Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = nonproteinogenic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3223 KiB  
Article
Transcriptomic Insights into GABA Accumulation in Tomato via CRISPR/Cas9-Based Editing of SlGAD2 and SlGAD3
by Jin-Young Kim, Yu-Jin Jung, Dong Hyun Kim and Kwon-Kyoo Kang
Genes 2025, 16(7), 744; https://doi.org/10.3390/genes16070744 - 26 Jun 2025
Viewed by 499
Abstract
Background: γ-Aminobutyric acid (GABA) is a non-proteinogenic amino acid with key roles in plant metabolism, stress responses, and fruit nutritional quality. In tomato (Solanum lycopersicum), GABA levels are dynamically regulated during fruit development but decline in the late ripening stages. [...] Read more.
Background: γ-Aminobutyric acid (GABA) is a non-proteinogenic amino acid with key roles in plant metabolism, stress responses, and fruit nutritional quality. In tomato (Solanum lycopersicum), GABA levels are dynamically regulated during fruit development but decline in the late ripening stages. Methods: To enhance GABA accumulation, we used CRISPR/Cas9 to edit the calmodulin-binding domain (CaMBD) of SlGAD2 and SlGAD3, which encode glutamate decarboxylases (GADs). The resulting truncated enzymes were expected to be constitutively active. We quantified GABA content in leaves and fruits and performed transcriptomic analysis on edited lines at the BR+7 fruit stage. Results: CaMBD truncation significantly increased GABA levels in both leaves and fruits. In gad2 sg1 lines, GABA levels increased by 3.5-fold in leaves and 3.2-fold in BR+10 fruits; in gad3 sg3 lines, increases of 2.8- and 2.5-fold were observed, respectively. RNA-seq analysis identified 1383 DEGs in gad2 #1−5 and 808 DEGs in gad3 #3−8, with 434 DEGs shared across both lines. These shared DEGs showed upregulation of GAD, GABA-T, and SSADH, and downregulation of stress-responsive transcription factors including WRKY46, ERF, and NAC. Notably, total free amino acid content and fruit morphology remained unchanged despite elevated GABA. Conclusions: CRISPR/Cas9-mediated editing of the CaMBD in SlGAD genes selectively enhances GABA biosynthesis in tomato without adverse effects on development or fruit quality. These lines offer a useful platform for GABA-centered metabolic engineering and provide insights into GABA’s role in transcriptional regulation during ripening. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

18 pages, 2023 KiB  
Article
Antimicrobial Activity of a Synthetic Brevibacillin Analog Against Multidrug-Resistant Campylobacter spp.
by Khaled Abdallah, Omar Fliss, Nguyen Phuong Pham, Louis David Guay, Hélène Gingras, Chantal Godin, Philippe Leprohon, Eric Biron, Ismail Fliss and Marc Ouellette
Int. J. Mol. Sci. 2025, 26(10), 4657; https://doi.org/10.3390/ijms26104657 - 13 May 2025
Viewed by 705
Abstract
Campylobacter spp. is one of the most prevalent causes of zoonotic foodborne infections associated with diarrhea in humans. The growing threat of antibiotic resistance calls for innovative approaches. The antimicrobial lipopeptide brevibacillin produced by Brevibacillus laterosporus and its synthetic analog brevibacillin Thr1 showed [...] Read more.
Campylobacter spp. is one of the most prevalent causes of zoonotic foodborne infections associated with diarrhea in humans. The growing threat of antibiotic resistance calls for innovative approaches. The antimicrobial lipopeptide brevibacillin produced by Brevibacillus laterosporus and its synthetic analog brevibacillin Thr1 showed promising activity against Salmonella and E. coli. The latter is a 1602.13 Da positively charged (+3) synthetic peptide of 13 residues that showed reduced cytotoxicity (IC50 of 32.2 µg/mL against Caco-2 cells) and hemolytic activity (1.2% hemolysis at 128 µg/mL) compared to the native peptide. It contains an N-terminal L-isoleucic fatty acid chain and four non-proteinogenic amino acids and ends with valinol at its C-terminus. One key structural modification is the substitution of α,β-dehydrobutyric acid with threonine. We investigated the antimicrobial potential of the synthetic brevibacillin Thr1 analog against a collection of 44 clinical Campylobacter spp. that were obtained from two reference laboratories. Susceptibility testing revealed marked resistance to ciprofloxacin, tetracycline, and ampicillin among the strains, with more than half expressing a multidrug-resistant phenotype. The genomes of the 44 strains were sequenced to study the genes responsible for their antimicrobial resistance. Tetracycline resistance was associated with tet(O), ciprofloxacin resistance with mutations in gyrA and regulatory sequences modulating the expression of an efflux system, and aminoglycoside resistance with genes of the aph family. The brevibacillin Thr1 analog was produced by chemical synthesis, and evaluation of its activity against a subset of clinical strains by microdilution revealed minimum inhibitory concentration and minimum bactericidal concentration ranging from 8 µg/mL to 64 µg/mL. The peptide was active against multidrug-resistant isolates with a bactericidal effect. Of note, despite numerous attempts, it proved impossible to select Campylobacter spp. for resistance to the brevibacillin Thr1 analog. These results underline the potential of lipopeptides, notably brevibacillin, as antimicrobial alternatives against antibiotic-resistant Campylobacter bacterial infections. Full article
(This article belongs to the Special Issue Antibacterial Activity against Drug-Resistant Strains, 2nd Edition)
Show Figures

