Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,080)

Search Parameters:
Keywords = nonlinear model predictive approach

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1908 KB  
Article
Research on Real-Time Rainfall Intensity Monitoring Methods Based on Deep Learning and Audio Signals in the Semi-Arid Region of Northwest China
by Yishu Wang, Hongtao Jiang, Guangtong Liu, Qiangqiang Chen and Mengping Ni
Atmosphere 2026, 17(2), 131; https://doi.org/10.3390/atmos17020131 - 26 Jan 2026
Abstract
With the increasing frequency extreme weather events associated with climate change, real-time monitoring of rainfall intensity is critical for water resource management, disaster warning, and other applications. Traditional methods, such as ground-based rain gauges, radar, and satellites, face challenges like high costs, low [...] Read more.
With the increasing frequency extreme weather events associated with climate change, real-time monitoring of rainfall intensity is critical for water resource management, disaster warning, and other applications. Traditional methods, such as ground-based rain gauges, radar, and satellites, face challenges like high costs, low resolution, and monitoring gaps. This study proposes a novel real-time rainfall intensity monitoring method based on deep learning and audio signal processing, using acoustic features from rainfall to predict intensity. Conducted in the semi-arid region of Northwest China, the study employed a custom-designed sound collection device to capture acoustic signals from raindrop-surface interactions. The method, combining multi-feature extraction and regression modeling, accurately predicted rainfall intensity. Experimental results revealed a strong linear relationship between sound pressure and rainfall intensity (r = 0.916, R2 = 0.838), with clear nonlinear enhancement of acoustic energy during heavy rainfall. Compared to traditional methods like CML and radio link techniques, the acoustic approach offers advantages in cost, high-density deployment, and adaptability to complex terrain. Despite some limitations, including regional and seasonal biases, the study lays the foundation for future improvements, such as expanding sample coverage, optimizing sensor design, and incorporating multi-source data. This method holds significant potential for applications in urban drainage, agricultural irrigation, and disaster early warning. Full article
Show Figures

Figure 1

26 pages, 8387 KB  
Article
Machine Learning as a Lens on NWP ICON Configurations Validation over Southern Italy in Winter 2022–2023—Part I: Empirical Orthogonal Functions
by Davide Cinquegrana and Edoardo Bucchignani
Atmosphere 2026, 17(2), 132; https://doi.org/10.3390/atmos17020132 - 26 Jan 2026
Abstract
Validation of ICON model configurations optimized over a limited domain is essential before accepting new semi-empirical parameters that influence the behavior of subgrid-scale schemes. Because such parameters can modify the dynamics of a numerical weather prediction (NWP) model in highly nonlinear ways, we [...] Read more.
Validation of ICON model configurations optimized over a limited domain is essential before accepting new semi-empirical parameters that influence the behavior of subgrid-scale schemes. Because such parameters can modify the dynamics of a numerical weather prediction (NWP) model in highly nonlinear ways, we analyze one season of forecasts (December 2022, January and February 2023) generated with the NWP ICON-LAM through the lens of machine learning–based diagnostics as a complement to traditional evaluation metrics. The goal is to extract physically interpretable information on the model behavior induced by the optimized parameters. This work represents the first part of a wider study exploring machine learning tools for model validation, focusing on two specific approaches: Empirical Orthogonal Functions (EOFs), which are widely used in meteorology and climate science, and autoencoders, which are increasingly adopted for their nonlinear feature extraction capability. In this first part, EOF analysis is used as the primary tool to decompose weather fields from observed reanalysis and forecast datasets. Hourly 2-m temperature forecasts for winter 2022–2023 from multiple regional ICON configurations are compared against downscaled ERA5 data and in situ observations from ground station. EOF analyses revealed that the optimized configurations demonstrate a high skill in predicting surface temperature. From the signal error decomposition, the fourth EOF mode is effective particularly during night-time hours, and contributes to enhancing the performance of ICON. Analyses based on autoencoders will be presented in a companion paper (Part II). Full article
(This article belongs to the Special Issue Highly Resolved Numerical Models in Regional Weather Forecasting)
Show Figures

