Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (362)

Search Parameters:
Keywords = non-stationary noise

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6464 KiB  
Article
A Hybrid Model for Carbon Price Forecasting Based on Secondary Decomposition and Weight Optimization
by Yongfa Chen, Yingjie Zhu, Jie Wang and Meng Li
Mathematics 2025, 13(14), 2323; https://doi.org/10.3390/math13142323 - 21 Jul 2025
Viewed by 190
Abstract
Accurate carbon price forecasting is essential for market stability, risk management, and policy-making. To address the nonlinear, non-stationary, and multiscale nature of carbon prices, this paper proposes a forecasting framework integrating secondary decomposition, two-stage feature selection, and dynamic ensemble learning. Firstly, the original [...] Read more.
Accurate carbon price forecasting is essential for market stability, risk management, and policy-making. To address the nonlinear, non-stationary, and multiscale nature of carbon prices, this paper proposes a forecasting framework integrating secondary decomposition, two-stage feature selection, and dynamic ensemble learning. Firstly, the original price series is decomposed into intrinsic mode functions (IMFs), using complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). The IMFs are then grouped into low- and high-frequency components based on multiscale entropy (MSE) and K-Means clustering. To further alleviate mode mixing in the high-frequency components, an improved variational mode decomposition (VMD) optimized by particle swarm optimization (PSO) is applied for secondary decomposition. Secondly, a two-stage feature-selection method is employed, in which the partial autocorrelation function (PACF) is used to select relevant lagged features, while the maximal information coefficient (MIC) is applied to identify key variables from both historical and external data. Finally, this paper introduces a dynamic integration module based on sliding windows and sequential least squares programming (SLSQP), which can not only adaptively adjust the weights of four base learners but can also effectively leverage the complementary advantages of each model and track the dynamic trends of carbon prices. The empirical results of the carbon markets in Hubei and Guangdong indicate that the proposed method outperforms the benchmark model in terms of prediction accuracy and robustness, and the method has been tested by Diebold Mariano (DM). The main contributions are the improved feature-extraction process and the innovative use of a sliding window-based SLSQP method for dynamic ensemble weight optimization. Full article
Show Figures

Figure 1

23 pages, 6440 KiB  
Article
A Gravity Data Denoising Method Based on Multi-Scale Attention Mechanism and Physical Constraints Using U-Net
by Bing Liu, Houpu Li, Shaofeng Bian, Chaoliang Zhang, Bing Ji and Yujie Zhang
Appl. Sci. 2025, 15(14), 7956; https://doi.org/10.3390/app15147956 - 17 Jul 2025
Viewed by 183
Abstract
Gravity and gravity gradient data serve as fundamental inputs for geophysical resource exploration and geological structure analysis. However, traditional denoising methods—including wavelet transforms, moving averages, and low-pass filtering—exhibit signal loss and limited adaptability under complex, non-stationary noise conditions. To address these challenges, this [...] Read more.
Gravity and gravity gradient data serve as fundamental inputs for geophysical resource exploration and geological structure analysis. However, traditional denoising methods—including wavelet transforms, moving averages, and low-pass filtering—exhibit signal loss and limited adaptability under complex, non-stationary noise conditions. To address these challenges, this study proposes an improved U-Net deep learning framework that integrates multi-scale feature extraction and attention mechanisms. Furthermore, a Laplace consistency constraint is introduced into the loss function to enhance denoising performance and physical interpretability. Notably, the datasets used in this study are generated by the authors, involving simulations of subsurface prism distributions with realistic density perturbations (±20% of typical rock densities) and the addition of controlled Gaussian noise (5%, 10%, 15%, and 30%) to simulate field-like conditions, ensuring the diversity and physical relevance of training samples. Experimental validation on these synthetic datasets and real field datasets demonstrates the superiority of the proposed method over conventional techniques. For noise levels of 5%, 10%, 15%, and 30% in test sets, the improved U-Net achieves Peak Signal-to-Noise Ratios (PSNR) of 59.13 dB, 52.03 dB, 48.62 dB, and 48.81 dB, respectively, outperforming wavelet transforms, moving averages, and low-pass filtering by 10–30 dB. In multi-component gravity gradient denoising, our method excels in detail preservation and noise suppression, improving Structural Similarity Index (SSIM) by 15–25%. Field data tests further confirm enhanced identification of key geological anomalies and overall data quality improvement. In summary, the improved U-Net not only delivers quantitative advancements in gravity data denoising but also provides a novel approach for high-precision geophysical data preprocessing. Full article
(This article belongs to the Special Issue Applications of Machine Learning in Earth Sciences—2nd Edition)
Show Figures

