Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,274)

Search Parameters:
Keywords = non-stationary models

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4782 KiB  
Article
Enhanced Spatiotemporal Landslide Displacement Prediction Using Dynamic Graph-Optimized GNSS Monitoring
by Jiangfeng Li, Jiahao Qin, Kaimin Kang, Mingzhi Liang, Kunpeng Liu and Xiaohua Ding
Sensors 2025, 25(15), 4754; https://doi.org/10.3390/s25154754 (registering DOI) - 1 Aug 2025
Abstract
Landslide displacement prediction is crucial for disaster mitigation, yet traditional methods often fail to capture the complex, non-stationary spatiotemporal dynamics of slope evolution. This study introduces an enhanced prediction framework that integrates multi-scale signal processing with dynamic, geology-aware graph modeling. The proposed methodology [...] Read more.
Landslide displacement prediction is crucial for disaster mitigation, yet traditional methods often fail to capture the complex, non-stationary spatiotemporal dynamics of slope evolution. This study introduces an enhanced prediction framework that integrates multi-scale signal processing with dynamic, geology-aware graph modeling. The proposed methodology first employs the Maximum Overlap Discrete Wavelet Transform (MODWT) to denoise raw Global Navigation Satellite System (GNSS)-monitored displacement time series data, enhancing the underlying deformation features. Subsequently, a geology-aware graph is constructed, using the temporal correlation of displacement series as a practical proxy for physical relatedness between monitoring nodes. The framework’s core innovation lies in a dynamic graph optimization model with low-rank constraints, which adaptively refines the graph topology to reflect time-varying inter-sensor dependencies driven by factors like mining activities. Experiments conducted on a real-world dataset from an active open-pit mine demonstrate the framework’s superior performance. The DCRNN-proposed model achieved the highest accuracy among eight competing models, recording a Root Mean Square Error (RMSE) of 2.773 mm in the Vertical direction, a 39.1% reduction compared to its baseline. This study validates that the proposed dynamic graph optimization approach provides a robust and significantly more accurate solution for landslide prediction in complex, real-world engineering environments. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

27 pages, 4163 KiB  
Article
Rainfall Forecasting Using a BiLSTM Model Optimized by an Improved Whale Migration Algorithm and Variational Mode Decomposition
by Yueqiao Yang, Shichuang Li, Ting Zhou, Liang Zhao, Xiao Shi and Boni Du
Mathematics 2025, 13(15), 2483; https://doi.org/10.3390/math13152483 (registering DOI) - 1 Aug 2025
Abstract
The highly stochastic nature of rainfall presents significant challenges for the accurate prediction of its time series. To enhance the prediction performance of non-stationary rainfall time series, this study proposes a hybrid deep learning forecasting framework—VMD-IWMA-BiLSTM—that integrates Variational Mode Decomposition (VMD), Improved Whale [...] Read more.
The highly stochastic nature of rainfall presents significant challenges for the accurate prediction of its time series. To enhance the prediction performance of non-stationary rainfall time series, this study proposes a hybrid deep learning forecasting framework—VMD-IWMA-BiLSTM—that integrates Variational Mode Decomposition (VMD), Improved Whale Migration Algorithm (IWMA), and Bidirectional Long Short-Term Memory network (BiLSTM). Firstly, VMD is employed to decompose the original rainfall series into multiple modes, extracting Intrinsic Mode Functions (IMFs) with more stable frequency characteristics. Secondly, IWMA is utilized to globally optimize multiple hyperparameters of the BiLSTM model, enhancing its ability to capture complex nonlinear relationships and long-term dependencies. Finally, experimental validation is conducted using daily rainfall data from 2020 to 2024 at the Xinzheng National Meteorological Observatory. The results demonstrate that the proposed framework outperforms traditional models such as LSTM, ARIMA, SVM, and LSSVM in terms of prediction accuracy. This research provides new insights and effective technical pathways for improving rainfall time series prediction accuracy and addressing the challenges posed by high randomness. Full article
Show Figures

