Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = nonlinear higher mode responses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3579 KiB  
Article
Probabilistic Analysis of Shield Tunnel Responses to Surface Surcharge Considering Subgrade Nonlinearity and Variability
by Ping Song, Zhisheng Xu, Zuxian Wang and Yuexiang Lin
Mathematics 2025, 13(16), 2620; https://doi.org/10.3390/math13162620 - 15 Aug 2025
Viewed by 139
Abstract
Accidental surface surcharge will generate additional load in the stratum, which then leads to unfavorable impacts on the underlying shield tunnel. This paper proposes a probabilistic analysis method to address this problem. In this framework, an improved soil–tunnel interaction model considering the nonlinearity [...] Read more.
Accidental surface surcharge will generate additional load in the stratum, which then leads to unfavorable impacts on the underlying shield tunnel. This paper proposes a probabilistic analysis method to address this problem. In this framework, an improved soil–tunnel interaction model considering the nonlinearity of the subgrade is established at first, and the Newton–Raphson iterative solution algorithm is employed to acquire tunnel responses. Then, the random field models of the initial stiffness and the ultimate reaction of the subgrade are constructed to realize the spatial variability of soil properties. Finally, with the aid of the Monte Carlo Simulation method, the probabilistic analyses on tunnel responses are performed by combining the improved soil–tunnel interaction model and the random field model of subgrade parameters. The applicability and the superiority of the improved soil–tunnel interaction model are validated by a historical case from Shanghai Metro Line 9. The results prove that the traditional linear foundation model will overestimate the bearing capacity of the subgrade, thereby leading to overly optimistic assessments of surcharge-induced tunnel responses. This shortcoming could be addressed by the improved nonlinear soil–tunnel interaction model. The influences of spatial variability of soil properties on tunnel responses are nonnegligible. The stronger the uncertainties of subgrade parameters, in terms of the initial stiffness and the ultimate reaction concerned in this work, the higher the failure risk of the shield tunnel subjected to the surcharge. The failure modes of the tunnel subjected to the surcharge are controlled by the longitudinal curvature radius of the tunnel within the current assessment criteria, which means if this evaluation indicator can be restricted within the allowable value, then the opening of the circumferential joint and the longitudinal settlement can also meet the requirements. Compared with the influences of the uncertainty of the subgrade ultimate reaction, the spatial variability of the subgrade initial stiffness has greater influences on tunnel failure risk under the same conditions. An increase in the range of surcharge will raise the risk of tunnel failure, while the influence of tunnel burial depth is just the opposite. Full article
Show Figures

Figure 1

23 pages, 1445 KiB  
Article
Inclined MHD Flow of Carreau Hybrid Nanofluid over a Stretching Sheet with Nonlinear Radiation and Arrhenius Activation Energy Under a Symmetry-Inspired Modeling Perspective
by Praveen Kumari, Hemant Poonia, Pardeep Kumar and Md Aquib
Symmetry 2025, 17(8), 1330; https://doi.org/10.3390/sym17081330 - 15 Aug 2025
Viewed by 281
Abstract
This work investigates the intricate dynamics of the Carreau hybrid nanofluid’s inclined magnetohydrodynamic (MHD) flow, exploring both active and passive control modes. The study incorporates critical factors, including Arrhenius activation energy across a stretched sheet, chemical interactions, and nonlinear thermal radiation. The formulation [...] Read more.
This work investigates the intricate dynamics of the Carreau hybrid nanofluid’s inclined magnetohydrodynamic (MHD) flow, exploring both active and passive control modes. The study incorporates critical factors, including Arrhenius activation energy across a stretched sheet, chemical interactions, and nonlinear thermal radiation. The formulation of the boundary conditions and governing equations is inherently influenced by symmetric considerations in the physical geometry and flow assumptions. Such symmetry-inspired modeling facilitates dimensional reduction and numerical tractability. The analysis employs realistic boundary conditions, including convective heat transfer and control of nanoparticle concentration, which are solved numerically using MATLAB’s bvp5c solver. Findings indicate that an increase in activation energy results in a steeper concentration boundary layer under active control, while it flattens in passive scenarios. An increase in the Biot number (Bi) and relaxation parameter (Γ) enhances heat transfer and thermal response, leading to a rise in temperature distribution in both cases. Additionally, the 3D surface plot illustrates elevation variations from the surface at low inclination angles, narrowing as the angle increases. The Nusselt number demonstrates a contrasting trend, with thermal boundary layer thickness increasing with higher radiation parameters. A graphical illustration of the average values of skin friction, Nusselt number, and Sherwood number for both active and passive scenarios highlights the impact of each case. Under active control, the Brownian motion’s effect diminishes, whereas it intensifies in passive control. Passive techniques, such as zero-flux conditions, offer effective and low-maintenance solutions for systems without external regulation, while active controls, like wall heating and setting a nanoparticle concentration, maximize heat and mass transfer in shear-thinning Carreau fluids. Full article
(This article belongs to the Special Issue Symmetrical Mathematical Computation in Fluid Dynamics)
Show Figures