Figure 1

19 pages, 5415 KiB  
Article
Intelligent Optimized Diagnosis for Hydropower Units Based on CEEMDAN Combined with RCMFDE and ISMA-CNN-GRU-Attention
by Wenting Zhang, Huajun Meng, Ruoxi Wang and Ping Wang
Water 2025, 17(14), 2125; https://doi.org/10.3390/w17142125 - 17 Jul 2025
Viewed by 220
Abstract
This study suggests a hybrid approach that combines improved feature selection and intelligent diagnosis to increase the operational safety and intelligent diagnosis capabilities of hydropower units. In order to handle the vibration data, complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is [...] Read more.
This study suggests a hybrid approach that combines improved feature selection and intelligent diagnosis to increase the operational safety and intelligent diagnosis capabilities of hydropower units. In order to handle the vibration data, complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is used initially. A novel comprehensive index is constructed by combining the Pearson correlation coefficient, mutual information (MI), and Kullback–Leibler divergence (KLD) to select intrinsic mode functions (IMFs). Next, feature extraction is performed on the selected IMFs using Refined Composite Multiscale Fluctuation Dispersion Entropy (RCMFDE). Then, time and frequency domain features are screened by calculating dispersion and combined with IMF features to build a hybrid feature vector. The vector is then fed into a CNN-GRU-Attention model for intelligent diagnosis. The improved slime mold algorithm (ISMA) is employed for the first time to optimize the hyperparameters of the CNN-GRU-Attention model. The experimental results show that the classification accuracy reaches 96.79% for raw signals and 93.33% for noisy signals, significantly outperforming traditional methods. This study incorporates entropy-based feature extraction, combines hyperparameter optimization with the classification model, and addresses the limitations of single feature selection methods for non-stationary and nonlinear signals. The proposed approach provides an excellent solution for intelligent optimized diagnosis of hydropower units. Full article
(This article belongs to the Special Issue Optimization-Simulation Modeling of Sustainable Water Resource)
Show Figures

Figure 1

12 pages, 1900 KiB  
Article
Time Series Prediction of Aerodynamic Noise Based on Variational Mode Decomposition and Echo State Network
by Zhoufanxing Lei, Haiyang Meng, Jing Yang, Bin Liang and Jianchun Cheng
Appl. Sci. 2025, 15(14), 7896; https://doi.org/10.3390/app15147896 - 15 Jul 2025
Viewed by 144
Abstract
Time series prediction of aerodynamic noise is critical for oscillatory instabilities analyses in fluid systems. Due to the significant dynamical and non-stationary characteristics of aerodynamic noise, it is challenging to precisely predict its temporal behavior. Here, we propose a method combining variational mode [...] Read more.
Time series prediction of aerodynamic noise is critical for oscillatory instabilities analyses in fluid systems. Due to the significant dynamical and non-stationary characteristics of aerodynamic noise, it is challenging to precisely predict its temporal behavior. Here, we propose a method combining variational mode decomposition (VMD) and echo state network (ESN) to accurately predict the time series of aerodynamic noise induced by flow around a cylinder. VMD adaptively decomposes the noise signal into multiple modes through a constrained variational optimization framework, effectively separating distinct frequency-scale features between vortex shedding and turbulent fluctuations. ESN then employs a randomly initialized reservoir to map each mode into a high-dimensional dynamical system, and learns their temporal evolution by leveraging the reservoir’s memory of past states to predict their future values. Aerodynamic noise data from cylinder flow at a Reynolds number of 90,000 is generated by numerical simulation and used for model validation. With a rolling prediction strategy, this VMD-ESN method achieves accurate prediction within 150 time steps with a root-mean-square-error of only 3.32 Pa, substantially reducing computational costs compared to conventional approaches. This work enables effective aerodynamic noise prediction and is valuable in fluid dynamics, aeroacoustics, and related areas. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