Figure 1

27 pages, 1488 KiB  
Article
DKWM-XLSTM: A Carbon Trading Price Prediction Model Considering Multiple Influencing Factors
by Yunlong Yu, Xuan Song, Guoxiong Zhou, Lingxi Liu, Meixi Pan and Tianrui Zhao
Entropy 2025, 27(8), 817; https://doi.org/10.3390/e27080817 (registering DOI) - 31 Jul 2025
Abstract
Forestry carbon sinks play a crucial role in mitigating climate change and protecting ecosystems, significantly contributing to the development of carbon trading systems. Remote sensing technology has become increasingly important for monitoring carbon sinks, as it allows for precise measurement of carbon storage [...] Read more.
Forestry carbon sinks play a crucial role in mitigating climate change and protecting ecosystems, significantly contributing to the development of carbon trading systems. Remote sensing technology has become increasingly important for monitoring carbon sinks, as it allows for precise measurement of carbon storage and ecological changes, which are vital for forecasting carbon prices. Carbon prices fluctuate due to the interaction of various factors, exhibiting non-stationary characteristics and inherent uncertainties, making accurate predictions particularly challenging. To address these complexities, this study proposes a method for predicting carbon trading prices influenced by multiple factors. We introduce a Decomposition (DECOMP) module that separates carbon price data and its influencing factors into trend and cyclical components. To manage non-stationarity, we propose the KAN with Multi-Domain Diffusion (KAN-MD) module, which efficiently extracts relevant features. Furthermore, a Wave-MH attention module, based on wavelet transformation, is introduced to minimize interference from uncertainties, thereby enhancing the robustness of the model. Empirical research using data from the Hubei carbon trading market demonstrates that our model achieves superior predictive accuracy and resilience to fluctuations compared to other benchmark methods, with an MSE of 0.204% and an MAE of 0.0277. These results provide reliable support for pricing carbon financial derivatives and managing associated risks. Full article
Show Figures

Figure 1

32 pages, 9710 KiB  
Article
Early Detection of ITSC Faults in PMSMs Using Transformer Model and Transient Time-Frequency Features
by Ádám Zsuga and Adrienn Dineva
Energies 2025, 18(15), 4048; https://doi.org/10.3390/en18154048 - 30 Jul 2025
Viewed by 220
Abstract
Inter-turn short-circuit (ITSC) faults in permanent magnet synchronous machines (PMSMs) present a significant reliability challenge in electric vehicle (EV) drivetrains, particularly under non-stationary operating conditions characterized by inverter-driven transients, variable loads, and magnetic saturation. Existing diagnostic approaches, including motor current signature analysis (MCSA) [...] Read more.
Inter-turn short-circuit (ITSC) faults in permanent magnet synchronous machines (PMSMs) present a significant reliability challenge in electric vehicle (EV) drivetrains, particularly under non-stationary operating conditions characterized by inverter-driven transients, variable loads, and magnetic saturation. Existing diagnostic approaches, including motor current signature analysis (MCSA) and wavelet-based methods, are primarily designed for steady-state conditions and rely on manual feature selection, limiting their applicability in real-time embedded systems. Furthermore, the lack of publicly available, high-fidelity datasets capturing the transient dynamics and nonlinear flux-linkage behaviors of PMSMs under fault conditions poses an additional barrier to developing data-driven diagnostic solutions. To address these challenges, this study introduces a simulation framework that generates a comprehensive dataset using finite element method (FEM) models, incorporating magnetic saturation effects and inverter-driven transients across diverse EV operating scenarios. Time-frequency features extracted via Discrete Wavelet Transform (DWT) from stator current signals are used to train a Transformer model for automated ITSC fault detection. The Transformer model, leveraging self-attention mechanisms, captures both local transient patterns and long-range dependencies within the time-frequency feature space. This architecture operates without sequential processing, in contrast to recurrent models such as LSTM or RNN models, enabling efficient inference with a relatively low parameter count, which is advantageous for embedded applications. The proposed model achieves 97% validation accuracy on simulated data, demonstrating its potential for real-time PMSM fault detection. Additionally, the provided dataset and methodology contribute to the facilitation of reproducible research in ITSC diagnostics under realistic EV operating conditions. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Power and Energy Systems)
Show Figures

