Antibiofilm Activities of Tritrpticin Analogs Against Pathogenic Pseudomonas aeruginosa PA01 Strains
Abstract
1. Introduction
2. Results
2.1. Antibiofilm Activities Against P. Aeruginosa
2.2. Antibiofilm Activities Against S. Aureus
2.3. Antibiofilm Activity Measured by Different Methods
2.4. NMR Analysis of the Solution Behavior of Tritrpticin
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [PubMed]
- Dodds, D.R. Antibiotic resistance: A current epilogue. Biochem. Pharmacol. 2017, 134, 139–146. [Google Scholar] [CrossRef]
- Ho, C.S.; Wong, C.T.H.; Aung, T.T.; Lakshminarayanan, R.; Mehta, J.S.; Rauz, S.; Mcnally, A.; Kintses, B.; Peacook, S.J.; Fuente-Nunez, C.D.L.; et al. Antimicrobial resistance: A concise update. Lancet Microbe. 2024, 12, 100947. [Google Scholar] [CrossRef] [PubMed]
- Venter, H. Reversing resistance to counter antimicrobial resistance in the World Health Organisation’s critical priority of most dangerous pathogens. Biosci. Rep. 2019, 39, BSR20180474. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, D.M.P.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev. 2020, 33, e00181-19. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.R.; Arias, C.A. ESKAPE pathogens: Antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat. Rev. Microbiol. 2024, 22, 598–616. [Google Scholar] [CrossRef] [PubMed]
- Epand, R.M.; Vogel, H.J. Diversity of antimicrobial peptides and their mechanisms of action. Biochim. Biophys. Acta 1999, 1462, 11–28. [Google Scholar] [CrossRef] [PubMed]
- Hancock, R.E.W.; Sahl, H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 2006, 24, 1551–1557. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; Haney, E.F.; Vogel, H.J. The expanding scope of antimicrobial peptide structures and their modes of action. Trends. Biotechnol. 2011, 29, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Haney, E.F.; Straus, S.K.; Hancock, R.E.W. Reassessing the host defense peptide landscape. Front. Chem. 2019, 7, 43. [Google Scholar] [CrossRef]
- Overhage, J.; Campisano, A.; Bains, M.; Torfs, E.C.; Rehm, B.H.; Hancock, R.E.W. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect. Immun. 2008, 76, 4176–4182. [Google Scholar] [CrossRef] [PubMed]
- Wolfmeier, H.; Pletzer, D.; Mansour, S.C.; Hancock, R.E.W. New perspectives in biofilm eradication. ACS. Infect. Dis. 2018, 4, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, M.H.; Idris, A.L.; Fan, X.; Guo, Y.; Yu, Y.; Jin, X.; Qiu, J.; Guan, X.; Huang, T. Beyond risk: Bacterial biofilms and their regulating approaches. Front. Microbiol. 2020, 11, 928. [Google Scholar] [CrossRef] [PubMed]
- Hancock, R.E.W.; Alford, M.A.; Haney, E.F. Antibiofilm activity of host defence peptides: Complexity provides opportunities. Nat. Rev. Microbiol. 2021, 19, 786–797. [Google Scholar] [CrossRef] [PubMed]
- Dostert, M.; Trimble, M.J.; Hancock, R.E.W. Antibiofilm peptides: Overcoming biofilm-related treatment failure. RSC. Adv. 2021, 11, 2718–2728. [Google Scholar] [CrossRef]
- Riool, M.; Breij, A.D.; Drijfhout, J.W.; Nibbering, P.H.; Zaat, S.A.J. Antimicrobial peptides in biomedical device manufacturing. Front. Chem. 2017, 24, 63. [Google Scholar] [CrossRef] [PubMed]
- Oshiro, K.G.N.; Rodrigues, G.; Monges, B.E.D.; Cardoso, M.H.; Franco, O.L. Bioactive peptides against fungal biofilms. Front. Microbiol. 2019, 10, 2169. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yang, M. Antimicrobial Peptides: From design to clinical application. Antibiotics 2022, 11, 349. [Google Scholar] [CrossRef] [PubMed]