20 pages, 7720 KiB  
Article
Dynamical Behaviors of a Stochastic Semi-Parametric SEIR Model with Infectivity in the Incubation Period
by Mei Li and Jing Zhang
Axioms 2025, 14(7), 535; https://doi.org/10.3390/axioms14070535 - 15 Jul 2025
Viewed by 141
Abstract
This paper investigates a stochastic semi-parametric SEIR model characterized by infectivity during the incubation period and influenced by white noise perturbations. First, based on the theory of stochastic persistence, we derive the conditions required for the disease to persist within the model. Under [...] Read more.
This paper investigates a stochastic semi-parametric SEIR model characterized by infectivity during the incubation period and influenced by white noise perturbations. First, based on the theory of stochastic persistence, we derive the conditions required for the disease to persist within the model. Under these conditions, we apply Khasminskii’s ergodic theorem and Lyapunov functions to establish that the model possesses a unique ergodic stationary distribution. Finally, we utilize Khasminskii’s periodic theorem to examine the corresponding stochastic periodic SEIR model derived from the stochastic semi-parametric SEIR model, identifying sufficient conditions for the existence of non-trivial periodic solutions. Our theoretical results are further validated through numerical simulations. Full article
Show Figures

Figure 1

20 pages, 1753 KiB  
Article
Hybrid Cloud-Based Information and Control System Using LSTM-DNN Neural Networks for Optimization of Metallurgical Production
by Kuldashbay Avazov, Jasur Sevinov, Barnokhon Temerbekova, Gulnora Bekimbetova, Ulugbek Mamanazarov, Akmalbek Abdusalomov and Young Im Cho
Processes 2025, 13(7), 2237; https://doi.org/10.3390/pr13072237 - 13 Jul 2025
Viewed by 660
Abstract
A methodology for detecting systematic errors in sets of equally accurate, uncorrelated, aggregate measurements is proposed and applied within the automatic real-time dispatch control system of a copper concentrator plant (CCP) to refine the technical and economic performance indicators (EPIs) computed by the [...] Read more.
A methodology for detecting systematic errors in sets of equally accurate, uncorrelated, aggregate measurements is proposed and applied within the automatic real-time dispatch control system of a copper concentrator plant (CCP) to refine the technical and economic performance indicators (EPIs) computed by the system. This work addresses and solves the problem of selecting and obtaining reliable measurement data by exploiting the redundant measurements of process streams together with the balance equations linking those streams. This study formulates an approach for integrating cloud technologies, machine learning methods, and forecasting into information control systems (ICSs) via predictive analytics to optimize CCP production processes. A method for combining the hybrid cloud infrastructure with an LSTM-DNN neural network model has been developed, yielding a marked improvement in TEP for copper concentration operations. The forecasting accuracy for the key process parameters rose from 75% to 95%. Predictive control reduced energy consumption by 10% through more efficient resource use, while the copper losses to tailings fell by 15–20% thanks to optimized reagent dosing and the stabilization of the flotation process. Equipment failure prediction cut the amount of unplanned downtime by 30%. As a result, the control system became adaptive, automatically correcting the parameters in real time and lessening the reliance on operator decisions. The architectural model of an ICS for metallurgical production based on the hybrid cloud and the LSTM-DNN model was devised to enhance forecasting accuracy and optimize the EPIs of the CCP. The proposed model was experimentally evaluated against alternative neural network architectures (DNN, GRU, Transformer, and Hybrid_NN_TD_AIST). The results demonstrated the superiority of the LSTM-DNN in forecasting accuracy (92.4%), noise robustness (0.89), and a minimal root-mean-square error (RMSE = 0.079). The model shows a strong capability to handle multidimensional, non-stationary time series and to perform adaptive measurement correction in real time. Full article
(This article belongs to the Section AI-Enabled Process Engineering)
Show Figures