Figure 1

38 pages, 1015 KB  
Review
User Activity Detection and Identification of Energy Habits in Home Energy-Management Systems Using AI and ML: A Comprehensive Review
by Filip Durlik, Jakub Grela, Dominik Latoń, Andrzej Ożadowicz and Lukasz Wisniewski
Energies 2026, 19(3), 641; https://doi.org/10.3390/en19030641 - 26 Jan 2026
Abstract
The residential energy sector contributes substantially to global energy-related emissions. Effective energy management requires an understanding occupant behavior through activity detection and habit identification. Recent advances in artificial intelligence (AI) and machine learning (ML) enable the automatic detection of user activities and prediction [...] Read more.
The residential energy sector contributes substantially to global energy-related emissions. Effective energy management requires an understanding occupant behavior through activity detection and habit identification. Recent advances in artificial intelligence (AI) and machine learning (ML) enable the automatic detection of user activities and prediction of energy needs based on historical consumption data. Non-intrusive load monitoring (NILM) facilitates device-level disaggregation without additional sensors, supporting demand forecasting and behavior-aware control in Home Energy Management Systems (HEMSs). This review synthesizes various AI and ML approaches for detecting user activities and energy habits in HEMSs from 2020 to 2025. The analyses revealed that deep learning (DL) models, with their ability to capture complex temporal and nonlinear patterns in multisensor data, achieve superior accuracy in activity detection and load forecasting, with occupancy detection reaching 95–99% accuracy. Hybrid systems combining neural networks and optimization algorithms demonstrate enhanced robustness, but challenges remain in limited cross-building generalization, insufficient interpretability of deep models, and the absence of dataset standardized. Future work should prioritize lightweight, explainable edge-ready models, federated learning, and integration with digital twins and control systems. It should also extend energy optimization toward occupant wellbeing and grid flexibility, using standardized protocols and open datasets for ensuring trustworthy and sustainability. Full article
(This article belongs to the Collection Energy Efficiency and Environmental Issues)
21 pages, 9088 KB  
Article
GMM-Enhanced Mixture-of-Experts Deep Learning for Impulsive Dam-Break Overtopping at Dikes
by Hanze Li, Yazhou Fan, Luqi Wang, Xinhai Zhang, Xian Liu and Liang Wang
Water 2026, 18(3), 311; https://doi.org/10.3390/w18030311 - 26 Jan 2026
Abstract
Impulsive overtopping generated by dam-break surges is a critical hazard for dikes and flood-protection embankments, especially in reservoirs and mountainous catchments. Unlike classical coastal wave overtopping, which is governed by long, irregular wave trains and usually characterized by mean overtopping discharge over many [...] Read more.
Impulsive overtopping generated by dam-break surges is a critical hazard for dikes and flood-protection embankments, especially in reservoirs and mountainous catchments. Unlike classical coastal wave overtopping, which is governed by long, irregular wave trains and usually characterized by mean overtopping discharge over many waves, these dam-break-type events are dominated by one or a few strongly nonlinear bores with highly transient overtopping heights. Accurately predicting the resulting overtopping levels under such impulsive flows is therefore important for flood-risk assessment and emergency planning. Conventional cluster-then-predict approaches, which have been proposed in recent years, often first partition data into subgroups and then train separate models for each cluster. However, these methods often suffer from rigid boundaries and ignore the uncertainty information contained in clustering results. To overcome these limitations, we propose a GMM+MoE framework that integrates Gaussian Mixture Model (GMM) soft clustering with a Mixture-of-Experts (MoE) predictor. GMM provides posterior probabilities of regime membership, which are used by the MoE gating mechanism to adaptively assign expert models. Using SPH-simulated overtopping data with physically interpretable dimensionless parameters, the framework is benchmarked against XGBoost, GMM+XGBoost, MoE, and Random Forest. Results show that GMM+MoE achieves the highest accuracy (R2=0.9638 on the testing dataset) and the most centralized residual distribution, confirming its robustness. Furthermore, SHAP-based feature attribution reveals that relative propagation distance and wave height are the dominant drivers of overtopping, providing physically consistent explanations. This demonstrates that combining soft clustering with adaptive expert allocation not only improves accuracy but also enhances interpretability, offering a practical tool for dike safety assessment and flood-risk management in reservoirs and mountain river valleys. Full article
Show Figures