Figure 1

12 pages, 1066 KiB  
Article
Prediction of the Maximum and Minimum Prices of Stocks in the Stock Market Using a Hybrid Model Based on Stacking
by Sebastian Tuesta, Nahum Flores and David Mauricio
Algorithms 2025, 18(8), 471; https://doi.org/10.3390/a18080471 - 28 Jul 2025
Viewed by 250
Abstract
Predicting stock prices on stock markets is challenging due to the nonlinear and nonstationary nature of financial markets. This study presents a hybrid model based on integrated machine learning (ML) techniques—neural networks, support vector regression (SVR), and decision trees—that uses the stacking method [...] Read more.
Predicting stock prices on stock markets is challenging due to the nonlinear and nonstationary nature of financial markets. This study presents a hybrid model based on integrated machine learning (ML) techniques—neural networks, support vector regression (SVR), and decision trees—that uses the stacking method to estimate the next day’s maximum and minimum stock prices. The model’s performance was evaluated using three data sets: Brazil’s São Paulo Stock Exchange (iBovespa)—Companhia Energética do Rio Grande do Norte (CSRN) and CPFL Energia (CPFE)—and one from the New York Stock Exchange (NYSE), the Dow Jones Industrial Average (DJI). The datasets covered the following time periods: CSRN and CPFE from 1 January 2008 to 30 September 2013, and DJI from 3 December 2018 to 31 August 2024. For the CSRN ensemble, the hybrid model achieved a mean absolute percentage error (MAPE) of 0.197% for maximum price and 0.224% for minimum price, outperforming results from the literature. For the CPFE set, the model showed a MAPE of 0.834% for the maximum price and 0.937% for the minimum price, demonstrating comparable accuracy. The model obtained a MAPE of 0.439% for the DJI set for maximum price and 0.474% for minimum price, evidencing its applicability across different market contexts. These results suggest that the proposed hybrid approach offers a robust alternative for stock price prediction by overcoming the limitations of using a single ML technique. Full article
Show Figures

Figure 1

21 pages, 4181 KiB  
Article
Addressing Volatility and Nonlinearity in Discharge Modeling: ARIMA-iGARCH for Short-Term Hydrological Time Series Simulation
by Mahshid Khazaeiathar and Britta Schmalz
Hydrology 2025, 12(8), 197; https://doi.org/10.3390/hydrology12080197 - 27 Jul 2025
Viewed by 360
Abstract
Selecting an appropriate model for discharge simulation remains a fundamental challenge in modeling. While artificial neural networks (ANNs) have been widely accepted due to detecting streamflow patterns, they require large datasets for efficient training. However, when short-term datasets are available, training ANNs becomes [...] Read more.
Selecting an appropriate model for discharge simulation remains a fundamental challenge in modeling. While artificial neural networks (ANNs) have been widely accepted due to detecting streamflow patterns, they require large datasets for efficient training. However, when short-term datasets are available, training ANNs becomes problematic. Autoregressive integrated moving average (ARIMA) models offer a promising alternative; however, severe volatility, nonlinearity, and trends in hydrological time series can still lead to significant errors. To address these challenges, this study introduces a new adaptive hybrid model, ARIMA-iGARCH, designed to account volatility, variance inconsistency, and nonlinear behavior in short-term hydrological datasets. We apply the model to four hourly discharge time series from the Schwarzbach River at the Nauheim gauge in Hesse, Germany, under the assumption of normally distributed residuals. The results demonstrate that the specialized parameter estimation method achieves lower complexity and higher accuracy. For the four events analyzed, R2 values reached 0.99, 0.96, 0.99, and 0.98; RMSE values were 0.031, 0.091, 0.023, and 0.052. By delivering accurate short-term discharge predictions, the ARIMA-iGARCH model provides a basis for enhancing water resource planning and flood risk management. Overall, the model significantly improves modeling long memory, nonlinear, nonstationary shifts in short-term hydrological datasets by effectively capturing fluctuations in variance. Full article
Show Figures