Figure 1

30 pages, 8543 KiB  
Article
Multi-Channel Coupled Variational Bayesian Framework with Structured Sparse Priors for High-Resolution Imaging of Complex Maneuvering Targets
by Xin Wang, Jing Yang and Yong Luo
Remote Sens. 2025, 17(14), 2430; https://doi.org/10.3390/rs17142430 - 13 Jul 2025
Viewed by 182
Abstract
High-resolution ISAR (Inverse Synthetic Aperture Radar) imaging plays a crucial role in dynamic target monitoring for aerospace, maritime, and ground surveillance. Among various remote sensing techniques, ISAR is distinguished by its ability to produce high-resolution images of non-cooperative maneuvering targets. To meet the [...] Read more.
High-resolution ISAR (Inverse Synthetic Aperture Radar) imaging plays a crucial role in dynamic target monitoring for aerospace, maritime, and ground surveillance. Among various remote sensing techniques, ISAR is distinguished by its ability to produce high-resolution images of non-cooperative maneuvering targets. To meet the increasing demands for resolution and robustness, modern ISAR systems are evolving toward wideband and multi-channel architectures. In particular, multi-channel configurations based on large-scale receiving arrays have gained significant attention. In such systems, each receiving element functions as an independent spatial channel, acquiring observations from distinct perspectives. These multi-angle measurements enrich the available echo information and enhance the robustness of target imaging. However, this setup also brings significant challenges, including inter-channel coupling, high-dimensional joint signal modeling, and non-Gaussian, mixed-mode interference, which often degrade image quality and hinder reconstruction performance. To address these issues, this paper proposes a Hybrid Variational Bayesian Multi-Interference (HVB-MI) imaging algorithm based on a hierarchical Bayesian framework. The method jointly models temporal correlations and inter-channel structure, introducing a coupled processing strategy to reduce dimensionality and computational complexity. To handle complex noise environments, a Gaussian mixture model (GMM) is used to represent nonstationary mixed noise. A variational Bayesian inference (VBI) approach is developed for efficient parameter estimation and robust image recovery. Experimental results on both simulated and real-measured data demonstrate that the proposed method achieves significantly improved image resolution and noise robustness compared with existing approaches, particularly under conditions of sparse sampling or strong interference. Quantitative evaluation further shows that under the continuous sparse mode with a 75% sampling rate, the proposed method achieves a significantly higher Laplacian Variance (LV), outperforming PCSBL and CPESBL by 61.7% and 28.9%, respectively and thereby demonstrating its superior ability to preserve fine image details. Full article
Show Figures