Figure 1

21 pages, 930 KB  
Article
SUVA-Based Modelling of THMFP Under Ozonation Using Regression and ANN Approaches
by Arzu Teksoy
Appl. Sci. 2026, 16(3), 1256; https://doi.org/10.3390/app16031256 - 26 Jan 2026
Abstract
Drinking-water treatment systems must effectively control natural organic matter (NOM), a major precursor of regulated disinfection by-products (DBPs). Specific ultraviolet absorbance (SUVA) is widely used as an operational surrogate for NOM aromaticity and hydrophobicity; however, ozonation and subsequent filtration can disrupt the linear [...] Read more.
Drinking-water treatment systems must effectively control natural organic matter (NOM), a major precursor of regulated disinfection by-products (DBPs). Specific ultraviolet absorbance (SUVA) is widely used as an operational surrogate for NOM aromaticity and hydrophobicity; however, ozonation and subsequent filtration can disrupt the linear relationship between SUVA and trihalomethane formation potential (THMFP). This study evaluates whether SUVA can reliably predict THMFP under two ozonation configurations frequently applied in drinking-water treatment: pre-ozonation prior to coagulation–filtration and final ozonation following filtration. Experimental data were analyzed using conventional linear regression and artificial neural network (ANN) models, with SUVA employed as the sole predictor variable. Across all treatment configurations, reductions in SUVA were consistently more pronounced than corresponding decreases in THMFP, indicating a decoupling between chromophoric loss and chlorine-reactive precursor dynamics under ozonation-dominated conditions. Linear regression models exhibited only moderate predictive performance (R2 = 0.63–0.76), reflecting the limitations of proportional surrogate-based approaches when NOM undergoes oxidative and adsorptive transformation. In contrast, single-parameter ANN models captured the nonlinear SUVA–THMFP relationship with substantially higher accuracy across both pre- and final-ozonation regimes (R2 = 0.88–0.99), successfully resolving process-dependent patterns embedded within optically compressed SUVA signals. These findings demonstrate that, although SUVA alone cannot linearly represent the multistep transformation of NOM during ozonation and adsorption, it retains process-relevant structure information on DBP precursor reactivity that can be effectively extracted using nonlinear modelling. The results highlight the potential of integrating ANN-driven tools into advanced monitoring and DBP-control strategies in modern drinking-water treatment systems. Full article
(This article belongs to the Special Issue New Approaches to Water Treatment: Challenges and Trends, 2nd Edition)
26 pages, 1299 KB  
Article
Function Meets Environment–Approach for the Environmental Assessment of Food Packaging, Taking into Account Packaging Functionality
by Alina Siebler, Jonas Keller, Mara Strenger, Tim Prescher, Stefan Albrecht and Markus Schmid
Sustainability 2026, 18(3), 1222; https://doi.org/10.3390/su18031222 - 26 Jan 2026
Abstract
As food typically accounts for substantially higher resource use and potential environmental impacts than its packaging, packaging-related food wastage must be considered in environmental assessments of food packaging. However, this is not currently performed as standard in Life Cycle Assessment (LCA). This article [...] Read more.
As food typically accounts for substantially higher resource use and potential environmental impacts than its packaging, packaging-related food wastage must be considered in environmental assessments of food packaging. However, this is not currently performed as standard in Life Cycle Assessment (LCA). This article proposes a conceptual framework as an approach to systematically integrating packaging functionality into LCA by incorporating packaging-related food wastage depending on shelf-life and due to technical emptiability. Based on literature data, a segmented non-linear regression is proposed to estimate shelf-life-dependent food wastage at retail level. Two exponential models provide a consistently decreasing relationship between shelf-life and food wastage, with S = 0.064 for products with ≤30 days shelf-life and S = 0.036 for >30 days shelf-life. These values indicate a satisfactory internal fit within both shelf-life segments. In addition, established experimental procedures for quantifying packaging emptiability are integrated to capture further packaging-related food wastage. The approach yields a pragmatic estimation of packaging-related food wastage that can be operationalized in packaging LCAs. Rather than predicting exact amounts of food wastage, the framework enables a more holistic, function-oriented assessment of food packaging by making environmental trade-offs between packaging design, shelf-life effects and emptiability transparent for screening-level LCA. Full article
Show Figures