Figure 1

19 pages, 3894 KiB  
Article
Design, Synthesis, and Biological Evaluation of New Analogs of Aurein 1.2 Containing Non-Proteinogenic Amino Acids
by Nora Angelova, Ivan Iliev, Veronica Nemska, Tatyana Dzimbova, Nelly Georgieva, Dancho Danalev and Emilia Naydenova
Molecules 2025, 30(9), 2050; https://doi.org/10.3390/molecules30092050 - 5 May 2025
Viewed by 968
Abstract
Extensive use of classical antibiotics has led to the growing emergence of many resistant strains of pathogenic bacteria. To combat this challenge, researchers have turned to the antimicrobial peptides (AMPs). Aurein 1.2 (GLFDIIKKIAESF-NH2) was demonstrated to have broad spectrum bi-functionality against bacterial and [...] Read more.
Extensive use of classical antibiotics has led to the growing emergence of many resistant strains of pathogenic bacteria. To combat this challenge, researchers have turned to the antimicrobial peptides (AMPs). Aurein 1.2 (GLFDIIKKIAESF-NH2) was demonstrated to have broad spectrum bi-functionality against bacterial and cancer cells. The Solid Phase Peptide Synthesis (Fmoc-strategy) was used for the synthesis of new analogs of aurein 1.2. The purity of all compounds was monitored by HPLC, and their structures were proven using mass spectrometry. Cytotoxicity and antiproliferative effects were studied using 3T3 NRU and MTT tests, respectively. The antibacterial activity was estimated against Gram-positive and Gram-negative bacteria using broth microdilution method in concentrations from 0 to 320 µg/mL to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). The antiproliferative activity test shows that the peptide analog EH [Orn]8 has the highest activity (IC50 = 44 ± 38 μM) for the three cell lines studied (MCF-12F, MCF-7, and MDA-MB-231). The same compound exhibited good antimicrobial activity. The obtained results reveal that replacement of Lys with non-proteinogenic amino acids can increase both the potency and activity spectra of natural template peptides, making them suitable candidates for new drug development. Full article
Show Figures

Figure 1

45 pages, 4231 KiB  
Review
Posttranslational Regulation of Mammalian Sulfur Amino Acid Metabolism
by María Ángeles Pajares
Int. J. Mol. Sci. 2025, 26(6), 2488; https://doi.org/10.3390/ijms26062488 - 11 Mar 2025
Viewed by 1047
Abstract
Metabolism of the mammalian proteinogenic sulfur amino acids methionine and cysteine includes the methionine cycle and reverse transsulfuration pathway, establishing many connections with other important metabolic routes. The main source of these amino acids is the diet, which also provides B vitamins required [...] Read more.
Metabolism of the mammalian proteinogenic sulfur amino acids methionine and cysteine includes the methionine cycle and reverse transsulfuration pathway, establishing many connections with other important metabolic routes. The main source of these amino acids is the diet, which also provides B vitamins required as cofactors for several enzymes of the metabolism of these amino acids. While methionine is considered an essential amino acid, cysteine can be produced from methionine in a series of reactions that also generate homocysteine, a non-proteinogenic amino acid linking reverse transsulfuration with the methionine and folate cycles. These pathways produce key metabolites that participate in synthesizing a large variety of compounds and important regulatory processes (e.g., epigenetic methylations). The impairment of sulfur amino acid metabolism manifests in many pathological processes, mostly correlated with oxidative stress and alterations in glutathione levels that also depend on this part of the cellular metabolism. This review analyzes the current knowledge on the posttranslational regulation of mammalian sulfur amino acid metabolism, highlighting the large number of modification sites reported through high-throughput studies and the surprisingly limited knowledge of their functional impact. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

