chem. Rev. 2002, 102, 3947–4008. [Google Scholar] [CrossRef]
- Golbad, S.; Khoshnoud, P.; Abu-Zahra, N. Synthesis of 4A Zeolite and Characterization of Calcium- and Silver-Exchanged Forms. J. Miner. Mater. Charact. Eng. 2017, 5, 237–251. [Google Scholar] [CrossRef]
- Cabrera, J.C.; Boland, A.; Messiaen, J.; Cambier, P.; Van Cutsem, P. Egg box conformation of oligogalacturonides: The time-dependent stabilization of the elicitor-active conformation increases its biological activity. Glycobiology 2008, 18, 473–482. [Google Scholar] [CrossRef]
- Derakhshankhah, H.; Hajipour, M.J.; Barzegari, E.; Lotfabadi, A.; Ferdousi, M.; Saboury, A.A.; Ng, E.P.; Raoufi, M.; Awala, H.; Mintova, S.; et al. Zeolite Nanoparticles Inhibit Aβ–Fibrinogen Interaction and Formation of a Consequent Abnormal Structural Clot. ACS Appl. Mater. Interfaces 2016, 8, 30768–30779. [Google Scholar] [CrossRef]
- Yang, X.; Liu, W.; Li, N.; Wang, M.; Liang, B.; Ullah, I.; Luis Neve, A.; Feng, Y.; Chen, H.; Shi, C. Design and development of polysaccharide hemostatic materials and their hemostatic mechanism. Biomater. Sci. 2017, 5, 2357–2368. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Yuan, S.; Shen, J.; Chen, Y.; Xiao, Y. A Composite Hydrogel Based on Pectin/Cellulose via Chemical Cross-Linking for Hemorrhage. Front. Bioeng. Biotechnol. 2020, 8, 627351. [Google Scholar] [CrossRef] [PubMed]
- Kocaaga, B.; Kurkcuoglu, O.; Tatlier, M.; Batirel, S.; Guner, F.S. Low-methoxyl pectin–zeolite hydrogels controlling drug release promote in vitro wound healing. J. Appl. Polym. Sci. 2019, 136, 47640. [Google Scholar] [CrossRef]
- Fathi, P.; Sikorski, M.; Christodoulides, K.; Langan, K.; Choi, Y.S.; Titcomb, M.; Ghodasara, A.; Wonodi, O.; Thaker, H.; Vural, M.; et al. Zeolite-loaded alginate-chitosan hydrogel beads as a topical hemostat. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 1662–1671. [Google Scholar] [CrossRef]
Sample Description b | %Add -On | R (min) | σ | K (min) | σ |
---|---|---|---|---|---|
10% (w/v) NH4Y only | 33.8 | 5.1 | 0.8 | 2.2 | 1.0 |
1.5% CaCl2 + 10% NH4Y | 35.3 | 5.7 | 0.3 | 3.2 | 1.5 |
0.25% PECTIN + 10% NH4Y | 36.2 | 5.4 | 0.3 | 2.8 | 0.8 |
0.5% PECTIN + 10% NH4Y | 37.5 | 5.2 | 0.4 | 2.4 | 0.5 |
1.0% PECTIN + 10% NH4Y | 41.6 | 6.5 | 0.4 | 2.6 | 1.0 |
0.5% PEC+ 1.5% CaCl2 + 10% NH4Y | 46.7 | 5.9 | 0.5 | 2.0 | 0.3 |
TGz (untreated) | 14.4 | 6.5 | |||
Blood (bovine) | 19.1 | 1.8 | 10.7 | 2.3 | |
Procoagulant | 5 | 0.3 | 2.4 | 0.7 |
Sample Description b | %Add -On | R (min) | σ | K (min) | σ |
---|---|---|---|---|---|
TGz 0.5% PEC + 2% CaCl2 + 5% NaY (1) | 40.4 | 5.2 | 0.4 | 1.8 | 0.2 |
TGz 2% CaCl2, 2% PEC +10% NaY (2) | 48.7 | 6.4 | 1.0 | 2.7 | 1.1 |
TGz 5% CaCl2, 2% PEC +10% NaY (2) | 85.9 | 5.6 | 0.3 | 2.2 | 0.6 |
TGz 5% CaCl2, 1% PEC + 5% NaY (2) | 52.2 | 5.8 | 0.1 | 2.0 | 0.3 |
FMGz 0.5% PEC + 2% CaCl2 + 5% NaY (1) | 22.4 | 6.8 | 0.5 | 3.9 | 0.3 |
FMGz 2% CaCl2, 2% PEC +10% NaY (2) | 29.4 | 6.8 | 0.1 | 4.6 | 1.1 |
FMGz 5% CaCl2, 2% PEC + 10% NaY (2) | 37.2 | 7.2 | 0.0 | 3.0 | 0.4 |
FMGz 5% CaCl2, 1% PEC + 5% NaY(2) | 21.2 | 7.4 | 0.6 | 4.6 | 1.1 |
TGz (untreated) | - | 8.1 | 0.6 | 3.8 | 0.1 |
Blood (bovine) | - | 14.9 | 1.4 | 6.2 | 1.3 |
Procoagulant | - | 3.4 | 0.2 | 1.1 | 0.1 |
Fabric | Absorption a Capacity % | STD | %CV |
---|---|---|---|
TACGauze (TGz) | 852.17 | 41.6 | 4.88 |
100% Cotton Fine Mesh Gauze | 286.86 | 25.4 | 8.86 |
Sample Description b | %Add -On | R (min) | σ | K (min) | σ | MA (deg) | σ |
---|---|---|---|---|---|---|---|
CaO/SDS + 1% NaY c | 4.9 | 7.2 | 0.9 | 4.1 | 0.4 | 52.1 | 1.4 |
CaO/SDS + 5% NaY c | 19.5 | 6.2 | 0.3 | 3.2 | 0.3 | 53.9 | 1.8 |
Na2CO3, CaCl2, 10% NaY d | 31.9 | 6.4 | 0.5 | 4.0 | 0.6 | 51.4 | 2.7 |
NaOH, CaCl2, 10% NaY d | 30.9 | 6.2 | 0.4 | 3.3 | 0.0 | 53.3 | 2.5 |
Blood (bovine) | 13.7 | 0.9 | 5.9 | 0.3 | 53.2 | 1.7 | |
Procoagulant | 4.0 | 0.4 | 3.1 | 0.4 | 49.6 | 2.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edwards, J.V.; Prevost, N.T.; Cintron, M.S. A Comparison of Hemostatic Activities of Zeolite-Based Formulary Finishes on Cotton Dressings. J. Funct. Biomater. 2023, 14, 255. https://doi.org/10.3390/jfb14050255
Edwards JV, Prevost NT, Cintron MS. A Comparison of Hemostatic Activities of Zeolite-Based Formulary Finishes on Cotton Dressings. Journal of Functional Biomaterials. 2023; 14(5):255. https://doi.org/10.3390/jfb14050255
Chicago/Turabian StyleEdwards, J. Vincent, Nicolette T. Prevost, and Michael Santiago Cintron. 2023. "A Comparison of Hemostatic Activities of Zeolite-Based Formulary Finishes on Cotton Dressings" Journal of Functional Biomaterials 14, no. 5: 255. https://doi.org/10.3390/jfb14050255
APA StyleEdwards, J. V., Prevost, N. T., & Cintron, M. S. (2023). A Comparison of Hemostatic Activities of Zeolite-Based Formulary Finishes on Cotton Dressings. Journal of Functional Biomaterials, 14(5), 255. https://doi.org/10.3390/jfb14050255