- Cresti, L.; Cappello, G.; Pini, A. Antimicrobial peptides towards clinical application—A long history to be concluded. Int. J. Mol. Sci. 2024, 25, 4870. [Google Scholar] [CrossRef]
- Manobala, T. Peptide-based strategies for overcoming biofilm-associated infection: A comprehensive review. Crit. Rev. Microbiol. 2024, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Haney, E.F.; Trimble, M.J.; Cheng, J.T.; Vallé, Q.; Hancock, R.E.W. Critical assessment of methods to quantify biofilm growth and evaluate antibiofilm activity of host defence peptides. Biomolecules 2018, 8, 29. [Google Scholar] [CrossRef] [PubMed]
- Ramamourthy, G.; Vogel, H.J. Antibiofilm activity of lactoferrin-derived synthetic peptides against Pseudomonas aeruginosa PAO1. Biochem. Cell Biol. 2021, 99, 138–148. [Google Scholar] [CrossRef]
- Ramamourthy, G.; Vogel, H.J. Antibiofilm activities of lactoferricin-related Trp- and Arg-rich antimicrobial hexapeptides against pathogenic Staphylococcus aureus and Pseudomonas aeruginosa strains. Biochem. Cell Biol. 2025, 103, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Lawyer, C.; Pai, S.; Watabe, M.; Borgia, P.; Mashimo, T.; Eagleton, L.; Watabe, K. Antimicrobial activity of a 13 amino acid tryptophan-rich peptide derived from a putative porcine precursor protein of a novel family of antibacterial peptides. FEBS Lett. 1996, 390, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Arias, M.; Haney, E.F.; Hilchie, A.L.; Corcoran, J.A.; Hyndman, M.E.; Hancock, R.E.W.; Vogel, H.J. Selective anticancer activity of synthetic peptides derived from the host defense peptide tritrpticin. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183228. [Google Scholar] [CrossRef]
- Ghiselli, R.; Cirioni, O.; Giacometti, A.; Mocchegiani, F.; Orlando, F.; Silvestri, C.; Licci, A.; Vittoria, A.D.; Scalise, G.; Saba, V. The cathelicidin-derived tritrpticin enhances the efficacy of ertapenem in experimental rat models of septic shock. Shock 2006, 26, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.I.; Prenner, E.J.; Vogel, H.J. Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochim. Biophys. Acta 2006, 1758, 1184–1202. [Google Scholar] [CrossRef] [PubMed]
- Straus, S.K. Tryptophan- and arginine-rich antimicrobial peptides: Anti-infectives with great potential. Biochim. Biophys. Acta. Biomembr. 2024, 1866, 184260. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; de Boer, L.; Zaat, S.A.; Vogel, H.J. Investigating the cationic side chains of the antimicrobial peptide tritrpticin: Hydrogen bonding properties govern its membrane-disruptive activities. Biochem. Biophys. Acta 2011, 1808, 2297–2303. [Google Scholar] [CrossRef]
- Arias, M.; Nguyen, L.T.; Kuczynski, A.M.; Lejon, T.; Vogel, H.J. Position-dependent influence of the three Trp residues on the membrane activity of the antimicrobial peptide tritrpticin. Antibiotics 2014, 3, 595–616. [Google Scholar] [CrossRef] [PubMed]
- Arias, M.; Jensen, K.V.; Nguyen, L.T.; Storey, D.G.; Vogel, H.J. Hydroxy-tryptophan containing derivatives of tritrpticin: Modification of antimicrobial activity and membrane interactions. Biochim. Biophys. Acta 2015, 1848, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Arias, M.; Piga, K.B.; Hyndman, M.E.; Vogel, H.J. Improving the activity of Trp-rich antimicrobial peptides by Arg/Lys substitutions and changing the length of cationic residues. Biomolecules 2018, 8, 19. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.T.; Shin, S.Y.; Hahm, K.S.; Kim, J.I. Design of perfectly symmetric Trp-rich peptides with potent and broad-spectrum antimicrobial activities. Int. J. Antimicrob. Agents 2006, 27, 325–330. [Google Scholar] [CrossRef]