Figure 1

27 pages, 17879 KiB  
Article
Investigation of Vortex-Induced Vibration Characteristics of Small-Scale and Large-Scale Risers in Uniform Oscillatory Flow
by Shuo Gao and Enhao Wang
J. Mar. Sci. Eng. 2025, 13(8), 1552; https://doi.org/10.3390/jmse13081552 - 13 Aug 2025
Viewed by 265
Abstract
A time-domain semi-empirical simulation model based on the wake oscillator approach is developed to investigate the coupled in-line (IL) and cross-flow (CF) vortex-induced vibration (VIV) of a flexible riser in uniform oscillatory flow. A novel nondimensionalization method is introduced by utilizing the dimensionless [...] Read more.
A time-domain semi-empirical simulation model based on the wake oscillator approach is developed to investigate the coupled in-line (IL) and cross-flow (CF) vortex-induced vibration (VIV) of a flexible riser in uniform oscillatory flow. A novel nondimensionalization method is introduced by utilizing the dimensionless parameter StKC, which effectively replicates the fundamental lift frequency caused by the complex vortex motion around the riser. The structural responses of the riser are described using the Euler–Bernoulli beam theory, and the van der Pol equations are used to calculate the fluid forces acting on the riser, which can replicate the nonlinear vortex dynamics. The coupled equations are discretized in both time and space with a finite difference method (FDM), enabling iterative computations of the VIV responses of the riser. A total of six cases are examined with four different Keulegan–Carpenter (KC) numbers (i.e., KC=31, 56, 121, and 178) to investigate the VIV characteristics of small-scale and large-scale risers in uniform oscillatory flow. Key features such as intermittent VIV, amplitude modulation, and hysteresis, as well as the VIV development process, are analyzed in detail. The simulation results show good agreement with the experimental data, indicating that the proposed numerical model is able to reliably reproduce the riser VIV in uniform oscillatory flow. Overall, the VIV characteristics of the large-scale riser resemble those of the small-scale riser but exhibit higher vibration modes, stronger traveling wave features, and more complex energy transfer mechanisms. Full article
Show Figures

Figure 1

21 pages, 7266 KiB  
Article
High-Performance NIR Laser-Beam Shaping and Materials Processing at 350 W with a Spatial Light Modulator
by Shuchen Zuo, Shuai Wang, Cameron Pulham, Yin Tang, Walter Perrie, Olivier J. Allegre, Yue Tang, Martin Sharp, Jim Leach, David J. Whitehead, Matthew Bilton, Wajira Mirihanage, Paul Mativenga, Stuart P. Edwardson and Geoff Dearden
Photonics 2025, 12(6), 544; https://doi.org/10.3390/photonics12060544 - 28 May 2025
Viewed by 1477
Abstract
Shaping or splitting of a Gaussian beam is often desired to optimise laser–material interactions, improving throughput and quality. This can be achieved holographically using liquid crystal-on-silicon spatial light modulators (LC-SLMs). Until recently, maximum exposure has been limited to circa 120 W average power [...] Read more.
Shaping or splitting of a Gaussian beam is often desired to optimise laser–material interactions, improving throughput and quality. This can be achieved holographically using liquid crystal-on-silicon spatial light modulators (LC-SLMs). Until recently, maximum exposure has been limited to circa 120 W average power with a Gaussian profile, restricting potential applications due to the non-linear (NL) phase response of the liquid crystal above this threshold. In this study, we present experimental tests of a new SLM device, demonstrating high first-order diffraction efficiency of η = 0.98 ± 0.01 at 300 W average power and a phase range Δφ > 2π at P = 383 W, an exceptional performance. The numerically calculated device temperature response with power closely matches that measured, supporting the higher power-handling capability. Surface modification of mild steel and molybdenum up to P = 350 W exposure is demonstrated when employing a single-mode (SM) fibre laser source. Exposure on mild steel with a vortex beam (m = +6) displays numerous ringed regions with varying micro-structures and clear elemental separation created by the radial heat flow. On molybdenum, with multi-spot Gaussian exposure, both MoO3 films and recrystallisation rings were observed, exposure-dependent. The step change in device capability will accelerate new applications for this LC-SLM in both subtractive and additive manufacturing. Full article
(This article belongs to the Special Issue Fundamentals and Applications of Vortex Beams)
Show Figures