13 pages, 996 KiB  
Article
Biosynthesis of a Novel Diketopiperazine Aspkyncin Incorporating a Kynurenine Unit from Aspergillus aculeatus
by Dekun Kong, Xin Wang and Li Liu
J. Fungi 2025, 11(3), 171; https://doi.org/10.3390/jof11030171 - 20 Feb 2025
Viewed by 1000
Abstract
The simplest cyclo-peptides, also known as diketopiperazines (DKPs), are widespread in nature. The growing interest in these simplest cyclo-peptides is driven by their significant potential for therapeutic applications. In this study, we identified a biosynthetic gene cluster from Aspergillus aculeatus CRI323-04 through genome [...] Read more.
The simplest cyclo-peptides, also known as diketopiperazines (DKPs), are widespread in nature. The growing interest in these simplest cyclo-peptides is driven by their significant potential for therapeutic applications. In this study, we identified a biosynthetic gene cluster from Aspergillus aculeatus CRI323-04 through genome mining and heterologous expression in Aspergillus nidulans. The two core genes, aacA and aacB, within the gene cluster were characterized for their role in the biossoynthesis of aspkyncin, a novel DKP compound that incorporates a l-kynurenine (l-Kyn) unit. Furthermore, we successfully reconstituted the activities of the minimal bimodular non-ribosomal peptide synthetase (NRPS) AacA and the methyltransferase AacB both in vivo and in vitro. Our findings demonstrate that AacA catalyzes the condensation and cyclization of two non-proteinogenic amino acids, l-Kyn and N-methyl-l-alanine, to produce aspkyncin without the involvement of any release domain. Notably, the N-methyl-l-alanine is generated by a specialized l-alanine N-methyltransferase AacB prior to NRP assembly. This study reveals an unconventional pathway for the biosynthesis of fungal DKPs. Full article
(This article belongs to the Special Issue Discovery and Biosynthesis of Fungal Natural Products, 2nd Edition)
Show Figures

Graphical abstract

11 pages, 1275 KiB  
Communication
Genomics-Driven Discovery of Plantariitin A, a New Lipopeptide in Burkholderia plantarii DSM9509
by Xiuling Wang, Zhuo Zhang, Jun Fu and Ruijuan Li
Molecules 2025, 30(4), 868; https://doi.org/10.3390/molecules30040868 - 14 Feb 2025
Viewed by 764
Abstract
A significant number of silent biosynthetic gene clusters (BGCs) within the Burkholderia genome remain uncharacterized, representing a valuable opportunity for the discovery of new natural products. In this research, the recombineering system ETh1h2e_yi23, which facilitates recombination in Burkholderia and was developed in our [...] Read more.
A significant number of silent biosynthetic gene clusters (BGCs) within the Burkholderia genome remain uncharacterized, representing a valuable opportunity for the discovery of new natural products. In this research, the recombineering system ETh1h2e_yi23, which facilitates recombination in Burkholderia and was developed in our previous study, was used for mining the BGCs of B. plantarii DSM9509. By using this recombineering system, the constitutive promoter was precisely inserted into the genome, resulting in the activation of the silent pla BGC, which led to the production of a new lipopeptide named plantariitin A. A distinctive characteristic of this lipopeptide is the incorporation of a non-proteinogenic amino acid residue, i.e., amino-1,2,3,6-tetrahydro-2,6-dioxo-4-pyrimidinepropanoic acid (ATDPP), which has not been identified in other natural products. A biological activity assay demonstrated that plantariitin A exhibits anti-inflammatory activity. This study further substantiates the notion that the in situ activation of silent BGCs is a crucial strategy for the discovery of new natural products within the genus Burkholderia. With the increasing availability of genomic data and the development of bioinformatics tools, Burkholderia is poised to emerge as a prominent source for the development of new lipopeptides. Full article
(This article belongs to the Special Issue Anti-inflammatory Activities of Natural Products—Third Edition)
Show Figures