Figure 1

30 pages, 430 KB  
Article
An Hour-Specific Hybrid DNN–SVR Framework for National-Scale Short-Term Load Forecasting
by Ervin Čeperić and Kristijan Lenac
Sensors 2026, 26(3), 797; https://doi.org/10.3390/s26030797 - 25 Jan 2026
Abstract
Short-term load forecasting (STLF) underpins the efficient and secure operation of power systems. This study develops and evaluates a hybrid architecture that couples deep neural networks (DNNs) with support vector regression (SVR) for national-scale day-ahead STLF using Croatian load data from 2006 to [...] Read more.
Short-term load forecasting (STLF) underpins the efficient and secure operation of power systems. This study develops and evaluates a hybrid architecture that couples deep neural networks (DNNs) with support vector regression (SVR) for national-scale day-ahead STLF using Croatian load data from 2006 to 2022. The approach employs an hour-specific framework of 24 hybrid models: each DNN learns a compact nonlinear representation for a given hour, while an SVR trained on the penultimate layer activations performs the final regression. Gradient-boosting-based feature selection yields compact, informative inputs shared across all model variants. To overcome limitations of historical local measurements, the framework integrates global numerical weather prediction data from the TIGGE archive with load and local meteorological observations in an operationally realistic setup. In the held-out test year 2022, the proposed hybrid consistently reduced forecasting error relative to standalone DNN-, LSTM- and Transformer-based baselines, while preserving a reproducible pipeline. Beyond using SVR as an alternative output layer, the contributions are as follows: addressing a 17-year STLF task, proposing an hour-specific hybrid DNN–SVR framework, providing a systematic comparison with deep learning baselines under a unified protocol, and integrating global weather forecasts into a practical day-ahead STLF solution for a real power system. Full article
(This article belongs to the Section Cross Data)
Show Figures

