Investigation of Vortex-Induced Vibration Characteristics of Small-Scale and Large-Scale Risers in Uniform Oscillatory Flow
Abstract
1. Introduction
- (i)
- The newly developed time-domain semi-empirical model, which is based on the wake oscillator approach, can accurately predict the coupled IL and CF VIV of a flexible riser in uniform oscillatory flow. The model incorporates a nondimensional parameter , which is crucial in characterizing the fundamental lift force frequency as a result of the vortex motion in the uniform oscillatory flow.
- (ii)
- The proposed model is applicable to small-scale as well as large-scale risers, providing high computational accuracy and efficiency, making it suitable for practical engineering applications.
- (iii)
- The simulation results effectively replicate the key features of the VIV in uniform oscillatory flow, as observed in the previous experimental studies. These characteristics include intermittent VIV, the presence of higher harmonic frequency components, hysteresis phenomenon, and the development process of the VIV.
- (iv)
- The analysis shows that compared to the small-scale riser, the large-scale riser exhibits more complex VIV responses, featuring more pronounced traveling wave behaviors and more complicated energy transfer mechanisms.
2. Description of Time-Domain Semi-Empirical Model
2.1. Governing Equations
2.2. Fluid Forces and Wake Oscillator Formulations
2.3. Numerical Schemes
3. Problem Description and Model Validation
3.1. Problem Description
3.2. Validation Tests
4. Results and Discussion
4.1. VIV Characteristics of Small-Scale Riser
4.1.1. Spatial–Temporal Evolutions
4.1.2. Time-Sharing Characteristics
4.2. VIV Characteristics of Large-Scale Riser
4.2.1. Spatial–Temporal Evolutions
4.2.2. Time-Sharing Characteristics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Numerical Solution of Governing Equations
Appendix A.1. Central Difference Scheme
Appendix A.2. Solution Procedures
References
- Williamson, C.H.K.; Govardhan, R. Vortex-induced vibrations. Annu. Rev. Fluid Mech. 2004, 36, 413–455. [Google Scholar] [CrossRef]
- Hong, K.S.; Shah, U.H. Vortex-induced vibrations and control of marine risers: A review. Ocean Eng. 2018, 152, 300–315. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, F.; Wang, E.; Xiao, Q.; Li, L. The effect of base column on vortex-induced vibration of a circular cylinder. Ocean Eng. 2020, 196, 106822. [Google Scholar] [CrossRef]
- Wang, J.; Fan, D.; Lin, K. A review on flow-induced vibration of offshore circular cylinders. J. Hydrodyn. 2020, 32, 415–440. [Google Scholar] [CrossRef]
- Ma, L.; Lin, K.; Fan, D.; Wang, J.; Triantafyllou, M.S. Flexible cylinder flow-induced vibration. Phys. Fluids 2022, 34, 011302. [Google Scholar] [CrossRef]
- Xu, W.; He, Z.; Zhai, L.; Wang, E. Vortex-induced vibration prediction of an inclined flexible cylinder based on machine learning methods. Ocean Eng. 2023, 282, 114956. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, E.; Bao, Y.; Xiao, Q.; Li, X.; Incecik, A.; Lin, B. VIV of two rigidly coupled side-by-side cylinders at subcritical Re. Int. J. Mech. Sci. 2024, 267, 108961. [Google Scholar] [CrossRef]