- Bozelli, J.C., Jr.; Salay, L.C.; Miranda, M.A.; Procopio, J.; Riciluca, K.C.T.; Silva, P.I., Jr.; Nakaie, C.R.; Schreier, S. A comparison of activity, toxicity, and conformation of tritrpticin and two TOAC-labeled analogues. Effects on the mechanism of action. Biochim. Biophys. Acta. Biomembr. 2020, 1862, 183110. [Google Scholar] [CrossRef]
- Dennison, S.R.; Harris, F.; Bhatt, T.; Singh, J.; Phoenix, D.A. The effect of C-terminal amidation on the efficacy and selectivity of antimicrobial and anticancer peptides. Mol. Cell. Biochem. 2009, 332, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Schibli, D.J.; Hwang, P.M.; Vogel, H.J. Structure of the antimicrobial peptide tritrpticin bound to micelles: A distinct membrane-bound peptide fold. Biochemistry 1999, 38, 16749–16755. [Google Scholar] [CrossRef] [PubMed]
- Schibli, D.J.; Nguyen, L.T.; Kernaghan, S.D.; Rekdal, Ø.; Vogel, H.J. Structure-function analysis of tritrpticin analogs: Potential relationships between antimicrobial activities, model membrane interactions, and their micelle-bound NMR structures. Biophys. J. 2006, 91, 4413–4426. [Google Scholar] [CrossRef]
- Staubitz, P.; Peschel, A.; Nieuwenhuizen, W.F.; Otto, M.; Götz, F.; Jung, G.; Jack, R.W. Structure-function relationships in the tryptophan-rich, antimicrobial peptide indolicidin. J. Pept. Sci. 2001, 7, 552–564. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.H.; Chen, C.; Jou, M.L.; Lee, A.Y.L.; Lin, Y.C.; Yu, Y.P.; Huang, W.T.; Wu, S.H. Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: Evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res. 2005, 33, 4053–4064. [Google Scholar] [CrossRef]
- Jing, W.; Demcoe, A.R.; Vogel, H.J. Conformation of a bactericidal domain of puroindoline a: Structure and mechanism of action of a 13-residue antimicrobial peptide. J. Bacteriol. 2003, 185, 4938–4947. [Google Scholar] [CrossRef] [PubMed]
- Haney, E.F.; Petersen, A.P.; Lau, C.K.; Jing, W.; Storey, D.G.; Vogel, H.J. Mechanism of action of puroindoline derived tryptophan-rich antimicrobial peptides. Biochim. Biophys. Acta. 2013, 1828, 1802–1813. [Google Scholar] [CrossRef] [PubMed]
- Talukdar, P.K.; Turner, K.L.; Crockett, T.M.; Lu, X.; Craig, F.M.; Michael, E.K. Inhibitory effect of puroindoline peptides on Campylobacter jejuni growth and biofilm formation. Front. Microbiol. 2021, 12, 702762. [Google Scholar] [CrossRef] [PubMed]
- Andrushchenko, V.V.; Vogel, H.J.; Prenner, E.J. Solvent-dependent structure of two tryptophan-rich antimicrobial peptides and their analogs studied by FTIR and CD spectroscopy. Biochim. Biophys. Acta. 2006, 1758, 1596–1608. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.T.; Shin, S.Y.; Kim, Y.C.; Kim, Y.; Hahm, K.S.; Kim, J.I. Conformation-dependent antibiotic activity of tritrpticin, a cathelicidin-derived antimicrobial peptide. Biochem. Biophys. Res. Commun. 2002, 296, 1044–1050. [Google Scholar] [CrossRef] [PubMed]
- Rozek, A.; Friedrich, C.L.; Hancock, R.E.W. Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry 2000, 39, 15765–15774. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, C.L.; Rozek, A.; Patrzykat, A.; Hancock, R.E.W. Structure and mechanism of action of an indolicidin peptide derivative with improved activity against Gram-positive bacteria. J. Biol. Chem. 2001, 276, 24015–24022. [Google Scholar] [CrossRef]