Figure 1

17 pages, 3368 KiB  
Article
A Heave Motion Prediction Approach Based on Sparse Bayesian Learning Incorporated with Empirical Mode Decomposition for an Underwater Towed System
by Zhu-Fei Lu, Heng-Chang Yan and Jin-Bang Xu
J. Mar. Sci. Eng. 2025, 13(8), 1427; https://doi.org/10.3390/jmse13081427 - 27 Jul 2025
Viewed by 190
Abstract
Underwater towed systems (UTSs) are widely used in underwater exploration and oceanographic data acquisition. However, the heave motion information of the towing ship is usually affected by the measurement transmitting delay, sensor noise and surface waves, which will result in uncontrolled depth variation [...] Read more.
Underwater towed systems (UTSs) are widely used in underwater exploration and oceanographic data acquisition. However, the heave motion information of the towing ship is usually affected by the measurement transmitting delay, sensor noise and surface waves, which will result in uncontrolled depth variation of the towed vehicle, so as to adversely affect the monitoring performance and mechanical robustness of the UTS. To resolve this problem, a heave motion prediction approach based on sparse Bayesian learning (SBL) incorporated with empirical mode decomposition (EMD) for the UTS is proposed in this paper. With the proposed approach, a heave motion model of the towing ship with random waves is firstly developed based on strip theory. Meanwhile, the EMD is employed to eliminate the high-frequency noise of the measurement data to restore low-frequency towing ship motion. And then, the SBL is utilized to train the weight parameters in the built model to predict the heave motion, which not only reconstruct the heave motion from non-stationary sensor signals with noise but also prevent overfitting. Furthermore, the depth compensation of the towed vehicle is then performed using the predicted heave motion. Finally, experimental results demonstrate that the proposed EMD-SBL method significantly improves both the prediction accuracy and model adaptability under various sea conditions, and it also guarantees that the maximum prediction depth error of the heave motion does not exceed 1 cm. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 1307 KiB  
Article
Three-Dimensional Non-Stationary MIMO Channel Modeling for UAV-Based Terahertz Wireless Communication Systems
by Kai Zhang, Yongjun Li, Xiang Wang, Zhaohui Yang, Fenglei Zhang, Ke Wang, Zhe Zhao and Yun Wang
Entropy 2025, 27(8), 788; https://doi.org/10.3390/e27080788 - 25 Jul 2025
Viewed by 166
Abstract
Terahertz (THz) wireless communications can support ultra-high data rates and secure wireless links with miniaturized devices for unmanned aerial vehicle (UAV) communications. In this paper, a three-dimensional (3D) non-stationary geometry-based stochastic channel model (GSCM) is proposed for multiple-input multiple-output (MIMO) communication links between [...] Read more.
Terahertz (THz) wireless communications can support ultra-high data rates and secure wireless links with miniaturized devices for unmanned aerial vehicle (UAV) communications. In this paper, a three-dimensional (3D) non-stationary geometry-based stochastic channel model (GSCM) is proposed for multiple-input multiple-output (MIMO) communication links between the UAVs in the THz band. The proposed channel model considers not only the 3D scattering and reflection scenarios (i.e., reflection and scattering fading) but also the atmospheric molecule absorption attenuation, arbitrary 3D trajectory, and antenna arrays of both terminals. In addition, the statistical properties of the proposed GSCM (i.e., the time auto-correlation function (T-ACF), space cross-correlation function (S-CCF), and Doppler power spectrum density (DPSD)) are derived and analyzed under several important UAV-related parameters and different carrier frequencies, including millimeter wave (mmWave) and THz bands. Finally, the good agreement between the simulated results and corresponding theoretical ones demonstrates the correctness of the proposed GSCM, and some useful observations are provided for the system design and performance evaluation of UAV-based air-to-air (A2A) THz-MIMO wireless communications. Full article
Show Figures