- Huera-Huarte, F.J. Vortex-induced vibration of flexible cylinders in cross-flow. Annu. Rev. Fluid Mech. 2025, 57, 285–310. [Google Scholar] [CrossRef]
- Zhao, M. Numerical investigation of two-degree-of-freedom vortex-induced vibration of a circular cylinder in oscillatory flow. J. Fluids Struct. 2013, 39, 41–59. [Google Scholar] [CrossRef]
- Wu, J.; Jin, J.; Yin, D.; Lie, H.; Passano, E.; Sævik, S.; Tognarelli, M.A.; Grytøyr, G.; Andersen, T.; Karunakaran, D. Time domain VIV analysis tool VIVANA-TD: Validations and improvements. In Proceedings of the ASME 2020 39th International Conference on Offshore Mechanics and Arctic Engineering, Virtual, 3–7 August 2020. [Google Scholar]
- Fu, S.X.; Wang, J.G.; Baarholm, R.; Wu, J.; Larsen, C.M. Features of vortex-induced vibration in oscillatory flow. J. Offshore Mech. Arct. Eng. 2014, 136, 011801. [Google Scholar] [CrossRef]
- Ren, H.; Zhang, M.; Wang, Y.; Xu, Y.; Fu, S.; Fu, X.; Zhao, B. Drag and added mass coefficients of a flexible pipe undergoing vortex-induced vibration in an oscillatory flow. Ocean Eng. 2020, 210, 107541. [Google Scholar] [CrossRef]
- Ren, H.; Zhang, M.; Cheng, J.; Cao, P.; Xu, Y.; Fu, S.; Liu, C. Experimental investigation on vortex-induced vibration of a flexible pipe under higher mode in an oscillatory flow. J. Mar. Sci. Eng. 2020, 8, 408. [Google Scholar] [CrossRef]
- Zhang, M.; Fu, S.; Ren, H.; Xu, Y.; Qin, X. Experimental investigation on vortex-induced force of a flexible pipe under oscillatory flow. Appl. Ocean Res. 2022, 126, 103269. [Google Scholar] [CrossRef]
- Li, X.; Yuan, Y.; Duan, Z.; Xue, H.; Tang, W. Experimental investigation on vortex-induced vibration of a flexible pipe in combined uniform and oscillatory flow. Ocean Eng. 2023, 285, 115375. [Google Scholar] [CrossRef]
- An, H.; Cheng, L.; Zhao, M. Direct numerical simulation of oscillatory flow around a circular cylinder at low Keulegan–Carpenter number. J. Fluid Mech. 2010, 666, 77–103. [Google Scholar] [CrossRef]
- Zhao, M.; Cheng, L.; Zhou, T. Three-dimensional numerical simulation of oscillatory flow around a circular cylinder at right and oblique attacks. Ocean Eng. 2011, 38, 2056–2069. [Google Scholar] [CrossRef]
- Zhao, M.; Cheng, L.; An, H. Numerical investigation of vortex-induced vibration of a circular cylinder in transverse direction in oscillatory flow. Ocean Eng. 2012, 41, 39–52. [Google Scholar] [CrossRef]
- An, H.; Cheng, L.; Zhao, M. Two-dimensional and three-dimensional simulations of oscillatory flow around a circular cylinder. Ocean Eng. 2015, 109, 270–286. [Google Scholar] [CrossRef]
- Pearcey, T.; Zhao, M.; Xiang, Y.; Liu, M. Vibration of two elastically mounted cylinders of different diameters in oscillatory flow. Appl. Ocean Res. 2017, 69, 173–190. [Google Scholar] [CrossRef]
- Zhao, M.; Pearcey, T.; Cheng, L.; Xiang, Y. Three-dimensional numerical simulations of vortex-induced vibrations of a circular cylinder in oscillatory flow. J. Waterw. Port Coast. Ocean Eng. 2017, 143, 04017007. [Google Scholar] [CrossRef]
- Fu, B.; Zou, L.; Wan, D. Numerical study of vortex-induced vibrations of a flexible cylinder in an oscillatory flow. J. Fluids Struct. 2018, 77, 170–181. [Google Scholar] [CrossRef]