- Arias, M.; Aramini, J.M.; Riopel, N.D.; Vogel, H.J. Fluorine-19 NMR spectroscopy of fluorinated analogs of tritrpticin highlight a distinct role for Tyr residues in antimicrobial peptides. Biochim. Biophys. Acta 2020, 1862, 183260. [Google Scholar] [CrossRef]
- Killian, J.A.; von Heijne, G. How proteins adapt to a membrane-water interface. Trends Biochem. Sci. 2000, 25, 429–434. [Google Scholar] [CrossRef]
- Yau, W.M.; Wimley, W.C.; Gawrisch, K.; White, S.H. The preference of tryptophan for membrane interfaces. Biochemistry 1998, 37, 14713–14718. [Google Scholar] [CrossRef] [PubMed]
- Khemaissa, S.; Walrant, A.; Sagan, S. Tryptophan, more than just an interfacial amino acid in the membrane activity of cationic cell-penetrating and antimicrobial peptides. Q. Rev. Biophys. 2022, 55, e10. [Google Scholar] [CrossRef]
- Dathe, M.; Nikolenko, H.; Klose, J.; Bienert, M. Cyclization increases the antimicrobial activity and selectivity of arginine- and tryptophan-containing hexapeptides. Biochemistry 2004, 43, 9140–9150. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, G.A. Microtiter dish biofilm formation assay. J. Vis. Exp. 2011, 47, 2437. [Google Scholar] [CrossRef]
- Ceri, H.; Olson, M.E.; Stremick, C.; Read, R.R.; Morck, D.; Buret, A. The Calgary Biofilm Device: New technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J. Clin. Microbiol. 1999, 37, 1771–1776. [Google Scholar] [CrossRef]
- Santos, T.L.; Moraes, A.; Nakaie, C.R.; Almeida, F.C.; Schreier, S.; Valente, A.P. Structural and dynamic insights of the interaction between tritrpticin and micelles: An NMR study. Biophys. J. 2016, 111, 2676–2688. [Google Scholar] [CrossRef] [PubMed]
- Gallivan, J.P.; Dougherty, D.A. Cation-pi interactions in structural biology. Proc. Natl. Acad. Sci. USA 1999, 96, 9459–9464. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Woo, S.M.; Siu, T.; Cortopassi, W.A.; Duarte, F.; Paton, R.S. Cation–π interactions in protein–ligand binding: Theory and data-mining reveal different roles for lysine and arginine. Chem. Sci. 2018, 9, 2655–2665. [Google Scholar] [CrossRef] [PubMed]
- Infield, D.T.; Rasouli, A.; Galles, G.D.; Chipot, C.; Tajkhorshid, E.; Ahern, C.A. Cation-π interactions and their functional roles in membrane proteins. J. Mol. Biol. 2021, 433, 167035. [Google Scholar] [CrossRef] [PubMed]
- Zondlo, N.J. Aromatic-proline interactions: Electronically tunable CH/π interactions. Acc. Chem. Res. 2013, 46, 1039–1049. [Google Scholar] [CrossRef]
- Sebák, F.; Ecsédi, P.; Bermel, W.; Luy, B.; Nyitray, L.; Bodor, A. Selective 1HαNMR methods reveal functionally relevant proline cis/trans isomers in intrinsically disordered proteins: Characterization of minor forms, effects of phosphorylation, and occurrence in proteome. Angew. Chem. Int. Ed. 2022, 61, e202108361. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, C.L.; Parsley, N.C.; Asimgil, H.; Lee, H.W.; Ahlbach, C.; Michael, A.K.; Xu, H.; Williams, O.L.; Davis, T.L.; Liu, A.C. A slow conformational switch in the BMAL1 transactivation domain modulates circadian rhythms. Mol. Cell 2017, 66, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Alderson, T.R.; Lee, J.H.; Charlier, C.; Ying, J.; Bax, A. Propensity for cis-proline formation in unfolded proteins. ChemBioChem 2018, 19, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Poznański, J.; Ejchart, A.; Wierzchowski, K.L.; Ciurak, M. 1H and 13C-NMR investigations on cis–trans isomerization of proline peptide bonds and conformation of aromatic side chains in H-Trp-(Pro)n-Tyr-OH peptides. Biopolymers 1993, 33, 781–795. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.J.; Raleigh, D.P. Local control of peptide conformation: Stabilization of cis proline peptide bonds by aromatic proline interactions. Biopolymers 1998, 45, 381–394. [Google Scholar] [CrossRef]