Figure 1

30 pages, 7439 KB  
Article
Traffic Forecasting for Industrial Internet Gateway Based on Multi-Scale Dependency Integration
by Tingyu Ma, Jiaqi Liu, Panfeng Xu and Yan Song
Sensors 2026, 26(3), 795; https://doi.org/10.3390/s26030795 - 25 Jan 2026
Abstract
Industrial gateways serve as critical data aggregation points within the Industrial Internet of Things (IIoT), enabling seamless data interoperability that empowers enterprises to extract value from equipment data more efficiently. However, their role exposes a fundamental trade-off between computational efficiency and prediction accuracy—a [...] Read more.
Industrial gateways serve as critical data aggregation points within the Industrial Internet of Things (IIoT), enabling seamless data interoperability that empowers enterprises to extract value from equipment data more efficiently. However, their role exposes a fundamental trade-off between computational efficiency and prediction accuracy—a contradiction yet to be fully resolved by existing approaches. The rapid proliferation of IoT devices has led to a corresponding surge in network traffic, posing significant challenges for traffic forecasting methods, while deep learning models like Transformers and GNNs demonstrate high accuracy in traffic prediction, their substantial computational and memory demands hinder effective deployment on resource-constrained industrial gateways, while simple linear models offer relative simplicity, they struggle to effectively capture the complex characteristics of IIoT traffic—which often exhibits high nonlinearity, significant burstiness, and a wide distribution of time scales. The inherent time-varying nature of traffic data further complicates achieving high prediction accuracy. To address these interrelated challenges, we propose the lightweight and theoretically grounded DOA-MSDI-CrossLinear framework, redefining traffic forecasting as a hierarchical decomposition–interaction problem. Unlike existing approaches that simply combine components, we recognize that industrial traffic inherently exhibits scale-dependent temporal correlations requiring explicit decomposition prior to interaction modeling. The Multi-Scale Decomposable Mixing (MDM) module implements this concept through adaptive sequence decomposition, while the Dual Dependency Interaction (DDI) module simultaneously captures dependencies across time and channels. Ultimately, decomposed patterns are fed into an enhanced CrossLinear model to predict flow values for specific future time periods. The Dream Optimization Algorithm (DOA) provides bio-inspired hyperparameter tuning that balances exploration and exploitation—particularly suited for the non-convex optimization scenarios typical in industrial forecasting tasks. Extensive experiments on real industrial IoT datasets thoroughly validate the effectiveness of this approach. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