Graphical abstract

25 pages, 7859 KiB  
Article
Methodology for the Early Detection of Damage Using CEEMDAN-Hilbert Spectral Analysis of Ultrasonic Wave Attenuation
by Ammar M. Shakir, Giovanni Cascante and Taher H. Ameen
Materials 2025, 18(14), 3294; https://doi.org/10.3390/ma18143294 - 12 Jul 2025
Viewed by 370
Abstract
Current non-destructive testing (NDT) methods, such as those based on wave velocity measurements, lack the sensitivity necessary to detect early-stage damage in concrete structures. Similarly, common signal processing techniques often assume linearity and stationarity among the signal data. By analyzing wave attenuation measurements [...] Read more.
Current non-destructive testing (NDT) methods, such as those based on wave velocity measurements, lack the sensitivity necessary to detect early-stage damage in concrete structures. Similarly, common signal processing techniques often assume linearity and stationarity among the signal data. By analyzing wave attenuation measurements using advanced signal processing techniques, mainly Hilbert–Huang transform (HHT), this work aims to enhance the early detection of damage in concrete. This study presents a novel energy-based technique that integrates complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and Hilbert spectrum analysis (HSA), to accurately capture nonlinear and nonstationary signal behaviors. Ultrasonic non-destructive testing was performed in this study on manufactured concrete specimens subjected to micro-damage characterized by internal microcracks smaller than 0.5 mm, induced through controlled freeze–thaw cycles. The recorded signals were decomposed from the time domain using CEEMDAN into frequency-ordered intrinsic mode functions (IMFs). A multi-criteria selection strategy, including damage index evaluation, was employed to identify the most effective IMFs while distinguishing true damage-induced energy loss from spurious nonlinear artifacts or noise. Localized damage was then analyzed in the frequency domain using HSA, achieving an up to 88% reduction in wave energy via Marginal Hilbert Spectrum analysis, compared to 68% using Fourier-based techniques, demonstrating a 20% improvement in sensitivity. The results indicate that the proposed technique enhances early damage detection through wave attenuation analysis and offers a superior ability to handle nonlinear, nonstationary signals. The Hilbert Spectrum provided a higher time-frequency resolution, enabling clearer identification of damage-related features. These findings highlight the potential of CEEMDAN-HSA as a practical, sensitive tool for early-stage microcrack detection in concrete. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 1865 KiB  
Article
A Robust Cross-Band Network for Blind Source Separation of Underwater Acoustic Mixed Signals
by Xingmei Wang, Peiran Wu, Haisu Wei, Yuezhu Xu and Siyu Wang
J. Mar. Sci. Eng. 2025, 13(7), 1334; https://doi.org/10.3390/jmse13071334 - 11 Jul 2025
Viewed by 233
Abstract
Blind source separation (BSS) of underwater acoustic mixed signals aims to improve signal clarity by separating noise components from aliased underwater signal sources. This enhancement directly increases target detection accuracy in underwater acoustic perception systems, particularly in scenarios involving multi-vessel interference or biological [...] Read more.
Blind source separation (BSS) of underwater acoustic mixed signals aims to improve signal clarity by separating noise components from aliased underwater signal sources. This enhancement directly increases target detection accuracy in underwater acoustic perception systems, particularly in scenarios involving multi-vessel interference or biological sound coexistence. Deep learning-based BSS methods have gained wide attention for their superior nonlinear modeling capabilities. However, existing approaches in underwater acoustic scenarios still face two key challenges: limited feature discrimination and inadequate robustness against non-stationary noise. To overcome these limitations, we propose a novel Robust Cross-Band Network (RCBNet) for the BSS of underwater acoustic mixed signals. To address insufficient feature discrimination, we decompose mixed signals into sub-bands aligned with ship noise harmonics. For intra-band modeling, we apply a parallel gating mechanism that strengthens long-range dependency learning so as to enhance robustness against non-stationary noise. For inter-band modeling, we design a bidirectional-frequency RNN to capture the global dependency relationships of the same signal across sub-bands. Our experiment demonstrates that RCBNet achieves a 0.779 dB improvement in the SDR compared to the advanced model. Additionally, the anti-noise experiment demonstrates that RCBNet exhibits satisfactory robustness across varying noise environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 3698 KiB  
Article
A Novel Fault Diagnosis Method for Rolling Bearings Based on Spectral Kurtosis and LS-SVM
by Lianyou Lai, Weijian Xu and Zhongzhe Song
Electronics 2025, 14(14), 2790; https://doi.org/10.3390/electronics14142790 - 11 Jul 2025
Viewed by 228
Abstract
As a core component of machining tools and vehicles, the load-bearing and transmission performance of rolling bearings is directly related to product processing quality and driving safety, highlighting the critical importance of fault detection. To address the nonlinearity, non-stationary modulation, and low signal-to-noise [...] Read more.
As a core component of machining tools and vehicles, the load-bearing and transmission performance of rolling bearings is directly related to product processing quality and driving safety, highlighting the critical importance of fault detection. To address the nonlinearity, non-stationary modulation, and low signal-to-noise ratio (SNR) observed in bearing vibration signals, we propose a fault feature extraction method based on spectral kurtosis and Hilbert envelope demodulation. First, spectral kurtosis is employed to determine the center frequency and bandwidth of the signal adaptively, and a bandpass filter is constructed to enhance the characteristic frequency components. Subsequently, the envelope spectrum is extracted through the Hilbert transform, allowing for the precise identification of fault characteristic frequencies. In the fault diagnosis stage, a multidimensional feature vector is formed by combining the kurtosis index with the amplitude ratios of inner/outer race characteristic frequencies, and fault pattern classification is accomplished using a Least-Squares Support Vector Machine (LS-SVM). To evaluate the effectiveness of the proposed method, experiments were conducted on the bearing datasets from Case Western Reserve University (CWRU) and the Machine Failure Prevention Technology (MFPT) Society. The experimental results demonstrate that the proposed method surpasses other comparative approaches, achieving identification accuracies of 95% and 100% for the CWRU and MFPT datasets, respectively. Full article
Show Figures