- Killoran, P.M.; Hanson, G.S.M.; Verhoork, S.J.M.; Smith, M.; Gobbo, D.D.; Lian, L.Y.; Coxon, C.R. Probing peptidylprolyl bondcis/transstatus using distal 19F NMR reporters. Chemistry 2023, 29, e202203017. [Google Scholar] [CrossRef]
- Louis, M.; Clamens, T.; Tahrioui, A.; Desriac, F.; Rodrigues, S.; Rosay, T.; Harmer, N.; Diaz, S.; Barreau, M.; Racine, P.J.; et al. Pseudomonas aeruginosa Biofilm Dispersion by the Human Atrial Natriuretic Peptide. Adv. Sci. 2022, 9, e2103262. [Google Scholar] [CrossRef]
- Guilhen, C.; Forestier, C.; Balestrino, D. Biofilm dispersal: Multiple elaborate strategies for dissemination of bacteria with unique properties. Mol. Microbiol. 2017, 105, 188–210. [Google Scholar] [CrossRef]
- Yu, S.; Su, T.; Wu, H.; Liu, S.; Wang, D.; Zhao, T.; Jin, Z.; Du, W.; Zhu, M.J.; Chua, S.L.; et al. PslG, a self-produced glycosyl hydrolase, triggers biofilm disassembly by disrupting exopolysaccharide matrix. Cell Res. 2015, 25, 1352–1367. [Google Scholar] [CrossRef] [PubMed]
- Chua, S.L.; Liu, Y.; Yam, J.K.; Chen, Y.; Vejborg, R.M.; Tan, B.G.C.; Kjelleberg, S.; Tolker-Nielsen, T.; Givskov, M. Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. Nat. Commun. 2014, 5, 4462. [Google Scholar] [CrossRef] [PubMed]
- Haney, E.F.; Sánchez, Y.B.; Trimble, M.J.; Mansour, S.C.; Cherkasov, A.; Hancock, R.E.W. Computer-aided discovery of peptides that specifically attack bacterial biofilms. Sci. Rep. 2018, 8, 1871. [Google Scholar] [CrossRef] [PubMed]
- Zarko, L.S.; Dover, R.S.; Brumfeld, V.; Mangoni, M.L.; Shai, Y. Mechanisms of biofilm inhibition and degradation by antimicrobial peptides. Biochem. J. 2015, 468, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Haney, E.F.; Wu, B.C.; Lee, K.; Hilchie, A.L.; Hancock, R.E.W. Aggregation and its influence on the immunomodulatory activity of synthetic innate defense regulator peptides. Cell Chem. Biol. 2017, 24, 969–980. [Google Scholar] [CrossRef] [PubMed]
- Remington, J.M.; Liao, C.; Sharafi, M.; Marie, E.S.; Jonathon, B.; Ferrell, J.B. On the aggregation state of synergistic antimicrobial peptides. J. Phys. Chem. Lett. 2020, 11, 9501–9506. [Google Scholar] [CrossRef] [PubMed]
- Ciofu, O.; Tolker-Nielsen, T. Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents-how P. aeruginosa can escape antibiotics. Front. Microbiol. 2019, 10, 913. [Google Scholar]
- Ridyard, K.E.; Overhage, J. The potential of human peptide LL-37 as an antimicrobial and anti-biofilm agent. Antibiotics 2021, 10, 650. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.Y.; Park, S.C.; Jung, M.; Shin, M.K.; Kang, H.L.; Baik, S.C.; Cheong, G.W.; Jang, M.K.; Lee, W.K. Cell-selectivity of tryptophan and tyrosine in amphiphilic α-helical antimicrobial peptides against drug-resistant bacteria. Biochem. Biophys. Res. Commun. 2018, 505, 478–484. [Google Scholar] [CrossRef]
- Park, S.C.; Lee, M.Y.; Kim, J.Y.; Kim, H.; Jung, M.; Shin, M.K. Anti-biofilm effects of synthetic antimicrobial peptides against drug-resistant Pseudomonas aeruginosa and Staphylococcus aureus planktonic cells and biofilm. Molecules 2019, 24, 4560. [Google Scholar] [CrossRef]