17 pages, 2959 KB  
Article
GABES-LSTM-Based Method for Predicting Draft Force in Tractor Rotary Tillage Operations
by Wenbo Wei, Maohua Xiao, Yue Niu, Min He, Zhiyuan Chen, Gang Yuan and Yejun Zhu
Agriculture 2026, 16(3), 297; https://doi.org/10.3390/agriculture16030297 - 23 Jan 2026
Viewed by 60
Abstract
During rotary tillage operations, the draft force is jointly affected by operating parameters and soil conditions, exhibiting pronounced nonlinearity, time-varying behavior, and historical dependence, which all impose higher requirements on tractor operating parameter matching and traction performance analysis. A draft force prediction method [...] Read more.
During rotary tillage operations, the draft force is jointly affected by operating parameters and soil conditions, exhibiting pronounced nonlinearity, time-varying behavior, and historical dependence, which all impose higher requirements on tractor operating parameter matching and traction performance analysis. A draft force prediction method that is based on a long short-term memory (LSTM) neural network jointly optimized by a genetic algorithm (GA) and the bald eagle search (BES) algorithm, termed GABES-LSTM, is proposed to address the limited prediction accuracy and stability of traditional empirical models and single data-driven approaches under complex field conditions. First, on the basis of the mechanical characteristics of rotary tillage operations, a time-series mathematical description of draft force is established, and the prediction problem is formulated as a multi-input single-output nonlinear temporal mapping driven by operating parameters such as travel speed, rotary speed, and tillage depth. Subsequently, an LSTM-based draft force prediction model is constructed, in which GA is employed for global hyperparameter search and BES is integrated for local fine-grained optimization, thereby improving the effectiveness of model parameter optimization. Finally, a dataset is established using measured field rotary tillage data to train and test the proposed model, and comparative analyses are conducted against LSTM, GA-LSTM, and BES-LSTM models. Experimental results indicate that the GABES-LSTM model outperforms the comparison models in terms of mean absolute percentage error, mean relative error, relative analysis error, and coefficient of determination, effectively capturing the dynamic variation characteristics of draft force during rotary tillage operations while maintaining stable prediction performance under repeated experimental conditions. This method provides effective data support for draft force prediction analysis and operating parameter adjustment during rotary tillage operations. Full article
(This article belongs to the Section Agricultural Technology)
40 pages, 4616 KB  
Article
Model Predictive Control for Dynamic Positioning of a Fireboat Considering Non-Linear Environmental Disturbances and Water Cannon Reaction Forces Based on Numerical Modeling
by Dabin Lee and Sewon Kim
Mathematics 2026, 14(3), 401; https://doi.org/10.3390/math14030401 - 23 Jan 2026
Viewed by 61
Abstract
Dynamic positioning (DP) systems play a critical role in maintaining vessel position and heading under environmental disturbances such as wind, waves, and currents. This study presents a model predictive control (MPC)-based DP system for a fireboat equipped with a rudder–propeller configuration, explicitly accounting [...] Read more.
Dynamic positioning (DP) systems play a critical role in maintaining vessel position and heading under environmental disturbances such as wind, waves, and currents. This study presents a model predictive control (MPC)-based DP system for a fireboat equipped with a rudder–propeller configuration, explicitly accounting for both environmental loads and the reaction force generated during water cannon operation. Unlike conventional DP architectures in which DP control and thrust allocation are treated as separate modules, the proposed framework integrates both functions within a unified MPC formulation, enabling real-time optimization under actuator constraints. Environmental loads are modeled by incorporating nonlinear second-order wave drift effects, while nonlinear rudder–propeller interaction forces are derived through computational fluid dynamics (CFD) analysis and embedded in a control-oriented dynamic model. This modeling approach allows operational constraints, including rudder angle limits and propeller thrust saturation, to be explicitly considered in the control formulation. Simulation results demonstrate that the proposed MPC-based DP system achieves improved station-keeping accuracy, enhanced stability, and increased robustness against combined environmental disturbances and water cannon reaction forces, compared to a conventional PID controller. Full article
(This article belongs to the Special Issue High-Order Numerical Methods and Computational Fluid Dynamics)
22 pages, 2270 KB  
Article
Model Predictive Control for an SMA Actuator Based on an SGPI Model
by Wei Liu, Houzhen Wei, Yan Pang, Xudong Tang, Kai Wang and Wenya Zhou
Aerospace 2026, 13(2), 112; https://doi.org/10.3390/aerospace13020112 - 23 Jan 2026
Viewed by 187
Abstract
Shape memory alloy (SMA) actuators possess unique advantages for aerospace applications, including significant deformation, a high work-to-weight ratio, and structural simplicity. However, SMA actuators exhibit inherently strongly saturated and asymmetric hysteresis characteristics, which cause significant hysteresis in the output response. These hysteresis nonlinearities, [...] Read more.
Shape memory alloy (SMA) actuators possess unique advantages for aerospace applications, including significant deformation, a high work-to-weight ratio, and structural simplicity. However, SMA actuators exhibit inherently strongly saturated and asymmetric hysteresis characteristics, which cause significant hysteresis in the output response. These hysteresis nonlinearities, compounded by process and measurement noise, severely degrade control precision. To overcome these issues, this study proposes a Smoothed Generalized Prandtl–Ishlinskii (SGPI) model to characterize such hysteresis behavior. Based on the SGPI model, we developed a state-space representation for the SMA actuator. Furthermore, an Extended Kalman Filter (EKF) is employed to estimate unmeasurable internal hysteresis states, and these estimates are subsequently utilized as input states for Model Predictive Control (MPC). The simulation results demonstrate that the proposed EKF-MPC approach achieves both rapid dynamic response and high-precision tracking control, effectively compensating for hysteresis nonlinearity while rejecting noise disturbances. Full article
Show Figures