Figure 1

28 pages, 5679 KiB  
Article
Comprehensive Profiling of Free Proteinogenic and Non-Proteinogenic Amino Acids in Common Legumes Using LC-QToF: Targeted and Non-Targeted Approaches
by Bharathi Avula, Kumar Katragunta, Iffat Parveen, Kiran Kumar Tatapudi, Amar G. Chittiboyina, Yan-Hong Wang and Ikhlas A. Khan
Foods 2025, 14(4), 611; https://doi.org/10.3390/foods14040611 - 12 Feb 2025
Viewed by 1179
Abstract
Legumes, a dietary staple for centuries, have seen an influx of conventional and unconventional varieties to cater to human care conscious consumers. These legumes often undergo pretreatments like baking, soaking, or boiling to mitigate the presence of non-proteinogenic amino acids (NPAAs) and reduce [...] Read more.
Legumes, a dietary staple for centuries, have seen an influx of conventional and unconventional varieties to cater to human care conscious consumers. These legumes often undergo pretreatments like baking, soaking, or boiling to mitigate the presence of non-proteinogenic amino acids (NPAAs) and reduce associated health risks. The recent tara flour health scare, linked to the NPAA baikiain, emphasizes the need for robust analytical methods to ensure the safety and quality of both traditional and novel plant-based protein alternatives. While traditional techniques provide insights into protein and non-proteinogenic amino acid profiles, modern liquid chromatography-mass spectrometry (LC-MS) offers superior sensitivity and specificity for NPAA detection. This study employed an LC-QToF method with MS/MS analysis to comprehensively map the distribution of free NPAAs and proteinogenic amino acids (PAAs) in various legume samples. A total of 47 NPAAs and 20 PAAs were identified across the legume samples, with at least 7–14 NPAAs detected in each sample. Sulfur-containing NPAAs, such as S-methyl-L-cysteine, γ-glutamyl-S-methyl cysteine, and S-methyl homoglutathione, were predominantly found in Phaseolus and Vigna species. Cysteine and methionine were the sulfur-containing PAAs identified. Gel electrophoresis and soluble protein quantification were also conducted to understand legume protein composition holistically. This orthogonal approach provides a valuable tool for ensuring the overall quality of plant-based proteins and may aid in investigating food poisoning or outbreaks related to such products. Full article
Show Figures

Graphical abstract

22 pages, 5706 KiB  
Article
Antibiofilm Activities of Tritrpticin Analogs Against Pathogenic Pseudomonas aeruginosa PA01 Strains
by Gopal Ramamourthy, Hiroaki Ishida and Hans J. Vogel
Molecules 2025, 30(4), 826; https://doi.org/10.3390/molecules30040826 - 11 Feb 2025
Viewed by 958
Abstract
In our previous work, we showed that short antimicrobial hexapeptides (AMPs) containing three Trp and three Arg residues had a potent antibiofilm activity against a pathogenic Gram-positive Staphylococcus aureus MRSA strain. However, the activity of these hexapeptides against a Gram-negative Pseudomonas aeruginosa PA01 [...] Read more.
In our previous work, we showed that short antimicrobial hexapeptides (AMPs) containing three Trp and three Arg residues had a potent antibiofilm activity against a pathogenic Gram-positive Staphylococcus aureus MRSA strain. However, the activity of these hexapeptides against a Gram-negative Pseudomonas aeruginosa PA01 strain was relatively poor. Herein, we tested the longer 13-residue synthetic AMP tritrpticin-NH2 (Tritrp) and several of its analogs as potential antibiofilm agents that can prevent biofilm formation (MBIC) and/or cause biofilm dissolution (MBEC) for two P. aeruginosa PA01 strains, one of which expressed the GFP protein. Tritrp, a porcine cathelicidin, is currently the only known naturally occurring cationic AMP that has three Trp in sequence (WWW), a feature that was found to be important in our previous study. Our results show that several Tritrp analogs were effective. In particular, analogs with Pro substitutions that had altered peptide backbone structures compared to the naturally occurring amphipathic two-turn structure showed more potent MBIC and MBEC antibiofilm activities. Selectivity of the peptides towards P. aeruginosa could be improved by introducing the non-proteinogenic amino acid 2,3-diaminopropionic acid, rather than Arg or Lys, as the positively charged residues. Using 1H NMR spectroscopy, we also reinvestigated the role of the two Pro residues in cis–trans isomerism of the peptide in aqueous solution. Overall, our results show that the WWW motif embedded in longer cationic AMPs has considerable potential to combat biofilm formation in pathogenic Gram-negative strains. Full article
(This article belongs to the Special Issue Chemical Design and Synthesis of Antimicrobial Drugs)
Show Figures