Figure 1

19 pages, 8026 KiB  
Article
Analysis of Wind-Induced Vibration Response in Additional Conductors and Fittings Based on the Finite Element Method
by Like Pan, Aobo Yang, Tong Xing, Yuan Yuan, Wei Wang and Yang Song
Energies 2025, 18(10), 2487; https://doi.org/10.3390/en18102487 - 12 May 2025
Viewed by 371
Abstract
Wind-induced vibrations in additional conductors on electrified railway catenary systems pose a risk to operational safety and long-term structural performance. This study investigates the dynamic response of these components under wind excitation through nonlinear finite element analysis. A wind speed spectrum model is [...] Read more.
Wind-induced vibrations in additional conductors on electrified railway catenary systems pose a risk to operational safety and long-term structural performance. This study investigates the dynamic response of these components under wind excitation through nonlinear finite element analysis. A wind speed spectrum model is developed using wind tunnel tests and field data, and the autoregressive method is used to generate realistic wind fields incorporating longitudinal, lateral, and vertical components. A detailed finite element model of the additional conductors and fittings was constructed using the Absolute Nodal Coordinate Formulation to account for large deformations. Time domain simulations with the Newmark-β method were conducted to analyze vibration responses. The results show that increased wind speeds lead to greater vibration amplitudes, and the stochastic nature of wind histories significantly affects vibration modes. Higher conductor tension effectively reduces vibrations, while longer spans increase flexibility and susceptibility to oscillation. The type of fitting also influences system stability; support-type fittings demonstrate lower stress fluctuations, reducing the likelihood of resonance. This study enhances understanding of wind-induced responses in additional conductor systems and informs strategies for vibration mitigation in high-speed railway infrastructure. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

30 pages, 13188 KiB  
Article
Research on Sensorless Control System of Permanent Magnet Synchronous Motor Based on Improved Fuzzy Super Twisted Sliding Mode Observer
by Haoran Jiang, Xiaodong Lv, Xiaoqi Fan and Guangming Zhang
Electronics 2025, 14(9), 1900; https://doi.org/10.3390/electronics14091900 - 7 May 2025
Viewed by 613
Abstract
In order to achieve precise vector control of permanent magnet synchronous motors and maintain reliability during operation, it is necessary to obtain more accurate rotor position and rotor angular velocity. However, the installation of sensors can lead to increased motor volume and cost, [...] Read more.
In order to achieve precise vector control of permanent magnet synchronous motors and maintain reliability during operation, it is necessary to obtain more accurate rotor position and rotor angular velocity. However, the installation of sensors can lead to increased motor volume and cost, so it is necessary to use sensorless estimation of rotor position and angular velocity. The switching function of traditional sliding mode observers is a discontinuous sign function, which can lead to serious chattering problems and phase lag problems caused by low-pass filters. Therefore, this article proposes an improved fuzzy hyper spiral sliding mode observer based on the traditional sliding mode observer. Firstly, the observer takes the current as the observation object and uses the difference between the actual current and the observed current and its derivative as the fuzzy input. The sliding mode gain is used as the fuzzy output to tune the parameters of the sliding mode gain. Secondly, in response to the chattering problem caused by traditional sliding mode control methods, the hyper spiral algorithm is adopted and a sin (arctan(nx)) nonlinear function is introduced instead of the sign function as the switching function to achieve switch continuous sliding mode control, thereby suppressing the system’s chattering. Finally, the rotor position information is extracted through an orthogonal normalized phase-locked loop to improve observation accuracy. For time-varying nonlinear permanent magnet synchronous motor control systems, fractional order PID can improve the control accuracy of the system and adjust the dynamic performance of the system more quickly compared to traditional PID control algorithms. Therefore, fractional order PID is used instead of traditional PID controllers. By comparing simulation experiments with traditional sliding mode observers and fuzzy improved adaptive sliding mode observers, it was proven that the improved fuzzy super spiral sliding mode observer can effectively suppress chattering and extract rotor position with higher accuracy, a faster response rate, and better dynamic performance. This provides a new approach for the sensorless control strategy of permanent magnet synchronous motors. Full article
Show Figures