Figure 1

27 pages, 31548 KB  
Article
Large-Signal Stability Analysis of VSC-HVDC System Based on T-S Fuzzy Model and Model-Free Predictive Control
by Zhaozun Sun, Yalan He, Zhe Cao, Jingrui Jiang, Tongkun Li, Pizheng Tan, Kaixuan Mei, Shujie Gu, Tao Yu, Jiashuo Zhang and Linyun Xiong
Electronics 2026, 15(2), 492; https://doi.org/10.3390/electronics15020492 - 22 Jan 2026
Viewed by 48
Abstract
Voltage source converter-based–high voltage direct current (VSC-HVDC) systems exhibit strong nonlinear characteristics that dominate their dynamic behavior under large disturbances, making large-signal stability assessment essential for secure operation. This paper proposes a large-signal stability analysis framework for VSC-HVDC systems. The framework combines a [...] Read more.
Voltage source converter-based–high voltage direct current (VSC-HVDC) systems exhibit strong nonlinear characteristics that dominate their dynamic behavior under large disturbances, making large-signal stability assessment essential for secure operation. This paper proposes a large-signal stability analysis framework for VSC-HVDC systems. The framework combines a unified Takagi–Sugeno (T–S) fuzzy model with a model-free predictive control (MFPC) scheme to enlarge the estimated domain of attraction (DOA) and bring it closer to the true stability region. The global nonlinear dynamics are captured by integrating local linear sub-models corresponding to different operating regions into a single T–S fuzzy representation. A Lyapunov function is then constructed, and associated linear matrix inequality (LMI) conditions are derived to certify large-signal stability and estimate the DOA. To further reduce the conservatism of the LMI-based iterative search, we embed a genetic-algorithm-based optimizer into the model-free predictive controller. The optimizer guides the improved LMI iteration paths and enhances the DOA estimation. Simulation studies in MATLAB 2023b/Simulink on a benchmark VSC-HVDC system confirm the feasibility of the proposed approach and show a less conservative DOA estimate compared with conventional methods. Full article
Show Figures

Figure 1

19 pages, 5390 KB  
Article
Multilevel Modeling and Validation of Thermo-Mechanical Nonlinear Dynamics in Flexible Supports
by Xiangyu Meng, Qingyu Zhu, Qingkai Han and Junzhe Lin
Machines 2026, 14(1), 131; https://doi.org/10.3390/machines14010131 - 22 Jan 2026
Viewed by 31
Abstract
Prediction accuracy for complex flexible support systems is often limited by insufficiently characterized thermo-mechanical couplings and nonlinearities. To address this, we propose a multilevel hybrid parallel–serial model that integrates the thermo-viscous effects of a Squeeze Film Damper (SFD) via a coupled Reynolds–Walther equation, [...] Read more.
Prediction accuracy for complex flexible support systems is often limited by insufficiently characterized thermo-mechanical couplings and nonlinearities. To address this, we propose a multilevel hybrid parallel–serial model that integrates the thermo-viscous effects of a Squeeze Film Damper (SFD) via a coupled Reynolds–Walther equation, the structural flexibility of a squirrel-cage support using Finite Element analysis, and the load-dependent stiffness of a four-point contact ball bearing based on Hertzian theory. The resulting state-dependent system is solved using a force-controlled iterative numerical algorithm. For validation, a dedicated bidirectional excitation test rig was constructed to decouple and characterize the support’s dynamics via frequency-domain impedance identification. Experimental results indicate that equivalent damping is temperature-sensitive, decreasing by approximately 50% as the lubricant temperature rises from 30 °C to 100 °C. In contrast, the system exhibits pronounced stiffness hardening under increasing loads. Theoretical analysis attributes this nonlinearity primarily to the bearing’s Hertzian contact mechanics, which accounts for a stiffness increase of nearly 240%. This coupled model offers a distinct advancement over traditional linear approaches, providing a validated framework for the design and vibration control of aero-engine flexible supports. Full article
Show Figures