- Haug, B.E.; Camilio, K.A.; Eliassen, L.T.; Stensen, W.; Svendsen, J.S.; Berg, K.; Mortensen, B.; Serin, G.; Mirjolet, J.M.; Bichat, F.; et al. Discovery of a 9-mer cationic peptide (LTX-315) as a potential first in class oncolytic peptide. J. Med. Chem. 2016, 59, 2918–2927. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Bertin, B.L.; Abbate, V.; Vermeer, L.S.; Kong, X.; Sullivan, K.E. Incorporation of 2,3-diaminopropionic acid into linear cationic amphipathic peptides produces pH-sensitive vectors. ChemBioChem 2010, 11, 1266–1272. [Google Scholar] [CrossRef] [PubMed]
- Tanishiki, N.; Yano, Y.; Matsuzaki, K. Endowment of pH responsivity to anticancer peptides by introducing 2,3-diaminopropionic acid residues. ChemBioChem 2019, 20, 2109–2117. [Google Scholar] [CrossRef] [PubMed]
- Glibowicka, M.; He, S.; Deber, C.M. Enhanced proteolytic resistance of cationic antimicrobial peptides through lysine side chain analogs and cyclization. Biochem. Biophys. Res. Commun. 2022, 612, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Kohn, E.M.; Shirley, D.J.; Arotsky, L.; Picciano, A.M.; Ridgway, Z.; Urban, M.W.; Carone, B.R.; Caputo, G.A. Role of cationic sidechains in the antimicrobial activity of C18G. Molecules 2018, 23, 329. [Google Scholar] [CrossRef] [PubMed]
- Andrushchenko, V.V.; Aarabi, M.H.; Nguyen, L.T.; Prenner, E.J.; Vogel, H.J. Thermodynamics of the interactions of tryptophan-rich cathelicidin antimicrobial peptides with model and natural membranes. Biochim. Biophys. Acta 2008, 1778, 1004–1014. [Google Scholar] [CrossRef] [PubMed]
- Salay, L.C.; Ferreira, M.; Oliveira, O.N., Jr.; Nakaie, C.R.; Schreier, S. Headgroup specificity for the interaction of the antimicrobial peptide tritrpticin with phospholipid Langmuir monolayers. Colloids Surf. B Biointerfaces 2012, 100, 95–102. [Google Scholar] [CrossRef]
- Epand, R.M.; Epand, R.F. Domains in bacterial membranes and the action of antimicrobial agents. Mol. Biosyst. 2009, 5, 580–587. [Google Scholar] [CrossRef] [PubMed]
- Andrushchenko, V.V.; Vogel, H.J.; Prenner, E.J. Interactions of tryptophan-rich cathelicidin antimicrobial peptides with model membranes studied by differential scanning calorimetry. Biochim. Biophys. Acta 2007, 1768, 2447–2458. [Google Scholar] [CrossRef] [PubMed]
- Rzepiela, A.J.; Sengupta, D.; Goga, N.; Marrink, S.J. Membrane poration by antimicrobial peptides combining atomistic and coarse-grained descriptions. Faraday Discuss. 2010, 144, 431–443. [Google Scholar] [CrossRef]
- Falla, T.J.; Karunaratne, D.N.; Hancock, R.E.W. Mode of action of the antimicrobial peptide indolicidin. J. Biol. Chem. 1996, 271, 19298–19303. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J.E.; Bjørnestad, V.A.; Pipich, V.; Jenssen, H.; Lund, R. Beyond structural models for the mode of action: How natural antimicrobial peptides affect lipid transport. J. Colloid. Interface. Sci. 2021, 582, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Carrer, M.; Nielsen, J.E.; Cezar, H.M.; Lund, R.; Cascella, M.; Soares, T.A. Accelerating lipid flip-flop at low concentrations: A general mechanism for membrane binding peptides. J. Phys. Chem. Lett. 2023, 14, 7014–7019. [Google Scholar] [CrossRef] [PubMed]
- Epand, R. Anionic lipid clustering model. Adv. Exp. Med. Biol. 2019, 1117, 65–71. [Google Scholar]
- De la Fuente-Núñez, C.; Reffuveille, F.; Haney, E.F.; Straus, S.K.; Hancock, R.E. Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog. 2014, 10, e1004152. [Google Scholar] [CrossRef] [PubMed]
- Andresen, L.; Tenson, T.; Hauryliuk, V. Cationic bactericidal peptide 1018 does not specifically target the stringent response alarmone (p)ppGpp. Sci Rep. 2016, 6, 36549. [Google Scholar] [CrossRef] [PubMed]