Figure 1

32 pages, 8958 KiB  
Article
A Monte Carlo Simulation Framework for Evaluating the Robustness and Applicability of Settlement Prediction Models in High-Speed Railway Soft Foundations
by Zhenyu Liu, Liyang Wang, Taifeng Li, Huiqin Guo, Feng Chen, Youming Zhao, Qianli Zhang and Tengfei Wang
Symmetry 2025, 17(7), 1113; https://doi.org/10.3390/sym17071113 - 10 Jul 2025
Viewed by 182
Abstract
Accurate settlement prediction for high-speed railway (HSR) soft foundations remains challenging due to the irregular and dynamic nature of real-world monitoring data, often represented as non-equidistant and non-stationary time series (NENSTS). Existing empirical models lack clear applicability criteria under such conditions, resulting in [...] Read more.
Accurate settlement prediction for high-speed railway (HSR) soft foundations remains challenging due to the irregular and dynamic nature of real-world monitoring data, often represented as non-equidistant and non-stationary time series (NENSTS). Existing empirical models lack clear applicability criteria under such conditions, resulting in subjective model selection. This study introduces a Monte Carlo-based evaluation framework that integrates data-driven simulation with geotechnical principles, embedding the concept of symmetry across both modeling and assessment stages. Equivalent permeability coefficients (EPCs) are used to normalize soil consolidation behavior, enabling the generation of a large, statistically robust dataset. Four empirical settlement prediction models—Hyperbolic, Exponential, Asaoka, and Hoshino—are systematically analyzed for sensitivity to temporal features and resistance to stochastic noise. A symmetry-aware comprehensive evaluation index (CEI), constructed via a robust entropy weight method (REWM), balances multiple performance metrics to ensure objective comparison. Results reveal that while settlement behavior evolves asymmetrically with respect to EPCs over time, a symmetrical structure emerges in model suitability across distinct EPC intervals: the Asaoka method performs best under low-permeability conditions (EPC ≤ 0.03 m/d), Hoshino excels in intermediate ranges (0.03 < EPC ≤ 0.7 m/d), and the Exponential model dominates in highly permeable soils (EPC > 0.7 m/d). This framework not only quantifies model robustness under complex data conditions but also formalizes the notion of symmetrical applicability, offering a structured path toward intelligent, adaptive settlement prediction in HSR subgrade engineering. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