Figure 1

16 pages, 2584 KiB  
Article
Comparative Study of Different Linear Analysis for Seismic Resistance of Buildings According to Eurocode 8
by Ivelin Ivanov and Dimitar Velchev
Vibration 2025, 8(2), 21; https://doi.org/10.3390/vibration8020021 - 3 May 2025
Viewed by 664
Abstract
Structural design in Europe should strongly follow EN 1998-1 or so called Eurocode 8 (EC8), for a seismic resistance assessment of structures. Eurocode 8 recommends two linear methods and two nonlinear methods. The nonlinear methods require some knowledge about the nonlinear behavior of [...] Read more.
Structural design in Europe should strongly follow EN 1998-1 or so called Eurocode 8 (EC8), for a seismic resistance assessment of structures. Eurocode 8 recommends two linear methods and two nonlinear methods. The nonlinear methods require some knowledge about the nonlinear behavior of beams and joints in the structure, which makes the linear methods preferable. An alternative method of the seismic loading representation is to use artificial accelerograms with the same or similar spectra as the response spectrum used for modal spectrum analysis. Using an artificial diagram, three approaches in finite element methods exist: explicit time integration, implicit time integration, and modal dynamics. A typical six-story steel structure is modeled using the finite element method, and all linear methods are examined in both horizontal directions. The structure is examined by the modal response spectrum method using sufficient modes, as well as with and without the residual mode. The results are compared, and conclusions concerning the efficiency and precision of methods are deduced. Time history loading by accelerograms reveals higher dynamics and stress in the structural response than the modal response spectrum and lateral forces methods. The time history analysis methods have almost no difference in accuracy, and the modal dynamics method is the cheapest one. Full article
Show Figures

Figure 1

24 pages, 26520 KiB  
Article
Experimental and Numerical Study on Damage Characteristics of Web Frame Structure Under Conical Impact
by Zhengjie Li, Caixia Jiang, Gaofei Wang, Nan Zhao, Yue Lu and Kun Liu
J. Mar. Sci. Eng. 2025, 13(5), 893; https://doi.org/10.3390/jmse13050893 - 30 Apr 2025
Viewed by 313
Abstract
This paper investigates the dynamic performance of web frame structures under the impact of a conical hammer head. Compared with existing research on flat plates and stiffened panels, web frame structures exhibit significant differences in load-bearing mechanisms and design principles. To address these [...] Read more.
This paper investigates the dynamic performance of web frame structures under the impact of a conical hammer head. Compared with existing research on flat plates and stiffened panels, web frame structures exhibit significant differences in load-bearing mechanisms and design principles. To address these limitations, a series of drop-weight impact tests under different impact conditions are conducted, and the effects of drop heights on the dynamic responses of the web frame structure are systematically analyzed. By measuring the impact force responses and damage shapes, nonlinear dynamic characteristics and damage modes of the web frame structures under conical hammer head impacts can be revealed. The results indicate that higher drop heights lead to more severe damage areas, and damage area is more concentrated in the contact area of the indenter. Meanwhile, the peak impact force increases from 429.06 MN to 606.62 MN as the drop height increases from 1 m to 2.5 m, indicating a 41.38% rise. Additionally, the maximum energy absorbed by the structure reaches 62.89 KJ, and the energy loss ratio ranges from 18.58% to 30.73%. The findings offer critical theoretical insights and technical support for the optimization of impact resistant designs in web frame structures. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