- Munir, A.; Zhao, M.; Wu, H.; Ning, D.; Lu, L. Numerical investigation of the effect of plane boundary on two-degree-of-freedom of vortex-induced vibration of a circular cylinder in oscillatory flow. Ocean Eng. 2018, 148, 17–32. [Google Scholar] [CrossRef]
- Liu, G.; Li, H.; Qiu, Z.; Leng, D.; Li, Z.; Li, W. A mini review of recent progress on vortex-induced vibrations of marine risers. Ocean Eng. 2020, 195, 106704. [Google Scholar] [CrossRef]
- Deng, D.; Zhao, W.; Wan, D. Numerical study of vortex-induced vibration of a flexible cylinder with large aspect ratios in oscillatory flows. Ocean Eng. 2021, 238, 109730. [Google Scholar] [CrossRef]
- Zhu, H.; Xu, H.; Liu, B.; Zhong, J. Numerical investigation of the vortex-induced vibration of a circular cylinder in oscillatory flow. Ocean Eng. 2024, 310, 118666. [Google Scholar] [CrossRef]
- Yu, Z.; Ping, H.; Wang, E.; Bao, Y.; Xu, H.; Huang, Y.; Xiao, Q. Missing critical mass ratio in VIV of rigidly connected cylinders. Int. J. Mech. Sci. 2025, 295, 110236. [Google Scholar] [CrossRef]
- Thorsen, M.J. Time Domain Analysis of Vortex-Induced Vibrations. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2016. [Google Scholar]
- Ulveseter, J.V. Advances in Semi-Empirical Time Domain Modelling of Vortex-Induced Vibrations. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2018. [Google Scholar]
- Opinel, P.A.; Srinil, N. Application of wake oscillators to two-dimensional vortex-induced vibrations of circular cylinders in oscillatory flows. J. Fluids Struct. 2020, 96, 103040. [Google Scholar] [CrossRef]
- Yuan, Y.; Xue, H.; Tang, W. Numerical analysis of vortex-induced vibration for flexible risers under steady and oscillatory flows. Ocean Eng. 2018, 148, 548–562. [Google Scholar] [CrossRef]
- Duan, J.; Zhou, J.; Wang, X.; You, Y.; Bai, X. Cross-flow vortex-induced vibration of a flexible fluid-conveying riser undergoing external oscillatory flow. Ocean Eng. 2022, 250, 111030. [Google Scholar] [CrossRef]
- Qu, Y.; Fu, S.; Xu, Y.; Huang, J. Application of a modified wake oscillator model to vortex-induced vibration of a free-hanging riser subjected to vessel motion. Ocean Eng. 2022, 253, 111165. [Google Scholar] [CrossRef]
- Xu, A.; Chai, Y.; Li, F.; Chen, Y. Nonlinear vortex-induced vibrations of slightly curved pipes conveying fluid in steady and oscillatory flows. Ocean Eng. 2023, 270, 113623. [Google Scholar] [CrossRef]
- Li, J.; Chen, N. Vortex-induced vibration (VIV) of flexible riser conveying severe slugging and straight flow in steady and oscillatory flows. J. Sound Vib. 2025, 595, 118728. [Google Scholar] [CrossRef]
- Gao, S.; Wang, E.; Shang, C. Prediction of VIV of a top tensioned riser subject to vessel motion induced oscillatory flow. In Proceedings of the 35th International Ocean and Polar Engineering Conference, Goyang, Republic of Korea, 1–6 June 2025. [Google Scholar]
- Trim, A.D.; Braaten, H.; Lie, H.; Tognarelli, M.A. Experimental investigation of vortex-induced vibration of long marine risers. J. Fluids Struct. 2005, 21, 335–361. [Google Scholar] [CrossRef]
- Fu, X.; Fu, S.; Zhang, M.; Ren, H.; Zhao, B.; Xu, Y. Vortex-induced vibration of a flexible pipe under oscillatory sheared flow. Phys. Rev. Fluids 2024, 9, 014604. [Google Scholar] [CrossRef]