Graphical abstract

21 pages, 6199 KiB  
Review
A Comprehensive Review on the Total Synthesis of Antibacterial Furanomycin and Its Analogs
by Rajendra Rohokale and Rajendra Mane
Organics 2024, 5(4), 472-492; https://doi.org/10.3390/org5040025 - 5 Nov 2024
Viewed by 1813
Abstract
l-(+)-Furanomycin 1 is a miniature antibacterial natural product that contains an α-amino acid core. This non-proteinogenic α-amino acid was first isolated in 1967 by Katagiri and co-workers from the fermentation broth of Streptomyces threomyceticus L-803 (ATCC 15795). It is a substrate [...] Read more.
l-(+)-Furanomycin 1 is a miniature antibacterial natural product that contains an α-amino acid core. This non-proteinogenic α-amino acid was first isolated in 1967 by Katagiri and co-workers from the fermentation broth of Streptomyces threomyceticus L-803 (ATCC 15795). It is a substrate of isoleucyl aminoacyl-tRNA synthetase that replaces isoleucine in the protein translation process and exhibits antibacterial properties in vitro. It effectively acts as an antibacterial agent against M. tuberculosis, E. coli, B. subtilis, and some Shigella and Salmonella bacterial species at concentrations as low as the micromolar range. Consequently, synthetic chemists have garnered considerable interest from their specific structure–activity profile, distinctive chemical compositions, and distinct biological profile. This review comprehensively describes cutting-edge synthetic methodologies for synthesizing furanomycin and its analogs reported to date. Therefore, this review will offer an initial perspective on synthesizing furanomycin and its customized compounds. Full article
(This article belongs to the Special Issue Chemistry of Heterocyclic Compounds)
Show Figures

Graphical abstract

13 pages, 1085 KiB  
Article
Protoporphyrin IX-Dependent Antiviral Effects of 5-Aminolevulinic Acid against Feline Coronavirus Type II
by Tomoyoshi Doki, Junna Shimada, Misa Tokunaga, Kaito To, Koichi Orino and Tomomi Takano
Viruses 2024, 16(10), 1595; https://doi.org/10.3390/v16101595 - 11 Oct 2024
Viewed by 1315
Abstract
5-Aminolevulinic acid (5-ALA), a non-proteinogenic amino acid, is an intermediate in the biosynthesis of heme and exerts antiviral effects against feline coronavirus (FCoV); however, the underlying mechanisms remain unclear. In the biosynthesis of heme, 5-ALA is condensed and converted to protoporphyrin IX (PpIX), [...] Read more.
5-Aminolevulinic acid (5-ALA), a non-proteinogenic amino acid, is an intermediate in the biosynthesis of heme and exerts antiviral effects against feline coronavirus (FCoV); however, the underlying mechanisms remain unclear. In the biosynthesis of heme, 5-ALA is condensed and converted to protoporphyrin IX (PpIX), which is then transformed into heme by the insertion of ferrous iron. Previous research has suggested that the metabolites generated during heme biosynthesis contribute to the antiviral effects of 5-ALA. Therefore, the present study investigated the in vitro mechanisms responsible for the antiviral effects of 5-ALA. The results obtained revealed that 5-ALA and PpIX both effectively reduced the viral titer in the supernatant of FCoV-infected fcwf-4 cells. Moreover, PpIX exerted virucidal effects against FCoV. We also confirmed that 5-ALA increased PpIX levels in cells. While hemin induced heme oxygenase-1 gene expression, it did not reduce the viral titer in the supernatant. Sodium ferrous citrate decreased PpIX levels and suppressed the antiviral effects of 5-ALA. Collectively, these results suggest that the antiviral effects of 5-ALA against FCoV are dependent on PpIX. Full article
(This article belongs to the Special Issue Animal Coronaviruses: Infection, Prevention, and Antivirals)
Show Figures