Figure 1

17 pages, 4604 KB  
Article
Machine Learning Predictions of the Flexural Response of Low-Strength Reinforced Concrete Beams with Various Longitudinal Reinforcement Configurations
by Batuhan Cem Öğe, Muhammet Karabulut, Hakan Öztürk and Bulent Tugrul
Buildings 2026, 16(2), 433; https://doi.org/10.3390/buildings16020433 - 20 Jan 2026
Viewed by 200
Abstract
There are almost no studies that investigate the flexural behavior of existing reinforced concrete (RC) beams with insufficient concrete strength using machine learning methods. This study investigates the flexural response of low-strength concrete (LSC) RC beams reinforced exclusively with steel rebars, focusing on [...] Read more.
There are almost no studies that investigate the flexural behavior of existing reinforced concrete (RC) beams with insufficient concrete strength using machine learning methods. This study investigates the flexural response of low-strength concrete (LSC) RC beams reinforced exclusively with steel rebars, focusing on the effectiveness of three different longitudinal reinforcement configurations. Nine beams, each measuring 150 × 200 × 1100 mm and cast with C10-grade low-strength concrete, were divided into three groups according to their reinforcement layout: Group 1 (L2L) with two Ø12 mm rebars, Group 2 (L3L) with three Ø12 mm rebars, and Group 3 (F10L3L) with three Ø10 mm rebars. All specimens were tested under three-point bending to evaluate their load–deflection characteristics and failure mechanisms. The experimental findings were compared with ML approaches. To enhance predictive understanding, several ML regression models were developed and trained using the experimental datasets. Among them, the Light Gradient Boosting, K Neighbors Regressor and Adaboost Regressor exhibited the best predictive performance, estimating beam deflections with R2 values of 0.89, 0.90, 0.94, 0.74, 0.84, 0.64, 0.70, 0.82, and 0.72, respectively. The results highlight that the proposed ML models effectively capture the nonlinear flexural behavior of RC beams and that longitudinal reinforcement configuration plays a significant role in the flexural performance of low-strength concrete beams, providing valuable insights for both design and structural assessment. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

48 pages, 4095 KB  
Article
Enhanced Prediction of Rocking and Sliding of Rigid Blocks Using a Modified Semi-Analytical Approach and Optimized Finite Element Modeling
by Idowu Itiola
Buildings 2026, 16(2), 429; https://doi.org/10.3390/buildings16020429 - 20 Jan 2026
Viewed by 73
Abstract
Accurate prediction of the rocking and sliding response of free-standing rigid blocks under seismic excitation remains challenging, particularly in regimes where rocking and sliding are strongly coupled and motion mode transitions occur. This study presents a modified semi-analytical framework and an optimized Finite [...] Read more.
Accurate prediction of the rocking and sliding response of free-standing rigid blocks under seismic excitation remains challenging, particularly in regimes where rocking and sliding are strongly coupled and motion mode transitions occur. This study presents a modified semi-analytical framework and an optimized Finite Element Method (FEM) approach to investigate the nonlinear dynamics of rigid rectangular blocks subjected to initial angular displacements, assuming Coulomb friction and near-inelastic impacts. The proposed semi-analytical formulation explicitly captures the coupling between rocking and sliding motions, enabling systematic identification of rest, rocking, sliding, rocking–sliding, and free-flight response modes. Benchmark comparisons with Veeraraghavan’s classical model show overall agreement in limiting cases but reveal notable differences in intermediate regimes, where motion mode transitions are highly sensitive to friction coefficient and slenderness ratio. These discrepancies arise from the ability of the present formulation to resolve transitional rocking–sliding behavior that is not fully represented in uncoupled or limiting-case assumptions. Complementary FEM simulations employing both rigid and deformable body representations further elucidate the role of contact modeling and energy dissipation. While rigid-body FEM models offer computational efficiency, they exhibit localized penetration and residual bouncing due to contact enforcement limitations. In contrast, deformable FEM models more closely approximate near-inelastic collision behavior and dissipate impact energy more effectively, albeit at higher computational cost. The combined semi-analytical and FEM results provide a robust framework for interpreting motion mode transitions, quantifying contact and penetration effects, and defining the applicability limits of simplified rigid-body models. These findings offer practical guidance for selecting appropriate modeling strategies for seismic response assessment of free-standing rigid blocks. Full article
(This article belongs to the Special Issue Dynamic Response Analysis of Structures Under Wind and Seismic Loads)
Show Figures

Figure 1

Back to TopTop