- Yin, D.; Passano, E.; Lie, H.; Grytøyr, G.; Aronsen, K.; Tognarelli, M.; Kebadze, E.B. Experimental and numerical study of a top tensioned riser subjected to vessel motion. Ocean Eng. 2019, 171, 565–574. [Google Scholar] [CrossRef]
- Sumer, B.M.; Fredsøe, J. Hydrodynamics Around Cylindrical Strucures; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2006; Volume 26. [Google Scholar]
- Blevins, R.D. Flow-Induced Vibration; Krieger Publishing Company: Malabar, FL, USA, 1990. [Google Scholar]
- Ge, F.; Long, X.; Wang, L.; Hong, Y. Flow-induced vibrations of long circular cylinders modeled by coupled nonlinear oscillators. Sci. China Ser. G Physics, Mech. Astron. 2009, 52, 1086–1093. [Google Scholar] [CrossRef]
- Feng, Y.; Li, S.; Chen, D.; Xiao, Q. Predictions for combined In-Line and Cross-Flow VIV responses with a novel model for estimation of tension. Ocean Eng. 2019, 191, 106531. [Google Scholar] [CrossRef]
- Wang, X.; So, R.; Chan, K. A non-linear fluid force model for vortex-induced vibration of an elastic cylinder. J. Sound Vib. 2003, 260, 287–305. [Google Scholar] [CrossRef]
- Gao, Y.; Pan, G.; Meng, S.; Liu, L.; Jiang, Z.; Zhang, Z. Time-domain prediction of the coupled cross-flow and in-line vortex-induced vibrations of a flexible cylinder using a wake oscillator model. Ocean Eng. 2021, 237, 109631. [Google Scholar] [CrossRef]
- Facchinetti, M.L.; de Langre, E.; Biolley, F. Coupling of structure and wake oscillators in vortex-induced vibrations. J. Fluids Struct. 2004, 19, 123–140. [Google Scholar] [CrossRef]
- Srinil, N.; Opinel, P.A.; Tagliaferri, F. Empirical sensitivity of two-dimensional nonlinear wake–cylinder oscillators in cross-flow/in-line vortex-induced vibrations. J. Fluids Struct. 2018, 83, 310–338. [Google Scholar] [CrossRef]
- Facchinetti, M.L.; de Langre, E.; Biolley, F. Vortex-induced travelling waves along a cable. Eur. J. Mech.-B/Fluids 2004, 23, 199–208. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, B.; Zou, L.; Zong, Z.; Zhang, Z. Vortex-induced vibrations of a long flexible cylinder in linear and exponential shear flows. China Ocean Eng. 2019, 33, 44–56. [Google Scholar] [CrossRef]
- Xu, W.; Zeng, X.; Wu, Y. High aspect ratio (L/D) riser VIV prediction using wake oscillator model. Ocean Eng. 2008, 35, 1769–1774. [Google Scholar] [CrossRef]
- Lie, H.; Kaasen, K.E. Modal analysis of measurements from a large-scale VIV model test of a riser in linearly sheared flow. J. Fluids Struct. 2006, 22, 557–575. [Google Scholar] [CrossRef]
- Weaver, W.; Timoshenko, S.P.; Young, D.H. Vibration Problems in Engineering; John Wiley & Sons, Inc.: New York, NY, USA, 1974. [Google Scholar]
- Wang, E.; Xiao, Q. Numerical simulation of vortex-induced vibration of a vertical riser in uniform and linearly sheared currents. Ocean Eng. 2016, 121, 492–515. [Google Scholar] [CrossRef]
- Zhang, C.; Kang, Z.; Stoesser, T.; Xie, Z.; Massie, L. Experimental investigation on the VIV of a slender body under the combination of uniform flow and top-end surge. Ocean Eng. 2020, 216, 108094. [Google Scholar] [CrossRef]
- Wang, J.; Fu, S.; Baarholm, R.; Wu, J.; Larsen, C.M. Fatigue damage induced by vortex-induced vibrations in oscillatory flow. Mar. Struct. 2015, 40, 73–91. [Google Scholar] [CrossRef]