19 pages, 2969 KiB  
Article
Damage Detection for Offshore Wind Turbines Subjected to Non-Stationary Ambient Excitations: A Noise-Robust Algorithm Using Partial Measurements
by Ning Yang, Peng Huang, Hongning Ye, Wuhua Zeng, Yusen Liu, Juhuan Zheng and En Lin
Energies 2025, 18(14), 3644; https://doi.org/10.3390/en18143644 - 10 Jul 2025
Viewed by 198
Abstract
Reliable damage detection in operational offshore wind turbines (OWTs) remains challenging due to the inherent non-stationarity of environmental excitations and signal degradation from noise-contaminated partial measurements. To address these limitations, this study proposes a robust damage detection method for OWTs under non-stationary ambient [...] Read more.
Reliable damage detection in operational offshore wind turbines (OWTs) remains challenging due to the inherent non-stationarity of environmental excitations and signal degradation from noise-contaminated partial measurements. To address these limitations, this study proposes a robust damage detection method for OWTs under non-stationary ambient excitations using partial measurements with strong noise resistance. The method is first developed for a scenario with known non-stationary ambient excitations. By reformulating the time-domain equation of motion in terms of non-stationary cross-correlation functions, structural stiffness parameters are estimated using partially measured acceleration responses through the extended Kalman filter (EKF). To account for the more common case of unknown excitations, the method is enhanced via the extended Kalman filter under unknown input (EKF-UI). This improved approach enables the simultaneous identification of the physical parameters of OWTs and unknown non-stationary ambient excitations through the data fusion of partial acceleration and displacement responses. The proposed method is validated through two numerical cases: a frame structure subjected to known non-stationary ground excitation, followed by an OWT tower under unknown non-stationary wind and wave excitations using limited measurements. The numerical results confirm the method’s capability to accurately identify structural damage even under significant noise contamination, demonstrating its practical potential for OWTs’ damage detection applications. Full article
Show Figures

Figure 1

16 pages, 7958 KiB  
Article
Truncation Artifact Reduction in Stationary Inverse-Geometry Digital Tomosynthesis Using Deep Convolutional Generative Adversarial Network
by Burnyoung Kim and Seungwan Lee
Appl. Sci. 2025, 15(14), 7699; https://doi.org/10.3390/app15147699 - 9 Jul 2025
Viewed by 181
Abstract
Stationary inverse-geometry digital tomosynthesis (s-IGDT) causes truncation artifacts in reconstructed images due to its geometric characteristics. This study introduces a deep convolutional generative adversarial network (DCGAN)-based out-painting method for mitigating truncation artifacts in s-IGDT images. The proposed network employed an encoder–decoder architecture for [...] Read more.
Stationary inverse-geometry digital tomosynthesis (s-IGDT) causes truncation artifacts in reconstructed images due to its geometric characteristics. This study introduces a deep convolutional generative adversarial network (DCGAN)-based out-painting method for mitigating truncation artifacts in s-IGDT images. The proposed network employed an encoder–decoder architecture for the generator, and a dilated convolution block was added between the encoder and decoder. A dual-discriminator was used to distinguish the artificiality of generated images for truncated and non-truncated regions separately. During network training, the generator was able to selectively learn a target task for the truncated regions using binary mask images. The performance of the proposed method was compared to conventional methods in terms of signal-to-noise ratio (SNR), normalized root-mean-square error (NRMSE), peak SNR (PSNR), and structural similarity (SSIM). The results showed that the proposed method led to a substantial reduction in truncation artifacts. On average, the proposed method achieved 62.31, 16.66, and 14.94% improvements in the SNR, PSNR, and SSIM, respectively, compared to the conventional methods. Meanwhile, the NRMSE values were reduced by an average of 37.22%. In conclusion, the proposed out-painting method can offer a promising solution for mitigating truncation artifacts in s-IGDT images and improving the clinical availability of the s-IGDT. Full article
(This article belongs to the Section Biomedical Engineering)
Show Figures