Figure 1

17 pages, 6751 KiB  
Article
Endogenous γ-Aminobutyric Acid Accumulation Enhances Salinity Tolerance in Rice
by Mingjia Chen, Changhua Zhu, Hui Zhang, Siheng Chen, Xi Wang and Lijun Gan
Plants 2024, 13(19), 2750; https://doi.org/10.3390/plants13192750 - 30 Sep 2024
Cited by 3 | Viewed by 1332
Abstract
Rice is an important food crop worldwide but is usually susceptible to saline stress. When grown on soil with excessive salt, rice plants experience osmotic, ionic, and oxidative stresses that adversely affect growth performance. γ-Aminobutyric acid (GABA) is a nonproteinogenic amino acid that [...] Read more.
Rice is an important food crop worldwide but is usually susceptible to saline stress. When grown on soil with excessive salt, rice plants experience osmotic, ionic, and oxidative stresses that adversely affect growth performance. γ-Aminobutyric acid (GABA) is a nonproteinogenic amino acid that plays an important role in the metabolic activities of organisms. Glutamate decarboxylase (GAD) is the rate-limiting enzyme in GABA metabolism. Here, we genetically modified rice GAD by overexpression or CRISPR-mediated genome editing. These lines, named gad3-ox1 and gad3-ox2 or gad1/3-ko, were used to explore the effects of endogenous GABA accumulation on salt tolerance in rice. Both the gad3-ox1 and gad3-ox2 lines exhibited significant accumulation of the GABA content, whereas the gad1/3-ko line presented a reduced GABA content in vivo. Notably, the two overexpression lines were markedly resistant to salt stress compared with the wild-type and knockout lines. Furthermore, our results demonstrated that endogenous GABA accumulation in the gad3-ox1 and gad3-ox2 lines increased the contents of antioxidant substances and osmotic regulators, decreased the content of membrane lipid peroxidation products and the Na+ content, and resulted in strong tolerance to salt stress. Together, these data provide a theoretical basis for cultivating rice varieties with strong salt tolerance. Full article
(This article belongs to the Special Issue Plant Challenges in Response to Salt and Water Stress)
Show Figures

Figure 1

4 pages, 586 KiB  
Short Note
rel-(2R,3S)-2-((Diphenylmethylene)amino)-5-oxo-5-phenyl-3-(thiophen-2-yl)pentanenitrile
by Donka N. Tasheva and Vesela M. Mihaylova
Molbank 2024, 2024(3), M1881; https://doi.org/10.3390/M1881 - 11 Sep 2024
Viewed by 1164
Abstract
The reaction of 2-((diphenylmethylene)amino)acetonitrile with (E)-1-phenyl-3-(thiophen-2-yl)prop-2-en-1-one was performed by using 33% NaOH in CH3CN for 30 min at 0 °C. The main product—rel-(2R,3S)-2-((diphenylmethylene)amino)-5-oxo-5-phenyl-3-(thiophen-2-yl)pentanenitrile—was isolated and characterized by IR, 1H NMR, 13C NMR, 1H-1H COSY, and high-resolution mass spectrometry (HRMS). Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Graphical abstract