43 pages, 31984 KiB  
Article
Advanced Seismic Analysis of a 44-Story Reinforced Concrete Building: A Comparison of Code-Based and Performance Based Design Approaches
by Mistreselasie Abate, Ana Catarina Jorge Evangelista and Vivian W. Y. Tam
Infrastructures 2025, 10(4), 93; https://doi.org/10.3390/infrastructures10040093 - 9 Apr 2025
Viewed by 2276
Abstract
Conventional seismic design regulations, even when rigorously adapted to local conditions, often fail to ensure the resilience of reinforced concrete buildings. Code-based prescriptive methods rely on simplified assumptions that do not fully capture the complex nonlinear behavior of structures during strong earthquakes, potentially [...] Read more.
Conventional seismic design regulations, even when rigorously adapted to local conditions, often fail to ensure the resilience of reinforced concrete buildings. Code-based prescriptive methods rely on simplified assumptions that do not fully capture the complex nonlinear behavior of structures during strong earthquakes, potentially underestimating seismic demands and structural vulnerabilities. This study evaluates the seismic performance of a 44-story reinforced concrete building designed per the EN-2015 code, currently adopted in Ethiopia. The building was analyzed using Response Spectrum Analysis (RSA), Linear Dynamic Time History Analysis (LDTHA), and Classical Modal Analysis in ETABS v19, with 11 ground motions from the PEER database. Ground motion scaling was performed using SeismoMatch and ETABS. Results indicate that LDTHA predicts 25.68% higher maximum story displacement, 26.49% greater inter-story drift ratios, 15.35% higher story shear, and 27.5% greater overturning moments compared to RSA. The fundamental time period for the first mode was found to be 3.956 s in Classical Modal Analysis, 3.806 s in RSA, and 3.883 s in LDTHA. These discrepancies highlight the limitations of code-based design and underscore the necessity of performance-based seismic design for achieving safer, more resilient structures in high-seismic regions. Full article
Show Figures

Figure 1

29 pages, 10470 KiB  
Article
Performance-Based Design Assessment of a Chilean Prescriptive R.C. Shear Wall Building Using Nonlinear Static Analysis
by Mario Gutiérrez, Juan C. Vielma-Quintero, Jorge Carvallo and Juan C. Vielma
Buildings 2025, 15(7), 1188; https://doi.org/10.3390/buildings15071188 - 5 Apr 2025
Cited by 1 | Viewed by 559
Abstract
Performance-based seismic design (PBD) has emerged as a key approach for rationalizing prescriptive code provisions and improving the explicit assessment of structural performance. In Chile, where reinforced concrete shear wall buildings are the predominant structural typology, evaluating their seismic response beyond traditional linear [...] Read more.
Performance-based seismic design (PBD) has emerged as a key approach for rationalizing prescriptive code provisions and improving the explicit assessment of structural performance. In Chile, where reinforced concrete shear wall buildings are the predominant structural typology, evaluating their seismic response beyond traditional linear methodologies is crucial. This study assesses the seismic performance of a representative Chilean shear wall residential building using the ACHISINA manual’s performance-based seismic design framework. A nonlinear static (pushover) analysis is performed to verify compliance with prescribed design criteria, incorporating capacity design principles and a moment envelope approach to prevent premature yielding in upper stories. The results confirm that the building meets the performance objectives for both Immediate Occupancy and Additional Deformation Capacity limit states. The application of capacity design effectively controls shear demand, preventing brittle failure, while the flexural design ensures the formation of the yielding mechanism (plastic hinge) at the intended critical section. Additionally, the study highlights the limitations of pushover analysis in capturing higher-mode effects and recommends complementary nonlinear time-history analysis (NLTHA) for a more comprehensive assessment. The computed response reduction factors exceed those used in the prescriptive design, suggesting a conservatively safe approach in current Chilean practice. This research reinforces the need to integrate performance-based methodologies into Chilean seismic design regulations, particularly for shear wall structures. It provides valuable insights into the advantages and limitations of current design practices and proposes improvements for future applications. Full article
Show Figures