- Das, B.; Bhadra, R.K. (p)ppGpp metabolism and antimicrobial resistance in bacterial pathogens. Front. Microbiol. 2020, 11, 563944. [Google Scholar] [CrossRef] [PubMed]
- Hee, C.S.; Habazettl, J.; Schmutz, C.; Schirmer, T.; Jenal, U.; Grzesiek, S. Intercepting second messenger signaling by rationally designed peptides sequestering c-di-GMP. Proc. Natl. Acad. Sci. USA 2020, 117, 17211–17220. [Google Scholar] [CrossRef] [PubMed]
- Whiteley, M.; Diggle, S.P.; Greenberg, E.P. Progress in and promise of bacterial quorum sensing research. Nature 2017, 551, 313–320. [Google Scholar] [CrossRef]
- Elias, S.; Banin, E. Multi-species biofilms: Living with friendly neighbors. FEMS Microbiol. Rev. 2012, 36, 990–1004. [Google Scholar] [CrossRef] [PubMed]
- Allesen-Holm, M.; Barken, K.B.; Yang, L.; Klausen, M.; Webb, J.S.; Kjelleberg, S.; Molin, S.; Givskov, M.; Tolker-Nielsen, T. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol. Microbiol. 2006, 59, 1114–1128. [Google Scholar] [CrossRef] [PubMed]
- Bowden, L.C.; Finlinson, J.; Jones, B.; Berges, B.K. Beyond the double helix: The multifaceted landscape of extracellular DNA in Staphylococcus aureus biofilms. Front. Cell. Infect. Microbiol. 2024, 14, 1400648. [Google Scholar] [CrossRef]
- Alhede, M.; Alhede, M.; Qvortrup, K.; Kragh, K.N.; Jensen, P.O.; Stewart, P.S.; Bjarnsholt, T. The origin of extracellular DNA in bacterial biofilm infections in vivo. Pathog. Dis. 2020, 78, ftaa018. [Google Scholar] [CrossRef] [PubMed]
- Panlilio, H.; Rice, C.V. The role of extracellular DNA in the formation, architecture, stability, and treatment of bacterial biofilms. Biotechnol. Bioeng. 2021, 118, 2129–2141. [Google Scholar] [CrossRef] [PubMed]
Peptides | Modifications | Amino Acid Sequences | Net Charges |
---|---|---|---|
Hexapeptide1 | RRRWWW-NH2 | +4 | |
Hexapeptide2 | RRWWWR-NH2 | +4 | |
Tritrp-Arg | Amidation | VRRFPWWWPFLRR-NH2 | +5 |
Tritrp-Lys | Arg → Lys | VKKFPWWWPFLKK-NH2 | +5 |
Tritrp-P59A | Pro → Ala | VRRFAWWWAFLRR-NH2 | +5 |
Tritrp-P59A-Lys | Pro → Ala | VKKFAWWWAFLKK-NH2 | +5 |
Tritrp-W678Y | Trp → Tyr | VRRFPYYYPFLRR-NH2 | +5 |
Tritrp-F410Y | Phe → Tyr | VRRYPWWWPYLRR-NH2 | +5 |
Tritrp-W678F | Trp → Phe | VRRFPFFFPFLRR-NH2 | +5 |
Tritrp-P5A | Pro → Ala | VRRFAWWWPFLRR-NH2 | +5 |
Tritrp-P9A | Pro → Ala | VRRFPWWWAFLRR-NH2 | +5 |
Tritrp-P9A-Lys | Pro → Ala | VKKFPWWWAFLKK-NH2 | +5 |
Tritrp-W678hW | Hydroxy-Trp | VRRFP(hW)(hW)(hW)PFLRR-NH2 | +5 |
Indolicidin | ILPWKWPWWPWRR-NH2 | +4 | |
PuroA-Arg | FPVTWRWWRWWRG-NH2 | +4 | |
PuroA-Lys | Arg → Lys | FPVTWKWWKWWKG-NH2 | +4 |
Peptides (uMol/L) | PAO1 GFP (BM2) | |||||
---|---|---|---|---|---|---|
MIC at 600 nm | MBIC at 488 and 530 nm | MBEC at 488 and 530 nm | ||||
LD50 | LD90 | LD50 | LD90 | LD50 | LD90 | |
RRRWWW-NH2 | 32 | 128 | 16 | 128 | 64 | >128 |
RRWWWR-NH2 | 64 | 128 | 16 | 128 | 128 | >128 |
Tritrp-Arg | 4 | 8 | 2 | 8 | 8 | 16 |
Tritrp-Lys | 32 | 32 | 16 | 32 | 64 | 64 |
Tritrp-P59A | 2 | 4 | 2 | 4 | 8 | 16 |
Tritrp-P59A-Lys | 4 | 4 | 4 | 4 | 32 | 128 |
Tritrp-W678Y | >64 | >64 | >64 | >64 | >128 | >128 |
Tritrp-F410Y | 8 | 16 | 2 | 8 | 4 | 32 |
Tritrp-W678F | 32 | >64 | 32 | 64 | 32 | 64 |
Tritrp-P5A | 4 | 8 | 4 | 8 | 64 | 64 |
Tritrp-P9A | 2 | 2 | 0.25 | 2 | 4 | 8 |
Tritrp-P9A-Lys | 4 | 8 | 8 | 8 | 4 | 64 |
Tritrp-W678hW | 32 | 64 | 16 | 64 | >128 | >128 |
Indolicidin | 8 | 32 | 8 | 32 | 32 | >128 |
PuroA-Arg | 8 | 16 | 8 | 8 | 32 | 128 |
PuroA-Lys | 4 | 8 | 4 | 8 | 64 | 64 |