- Vandiver, J.K.; Jaiswal, V.; Jhingran, V. Insights on vortex-induced, traveling waves on long risers. J. Fluids Struct. 2009, 25, 641–653. [Google Scholar] [CrossRef]
- Dalton, C. Fundamentals of Vortex Induced Vibration; Technical Report; University of Houston: Houston, TX, USA, 2013. [Google Scholar]
Range | Vortex Shedding Patterns | |
---|---|---|
<1.1 | No separation (Creeping flow) | 0 |
1.1–1.6 | Separation with Hongji vortices | 0 |
1.6–2.1 | A pair of symmetric vortices | 0 |
2.1–4.0 | A pair of symmetric vortices, turbulence over riser surfaces | 2 |
4.0–8.0 | A pair of asymmetric vortices | 2 |
8.0–15.0 | One vortex pair per cycle of oscillatory flow | 2 |
15.0–22.0 | Two vortex pairs per cycle of oscillatory flow | 3 |
22.0–30.0 | Three vortex pairs per cycle of oscillatory flow | 4 |
30.0–40.0 | Four vortex pairs per cycle of oscillatory flow | 5 |
>40.0 | Multiple vortex pairs in each cycle of oscillatory flow | ≈ |
Parameters | Ren et al. [12] | Ren et al. [13] | Trim et al. [37] |
---|---|---|---|
Length L (m) | 4.0 | 4.0 | 38 |
Outer diameter D (m) | 0.024 | 0.029 | 0.027 |
Length-to-diameter ratio (–) | 167 | 138 | 1407 |
Mass per unit length (kg/m) | 0.69 | 1.529 | 0.916 |
Mass ratio (–) | 1.5 | 2.3 | 1.6 |
Bending stiffness (Nm2) | 10.5 | 46.43 | 598.77 |
Axial stiffness (N) | |||
Pretension (N) | 500 | 500 | 5000 |
Damping ratio (%) | 3 | 2.53 | 0.3 |
First mode natural frequency (Hz) | 2.68 | 1.90 | 0.76 |
Second mode natural frequency (Hz) | 5.46 | 4.08 | 1.53 |
Vibration mode | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Frequency (Hz) | 0.76 | 1.53 | 2.30 | 3.07 | 3.85 | 4.64 | 5.44 | 6.26 | 7.09 | 7.93 |
Parameter | Small-Scale (Lower Mode) | Small-Scale (Higher Mode) | Large-Scale | |||
---|---|---|---|---|---|---|
Case A | Case B | Case C | Case D | Case E | Case F | |
Amplitude of oscillatory flow (m) | 0.12 | 0.68 | 0.26 | 0.56 | 0.13 | 0.76 |
Period of oscillatory flow (s) | 1.8 | 10.2 | 2.65 | 5.71 | 0.67 | 3.86 |
Dominate reduced velocity | 6.5 | 6.5 | 5.2 | 5.2 | 6.5 | 6.5 |
number | 31 | 178 | 56 | 121 | 31 | 178 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, S.; Wang, E. Investigation of Vortex-Induced Vibration Characteristics of Small-Scale and Large-Scale Risers in Uniform Oscillatory Flow. J. Mar. Sci. Eng. 2025, 13, 1552. https://doi.org/10.3390/jmse13081552
Gao S, Wang E. Investigation of Vortex-Induced Vibration Characteristics of Small-Scale and Large-Scale Risers in Uniform Oscillatory Flow. Journal of Marine Science and Engineering. 2025; 13(8):1552. https://doi.org/10.3390/jmse13081552
Chicago/Turabian StyleGao, Shuo, and Enhao Wang. 2025. "Investigation of Vortex-Induced Vibration Characteristics of Small-Scale and Large-Scale Risers in Uniform Oscillatory Flow" Journal of Marine Science and Engineering 13, no. 8: 1552. https://doi.org/10.3390/jmse13081552
APA StyleGao, S., & Wang, E. (2025). Investigation of Vortex-Induced Vibration Characteristics of Small-Scale and Large-Scale Risers in Uniform Oscillatory Flow. Journal of Marine Science and Engineering, 13(8), 1552. https://doi.org/10.3390/jmse13081552