Figure 1

18 pages, 2889 KiB  
Article
Experimental Study of Flame Dynamics in a Triple-Injector Swirling Nonpremixed Combustor Under Different Thermoacoustic Self-Excited Instability Modes
by Xiang Zhang, Suofang Wang and Yong Liu
Sensors 2025, 25(3), 850; https://doi.org/10.3390/s25030850 - 30 Jan 2025
Viewed by 954
Abstract
Combustion instability is one of the prominent and unavoidable problems in the design of high-performance propulsion systems. This study investigates the heat release rate (HRR) responses in a triple-nozzle swirling nonpremixed combustor under various thermoacoustic self-excited instability modes. Dynamic pressure sensors and high-speed [...] Read more.
Combustion instability is one of the prominent and unavoidable problems in the design of high-performance propulsion systems. This study investigates the heat release rate (HRR) responses in a triple-nozzle swirling nonpremixed combustor under various thermoacoustic self-excited instability modes. Dynamic pressure sensors and high-speed imaging were employed to capture the pressure oscillations within the combustion chamber and the characteristics of flame dynamics, respectively. The results reveal nonlinear bifurcations in the self-excited thermoacoustic instabilities at different equivalence ratios. Significant differences in flame dynamics were observed across the instability modes. In lower frequency modes, the fluctuations in flame length contribute to the driving force of thermoacoustic instability. In relatively high-frequency modes, HRR fluctuations are dominated by the rolling up and convective processes of wrinkles on the flame surface. Alternating regions of gain and damping are observed on the flame surface. At even higher frequencies, both aforementioned HRR fluctuation patterns are simultaneously observed. These findings provide a deeper understanding of the complex interactions between flame dynamics and thermoacoustic instabilities, offering new insights into the design and optimization of nonpremixed combustion systems. The study underscores the importance of considering the spatial and temporal variations in flame behavior to effectively predict and control thermoacoustic instabilities. Full article
(This article belongs to the Special Issue Sensors Technologies for Measurements and Signal Processing)
Show Figures

Figure 1

14 pages, 3064 KiB  
Article
Ring Beam Modulation-Assisted Laser Welding on Dissimilar Materials for Automotive Battery
by Se-Hoon Choi, Jong-Hyun Kim and Hae-Woon Choi
J. Manuf. Mater. Process. 2025, 9(2), 28; https://doi.org/10.3390/jmmp9020028 - 21 Jan 2025
Cited by 1 | Viewed by 1403
Abstract
This paper investigates Ring Beam Modulation-assisted Laser (RBML) welding as a novel approach for joining dissimilar materials, specifically aluminum and copper, which are essential in high-performance applications such as electric vehicle batteries and aerospace components. The study aims to address challenges such as [...] Read more.
This paper investigates Ring Beam Modulation-assisted Laser (RBML) welding as a novel approach for joining dissimilar materials, specifically aluminum and copper, which are essential in high-performance applications such as electric vehicle batteries and aerospace components. The study aims to address challenges such as thermal mismatches, brittle intermetallic compounds, and structural defects that hinder traditional welding methods. The research combines experimental and computational analyses to evaluate the impact of heat input distributions and laser modulation parameters on weld quality and strength. Three welding cases are compared: fixed center beam with variable ring beam outputs, variable center beam with fixed ring outputs, and a wobble-mode beam to enhance interfacial bonding. Computational modeling supports the optimization process by simulating heat flows and material responses, exploring various shape factors, and guiding parameter selection. Key findings include a nonlinear relationship between heat input and welding strength across the cases. Case 1 demonstrates improved weld strength with higher ring beam input, while Case 2 achieves excellent reliability with relatively lower inputs. Case 3 introduces wobble welding, yielding superior resolution and consistent weld quality. These results confirm that precise ring beam modulation enhances weld reliability, minimizes thermal distortions, and optimizes energy consumption. The manuscript advances the state of knowledge in laser welding technology by demonstrating a scalable, energy-efficient method for joining dissimilar materials. This contribution supports the fabrication of lightweight, high-reliability assemblies, paving the way for innovative applications in the automotive, medical, aerospace, and shipbuilding industries. Full article
(This article belongs to the Special Issue Advances in Dissimilar Metal Joining and Welding)
Show Figures