Peptides (uMol/L) | PAO1 GFP (BM2) | |||||
---|---|---|---|---|---|---|
MIC at 600 nm | MBIC at 488 and 530 nm | MBEC at 488 and 530 nm | ||||
LD50 | LD90 | LD50 | LD90 | LD50 | LD90 | |
Tritrp-Lys | 32 | 32 | 32 | 32 | 128 | 128 |
Tritrp-Orn | 16 | 16 | 16 | 16 | 64 | 128 |
Tritrp-Dab | 8 | 16 | 8 | 16 | 16 | 64 |
Tritrp-Dap | 8 | 8 | 8 | 16 | 8 | 64 |
Peptides (uMol/L) | Sa GFP (10% TSB and 0.1% Glucose) | Sa GFP | |||||
---|---|---|---|---|---|---|---|
MIC at 600 nm | MBIC at 488 and 530 nm | MBEC at 488 and 530 nm | MBC Agar Plate | ||||
LD50 | LD90 | LD50 | LD90 | LD50 | LD90 | ||
RRRWWW-NH2 | 1 | 1 | 1 | 1 | 0.5 | 4 | 4 |
RRWWWR-NH2 | 1 | 1 | 1 | 1 | 1 | 4 | 4 |
Tritrp-Arg | 0.5 | 2 | 1 | 2 | 1 | 2 | 2 |
Tritrp-Lys | 1 | 2 | 2 | 2 | 1 | 2 | 4 |
Tritrp-P59A | 1 | 2 | 2 | 2 | 1 | 2 | 4 |
Tritrp-P59A-Lys | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
Tritrp-W678Y | 1 | 2 | 1 | 2 | 2 | 8 | 16 |
Tritrp-F410Y | 1 | 2 | 2 | 2 | 1 | 2 | 4 |
Tritrp-W678F | 0.5 | 0.5 | 1 | 1 | 2 | 4 | 8 |
Tritrp-P5A | 1 | 2 | 1 | 4 | 2 | 4 | 4 |
Tritrp-P9A | 0.25 | 1 | 0.25 | 2 | 0.5 | 2 | 2 |
Tritrp-P9A-Lys | 1 | 4 | 2 | 4 | 1 | 8 | 8 |
Tritrp-W678hW | 2 | 4 | 2 | 4 | 4 | 8 | 16 |
Indolicidin | 4 | 8 | 4 | 8 | 2 | 8 | 8 |
PuroA-Arg | 4 | 4 | 4 | 4 | 8 | 16 | 8 |
PuroA-Lys | 2 | 4 | 2 | 4 | 8 | 8 | 8 |
Peptides (uMol/L) | PAO1 (BM2) | |||||||
---|---|---|---|---|---|---|---|---|
MIC at 600 nm | MBIC (CV at 595 nm) | MBRC (CV at 595 nm) | MBEC from Calgary Biofilm Device (CBD) | |||||
LD50 | LD90 | LD50 | LD90 | LD50 | LD90 | LD50 | LD90 | |
Tritrp-Arg | 4 | 8 | 4 | 8 | 32 | 32 | 16 | 32 |
Tritrp-Lys | 32 | 32 | 32 | 32 | 64 | 64 | 128 | 128 |
Tritrp-P59A | 2 | 4 | 4 | 4 | 32 | 32 | 16 | 32 |
Tritrp-P59A-Lys | 4 | 8 | 4 | 8 | 64 | 64 | 64 | 128 |
Tritrp-W678Y | >64 | >64 | >64 | >64 | 128 | >128 | >128 | >128 |
Tritrp-W678F | 32 | >64 | 64 | >64 | 128 | >128 | 128 | 128 |
Tritrp-P5A | 4 | 8 | 8 | 8 | 32 | 32 | 32 | 128 |
Tritrp-P9A | 2 | 2 | 1 | 2 | 16 | 32 | 8 | 16 |
Tritrp-P9A-Lys | 4 | 8 | 8 | 16 | 32 | 64 | 64 | 64 |
Tritrp-W678hW | >64 | >64 | 32 | >64 | >128 | >128 | >128 | >128 |
Indolicidin | 16 | 16 | 32 | 32 | 64 | 64 | 128 | 128 |
PuroA-Arg | 8 | 16 | 16 | 16 | 32 | 32 | 16 | 64 |
PuroA-Lys | 8 | 16 | 8 | 16 | 32 | 32 | 32 | 64 |
PAO1 (BM2) | ||||||
---|---|---|---|---|---|---|
MIC at 600 nm | MBIC (CV at 595 nm) | MBEC (CV at 595 nm) | ||||
LD50 | LD90 | LD50 | LD90 | LD50 | LD90 | |
Tritrp-Lys | 32 | 32 | 32 | 32 | 128 | 128 |
TriTrp-Orn | 16 | 16 | 16 | 32 | 64 | 128 |
Tritrp-Dab | 16 | 16 | 16 | 16 | 32 | 64 |
Tritrp-Dap | 8 | 16 | 8 | 16 | 16 | 64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramamourthy, G.; Ishida, H.; Vogel, H.J. Antibiofilm Activities of Tritrpticin Analogs Against Pathogenic Pseudomonas aeruginosa PA01 Strains. Molecules 2025, 30, 826. https://doi.org/10.3390/molecules30040826
Ramamourthy G, Ishida H, Vogel HJ. Antibiofilm Activities of Tritrpticin Analogs Against Pathogenic Pseudomonas aeruginosa PA01 Strains. Molecules. 2025; 30(4):826. https://doi.org/10.3390/molecules30040826
Chicago/Turabian StyleRamamourthy, Gopal, Hiroaki Ishida, and Hans J. Vogel. 2025. "Antibiofilm Activities of Tritrpticin Analogs Against Pathogenic Pseudomonas aeruginosa PA01 Strains" Molecules 30, no. 4: 826. https://doi.org/10.3390/molecules30040826
APA StyleRamamourthy, G., Ishida, H., & Vogel, H. J. (2025). Antibiofilm Activities of Tritrpticin Analogs Against Pathogenic Pseudomonas aeruginosa PA01 Strains. Molecules, 30(4), 826. https://doi.org/10.3390/molecules30040826