27 pages, 2708 KiB  
Article
Changes in Plasma Concentration of Free Proteinogenic and Non-Proteinogenic Amino Acids in High-Performance Sprinters over a 6-Month Training Cycle
by Krzysztof Kusy, Jan Matysiak, Ewa Anna Zarębska, Agnieszka Klupczyńska-Gabryszak, Monika Ciekot-Sołtysiak, Szymon Plewa, Zenon J. Kokot, Paweł Dereziński and Jacek Zieliński
J. Clin. Med. 2024, 13(17), 5300; https://doi.org/10.3390/jcm13175300 - 6 Sep 2024
Cited by 4 | Viewed by 1877
Abstract
Background/Objectives: Free amino acids substantially contribute to energy metabolism. Also, their profile may identify (over)training status and effectiveness. The long-term effects of speed-power training on plasma free amino acid (PFAA) profiles are not known. We aimed to observe variations in PFAA levels in [...] Read more.
Background/Objectives: Free amino acids substantially contribute to energy metabolism. Also, their profile may identify (over)training status and effectiveness. The long-term effects of speed-power training on plasma free amino acid (PFAA) profiles are not known. We aimed to observe variations in PFAA levels in high-performance sprinters in a six-month training cycle. Methods: Ten male athletes (24.6 ± 3.3 years) were examined during four training phases: transition (1 month), general preparation (2 months), specific preparation (1 month), and pre-competition/competition (2 months). Venous blood was collected at rest, after exhaustive exercise, and recovery. Forty-two PFAAs were analyzed by the LC-ESI-MS/MS method. Results: Significant decreases in resting concentrations were observed between the transition and competition phases for glutamine (762 ± 117 vs. 623 ± 53 μmol∙L−1; p < 0.001, η2 = 0.47) and histidine (89 ± 15 vs. 75 ± 10 μmol∙L−1; p = 0.010, η2 = 0.27), whereas β-alanine (30 ± 7 vs. 41 ± 9 μmol∙L−1; p = 0.024, η2 = 016) and sarcosine (3.6 ± 0.4 vs. 4.8 ± 0.6 μmol∙L−1; p = 0.006, η2 = 0.188) levels increased. Between the specific and competition phases, significant decreases in the resting levels of 1-methylhistidine (22.1 ± 19.4 vs. 9.6 ± 8.8 μmol∙L−1; p = 0.14, η2 = 0.19), 3-methylhistidine (7.1 ± 1.5 vs. 6.5 ± 1.6 μmol∙L−1; p = 0.009, η2 = 0.18), citrulline (40 ± 10 vs. 29 ± 4 μmol∙L−1; p = 0.05, η2 = 0.29), and ornithine (74 ± 15 vs. 56 ± 10 μmol∙L−1; p = 0.015, η2 = 185) were noticed. Also, for β-alanine and sarcosine, the pattern of response to exercise strongly changed between the training phases. Blood ammonia levels at exhaustion decreased between the transition and competition phases (32 ± 4 vs. 23 ± 5 μmol∙L−1; p < 0.001, η2 = 0.67), while lactate, the phenylalanine–tyrosine ratio, the glutamine–glutamate ratio, hematological parameters, and cardiorespiratory indices remained at similar levels. Conclusions: Speed-power training seems to affect PFAAs involved in skeletal muscle metabolic pathways responsible for neutralizing toxic ammonia (glutamine, arginine, citrulline, ornithine), attenuating the deleterious effects of H+ ions (histidine, β-alanine), and reducing exercise-induced protein breakdown (1- and 3-methylhistidine). Our findings suggest that sprint-oriented training supports metabolic pathways that are responsible for the removal of harmful metabolites produced during exercise. Full article
(This article belongs to the Special Issue Sports Exercise: How It Benefits Health and Disease)
Show Figures