Figure 1

37 pages, 22487 KiB  
Article
An Enhanced Second-Order Terminal Sliding Mode Control Based on the Super-Twisting Algorithm Applied to a Five-Phase Permanent Magnet Synchronous Generator for a Grid-Connected Wind Energy Conversion System
by Ben ouadeh Douara, Abdellah Kouzou, Ahmed Hafaifa, Jose Rodriguez and Mohamed Abdelrahem
Energies 2025, 18(2), 355; https://doi.org/10.3390/en18020355 - 15 Jan 2025
Cited by 2 | Viewed by 1188
Abstract
This paper presents the application of a proposed hybrid control strategy that is designed to enhance the performance and robustness of a grid-connected wind energy conversion system (WECS) using a Five-Phase Permanent Magnet Synchronous Generator (FP-PMSG). The proposed approach combines the second-order terminal [...] Read more.
This paper presents the application of a proposed hybrid control strategy that is designed to enhance the performance and robustness of a grid-connected wind energy conversion system (WECS) using a Five-Phase Permanent Magnet Synchronous Generator (FP-PMSG). The proposed approach combines the second-order terminal sliding mode control technique (SO-STA) with the super-twisting algorithm (STA), with the main goal of benefitting from both their advantages while addressing their limitations. Indeed, the sole application of the SO-STA ensures rapid convergence and robust performances in nonlinear systems, but it leads to chattering and reduces the whole system’s efficiency. Therefore, by incorporating the STA, the obtained hybrid control can mitigate this issue by ensuring smoother control actions and a superior dynamic response. This designed hybrid control strategy improves the adaptability of the control system to wind fluctuations and enhances the system’s robustness against external disturbances and uncertainties, leading to higher reliability and efficiency in the wind energy conversion system. Furthermore, the proposed hybrid control allows optimizing the power extraction and boosting the WECS’s efficiency. It is worth clarifying that, besides this proposed control, a sliding mode controller is used for the grid side converter (GSC) and DC link voltage to ensure stable power transfer to the grid. The obtained simulation results demonstrate the effectiveness of the proposed strategy in improving the stability, robustness, and efficiency of the studied WECS under dynamic conditions, creating a promising solution for control in renewable energy systems operating under severe conditions. Full article
(This article belongs to the Special Issue Advances in Wind Turbines)
Show Figures

Figure 1

21 pages, 7027 KiB  
Article
AVR Fractional-Order Controller Based on Caputo–Fabrizio Fractional Derivatives and Integral Operators
by Andriy Lozynskyy, Jacek Kozyra, Andriy Kutsyk, Zbigniew Łukasik, Aldona Kuśmińska-Fijałkowska, Lidiia Kasha and Andriy Lishchuk
Energies 2024, 17(23), 5913; https://doi.org/10.3390/en17235913 - 25 Nov 2024
Viewed by 696
Abstract
The application of a fractional-order controller (FOC) using the Caputo–Fabrizio representation in the automatic voltage regulation (AVR) system of a synchronous generator is shown in this paper. The mathematical model of the system is created and the adequacy of the model is confirmed. [...] Read more.
The application of a fractional-order controller (FOC) using the Caputo–Fabrizio representation in the automatic voltage regulation (AVR) system of a synchronous generator is shown in this paper. The mathematical model of the system is created and the adequacy of the model is confirmed. The efficiency of the proposed regulator in different operating regimes is demonstrated. In particular, the proposed controller improves voltage regulation in a wide range of changes in the coordinates that characterize the power system operation mode, and it increases the system’s robustness to both uncertainties and nonlinearities that often occur in power systems. The synthesized fractional-order regulator provides higher response and control accuracy compared to traditional regulators used in automatic voltage regulation (AVR) systems. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

19 pages, 8136 KiB  
Article
Evaluation of Material Integrity Using Higher-Order Harmonic Generation in Propagating Shear Horizontal Ultrasonic Waves
by Rafał Radecki and Wiesław J. Staszewski
Materials 2024, 17(16), 3960; https://doi.org/10.3390/ma17163960 - 9 Aug 2024
Cited by 3 | Viewed by 1230
Abstract
Material nonlinearity is explored for the assessment of structural integrity. Crack–wave interactions are of particular interest. The major focus is on higher-order harmonics, generated in propagating shear horizontal (SH) waves. These harmonics are generated due to global material nonlinearity and local effects such [...] Read more.
Material nonlinearity is explored for the assessment of structural integrity. Crack–wave interactions are of particular interest. The major focus is on higher-order harmonics, generated in propagating shear horizontal (SH) waves. These harmonics are generated due to global material nonlinearity and local effects such as fatigue cracks. The theoretical background of the proposed method is explained. The method is examined using numerical simulations and experimental tests. The former involves the Local Interaction Simulation Approach (LISA), implemented for the nonlinear shear horizontal wavefield. The latter is based on a high-frequency shear excitation approach. Experimental tests are conducted using a series of beam specimens with fatigue cracks. Low-profile, surface-bonded piezoceramic shear actuators are used for excitation. The excitation frequency is selected to minimize the number of generated modes in the examined specimens. Nonlinear ultrasonic responses are collected using a non-contact laser vibrometer. The results show that higher-order harmonic generation—based on shear horizontal wave propagation—can be used for crack detection in the presence of global material nonlinearity. Full article
(This article belongs to the Special Issue Fatigue and Fracture Mechanics of Materials)
Show Figures

Figure 1

Back to TopTop