Figure 1

31 pages, 5571 KiB  
Article
Resolving Non-Proportional Frequency Components in Rotating Machinery Signals Using Local Entropy Selection Scaling–Reassigning Chirplet Transform
by Dapeng Quan, Yuli Niu, Zeming Zhao, Caiting He, Xiaoze Yang, Mingyang Li, Tianyang Wang, Lili Zhang, Limei Ma, Yong Zhao and Hongtao Wu
Aerospace 2025, 12(7), 616; https://doi.org/10.3390/aerospace12070616 - 8 Jul 2025
Viewed by 235
Abstract
Under complex operating conditions, vibration signals from rotating machinery often exhibit non-stationary characteristics with non-proportional and closely spaced instantaneous frequency (IF) components. Traditional time–frequency analysis (TFA) methods struggle to accurately extract such features due to energy leakage and component mixing. In response to [...] Read more.
Under complex operating conditions, vibration signals from rotating machinery often exhibit non-stationary characteristics with non-proportional and closely spaced instantaneous frequency (IF) components. Traditional time–frequency analysis (TFA) methods struggle to accurately extract such features due to energy leakage and component mixing. In response to these issues, an enhanced time–frequency analysis approach, termed Local Entropy Selection Scaling–Reassigning Chirplet Transform (LESSRCT), has been developed to improve the representation accuracy for complex non-stationary signals. This approach constructs multi-channel time–frequency representations (TFRs) by introducing multiple scales of chirp rates (CRs) and utilizes a Rényi entropy-based criterion to adaptively select multiple optimal CRs at the same time center, enabling accurate characterization of multiple fundamental components. In addition, a frequency reassignment mechanism is incorporated to enhance energy concentration and suppress spectral diffusion. Extensive validation was conducted on a representative synthetic signal and three categories of real-world data—bat echolocation, inner race bearing faults, and wind turbine gearbox vibrations. In each case, the proposed LESSRCT method was compared against SBCT, GLCT, CWT, SET, EMCT, and STFT. On the synthetic signal, LESSRCT achieved the lowest Rényi entropy of 13.53, which was 19.5% lower than that of SET (16.87) and 35% lower than GLCT (18.36). In the bat signal analysis, LESSRCT reached an entropy of 11.53, substantially outperforming CWT (19.91) and SBCT (15.64). For bearing fault diagnosis signals, LESSRCT consistently achieved lower entropy across varying SNR levels compared to all baseline methods, demonstrating strong noise resilience and robustness. The final case on wind turbine signals demonstrated its robustness and computational efficiency, with a runtime of 1.31 s and excellent resolution. These results confirm that LESSRCT delivers robust, high-resolution TFRs with strong noise resilience and broad applicability. It holds strong potential for precise fault detection and condition monitoring in domains such as aerospace and renewable energy systems. Full article
Show Figures

Figure 1

28 pages, 7407 KiB  
Article
WaveAtten: A Symmetry-Aware Sparse-Attention Framework for Non-Stationary Vibration Signal Processing
by Xingyu Chen and Monan Wang
Symmetry 2025, 17(7), 1078; https://doi.org/10.3390/sym17071078 - 7 Jul 2025
Viewed by 273
Abstract
This study addresses the long-standing difficulty of predicting the remaining useful life (RUL) of rolling bearings from highly non-stationary vibration signals by proposing WaveAtten, a symmetry-aware deep learning framework. First, mirror-symmetric and bi-orthogonal Daubechies wavelet filters are applied to decompose each raw signal [...] Read more.
This study addresses the long-standing difficulty of predicting the remaining useful life (RUL) of rolling bearings from highly non-stationary vibration signals by proposing WaveAtten, a symmetry-aware deep learning framework. First, mirror-symmetric and bi-orthogonal Daubechies wavelet filters are applied to decompose each raw signal into multi-scale approximation/detail pairs, explicitly preserving the left–right symmetry that characterizes periodic mechanical responses while isolating asymmetric transient faults. Next, a bidirectional sparse-attention module reinforces this structural symmetry by selecting query–key pairs in a forward/backward balanced fashion, allowing the network to weight homologous spectral patterns and suppress non-symmetric noise. Finally, the symmetry-enhanced features—augmented with temperature and other auxiliary sensor data—are fed into a long short-term memory (LSTM) network that models the symmetric progression of degradation over time. Experiments on the IEEE PHM2012 bearing dataset showed that WaveAtten achieved superior mean squared error, mean absolute error, and R2 scores compared with both classical signal-processing pipelines and state-of-the-art deep models, while ablation revealed a 6–8% performance drop when the symmetry-oriented components were removed. By systematically exploiting the intrinsic symmetry of vibration phenomena, WaveAtten offers a robust and efficient route to RUL prediction, paving the way for intelligent, condition-based maintenance of industrial machinery. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

Back to TopTop