Figure 1

13 pages, 1391 KiB  
Article
Canavanine Content Quantification in Processed Bitter Vetch (Vicia ervilia) and Its Application as Flour in Breads: An Analysis of Nutritional and Sensory Attributes
by Adi Nudel, Shahal Abbo and Zohar Kerem
Foods 2024, 13(16), 2528; https://doi.org/10.3390/foods13162528 - 14 Aug 2024
Viewed by 1650
Abstract
Bitter vetch (Vicia ervilia Willd.) is a traditional Mediterranean–West Asian legume, mainly used as livestock feed because of its toxic non-proteinogenic amino acid, canavanine. However, historical sources suggest its past human consumption. Currently, bitter vetch is a minor crop confined to marginal [...] Read more.
Bitter vetch (Vicia ervilia Willd.) is a traditional Mediterranean–West Asian legume, mainly used as livestock feed because of its toxic non-proteinogenic amino acid, canavanine. However, historical sources suggest its past human consumption. Currently, bitter vetch is a minor crop confined to marginal soils in semi-arid regions, presenting a potential alternative protein source amid projected climate changes. This study evaluated the nutritional and sensory attributes of bitter vetch seeds processed through various household methods. Germination and cooking significantly reduced the canavanine content by 28% and 60%, respectively. Incorporating bitter vetch flour (BVF) into wheat bread enhanced protein and fiber contents without substantially altering carbohydrate and lipid levels, and the baking process reduced the canavanine content by 40%. Bitter vetch flour enriched the bread with iron and calcium, contributing significantly to their daily nutritional intakes. Sensory evaluations indicated positive reception for bread with 12% BVF, achieving a balance between nutritional enhancement and consumer acceptance. This study identifies bitter vetch seeds as a valuable resource for improving bread formulations with corrected gluten contents and enhanced protein quality, as measured using protein-digestibility-corrected amino acid score (PDCAAS) values. With strategic processing and formulation adjustments, bitter vetch has the potential to re-emerge as a feasible high-protein grain crop, promoting sustainable farming. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

31 pages, 6428 KiB  
Article
Changes in Plasma Free Amino Acid Profile in Endurance Athletes over a 9-Month Training Cycle
by Krzysztof Kusy, Monika Ciekot-Sołtysiak, Jan Matysiak, Agnieszka Klupczyńska-Gabryszak, Szymon Plewa, Ewa Anna Zarębska, Zenon J. Kokot, Paweł Dereziński and Jacek Zieliński
Metabolites 2024, 14(7), 353; https://doi.org/10.3390/metabo14070353 - 23 Jun 2024
Cited by 5 | Viewed by 1919
Abstract
We aimed to evaluate long-term changes in proteinogenic and non-proteinogenic plasma free amino acids (PFAA). Eleven male endurance triathletes participated in a 9-month study. Blood was collected at rest, immediately after exhaustive exercise, and during 30-min recovery, in four consecutive training phases: transition, [...] Read more.
We aimed to evaluate long-term changes in proteinogenic and non-proteinogenic plasma free amino acids (PFAA). Eleven male endurance triathletes participated in a 9-month study. Blood was collected at rest, immediately after exhaustive exercise, and during 30-min recovery, in four consecutive training phases: transition, general, specific, and competition. Twenty proteinogenic and 22 non-proteinogenic PFAAs were assayed using the LC-ESI-MS/MS technique. The structured training modified the patterns of exercise-induced PFAA response, with the competition phase being the most distinct from the others. Branched-chain amino acids (p = 0.002; η2 = 0.216), phenylalanine (p = 0.015; η2 = 0.153), methionine (p = 0.002; η2 = 0.206), and lysine (p = 0.006; η2 = 0.196) declined more rapidly between rest and exhaustion in the competition phase. Glutamine (p = 0.008; η2 = 0.255), glutamate (p = 0.006; η2 = 0.265), tyrosine (p = 0.001; η2 = 0.195), cystine (p = 0.042; η2 = 0.183), and serine (p < 0.001; η2 = 0.346) levels were reduced in the competition phase. Arginine (p = 0.046; η2 = 0.138) and aspartate (p = 0.011; η2 = 0.171) levels were highest during exercise in the transition phase. During the competition phase, α-aminoadipic acid (p = 0.023; η2 = 0.145), β-aminoisobutyric acid (p = 0.007; η2 = 0.167), β-alanine (p < 0.001; η2 = 0.473), and sarcosine (p = 0.017; η2 = 0.150) levels increased, whereas phosphoethanolamine (p = 0.037; η2 = 0.189) and taurine (p = 0.008; η2 = 0.251) concentrations decreased. Overtraining indicators were not elevated. The altered PFAA profile suggests adaptations within energy metabolic pathways such as the tricarboxylic acid cycle, oxidative phosphorylation, ammonia neutralization, the purine nucleotide cycle, and buffering of intracellular H+ ions. The changes seem to reflect normal adaptations. Full article
(This article belongs to the Special Issue Metabolomic Advances in Promoting Exercise-Induced Metabolic Changes)
Show Figures

Figure 1

Back to TopTop