Figure 1

17 pages, 5495 KiB  
Article
Application of Empirical Mode Decomposition to Land Surface Temperature Projection Under a Changing Climate
by Che-Wei Chang and Wen-Cheng Huang
Water 2025, 17(15), 2204; https://doi.org/10.3390/w17152204 - 23 Jul 2025
Viewed by 242
Abstract
This study takes the daily temperature series of Taipei City as an example and proposes a data projection method based on Empirical Mode Decomposition (EMD), which effectively resolves the challenge of modeling non-stationary sequences. According to the daily mean temperature records from 1971 [...] Read more.
This study takes the daily temperature series of Taipei City as an example and proposes a data projection method based on Empirical Mode Decomposition (EMD), which effectively resolves the challenge of modeling non-stationary sequences. According to the daily mean temperature records from 1971 to 2023, Taipei has experienced an average warming rate of 0.02 °C per year. After applying EMD, the data were decomposed into 12 intrinsic mode functions (IMFs) and one residual trend. Among them, IMF5, with a period of 352 days (approximately one year), contributes 78% of the total energy, representing the dominant climatic cycle component. In this study, daily temperatures were categorized into five thermal levels: Cold (<12 °C), Cool (12–18 °C), Moderate (18–27 °C), Warm (27–32 °C), and Hot (>32 °C). In addition, using a 5-year moving process based on the annual EMD results, the IMFs and residuals were recombined to generate 390,625 synthetic sequences per year. Results show that the monthly mean temperatures of each year’s simulations closely match the observations, capturing the non-stationary characteristics of temperature variations. The overall classification accuracy of simulated versus observed daily temperature categories ranges from 60% to 71%, with an average of 65.1%. In summary, the EMD combined with the 5-year moving process developed in this study demonstrates a helpful data projection approach with effective reconstruction of periodic structures and stable simulation accuracy. It offers practical value for reconstructing urban climate variability, conducting risk assessments, and analyzing long-term warming trends. Moreover, it serves as a vital tool for modeling non-stationary climate data and supporting future projections. Full article
Show Figures

Figure 1

25 pages, 654 KiB  
Article
Entropy-Regularized Federated Optimization for Non-IID Data
by Koffka Khan
Algorithms 2025, 18(8), 455; https://doi.org/10.3390/a18080455 - 22 Jul 2025
Viewed by 200
Abstract
Federated learning (FL) struggles under non-IID client data when local models drift toward conflicting optima, impairing global convergence and performance. We introduce entropy-regularized federated optimization (ERFO), a lightweight client-side modification that augments each local objective with a Shannon entropy penalty on the per-parameter [...] Read more.
Federated learning (FL) struggles under non-IID client data when local models drift toward conflicting optima, impairing global convergence and performance. We introduce entropy-regularized federated optimization (ERFO), a lightweight client-side modification that augments each local objective with a Shannon entropy penalty on the per-parameter update distribution. ERFO requires no additional communication, adds a single-scalar hyperparameter λ, and integrates seamlessly into any FedAvg-style training loop. We derive a closed-form gradient for the entropy regularizer and provide convergence guarantees: under μ-strong convexity and L-smoothness, ERFO achieves the same O(1/T) (or linear) rates as FedAvg (with only O(λ) bias for fixed λ and exact convergence when λt0); in the non-convex case, we prove stationary-point convergence at O(1/T). Empirically, on five-client non-IID splits of the UNSW-NB15 intrusion-detection dataset, ERFO yields a +1.6 pp gain in accuracy and +0.008 in macro-F1 over FedAvg with markedly smoother dynamics. On a three-of-five split of PneumoniaMNIST, a fixed λ matches or exceeds FedAvg, FedProx, and SCAFFOLD—achieving 90.3% accuracy and 0.878 macro-F1—while preserving rapid, stable learning. ERFO’s gradient-only design is model-agnostic, making it broadly applicable across tasks. Full article
(This article belongs to the Special Issue Advances in Parallel and Distributed AI Computing)
Show Figures

Figure 1

30 pages, 10277 KiB  
Article
A Finite Element Formulation for True Coupled Modal Analysis and Nonlinear Seismic Modeling of Dam–Reservoir–Foundation Systems: Application to an Arch Dam and Validation
by André Alegre, Sérgio Oliveira, Jorge Proença, Paulo Mendes and Ezequiel Carvalho
Infrastructures 2025, 10(8), 193; https://doi.org/10.3390/infrastructures10080193 - 22 Jul 2025
Viewed by 173
Abstract
This paper presents a formulation for the dynamic analysis of dam–reservoir–foundation systems, employing a coupled finite element model that integrates displacements and reservoir pressures. An innovative coupled approach, without separating the solid and fluid equations, is proposed to directly solve the single non-symmetrical [...] Read more.
This paper presents a formulation for the dynamic analysis of dam–reservoir–foundation systems, employing a coupled finite element model that integrates displacements and reservoir pressures. An innovative coupled approach, without separating the solid and fluid equations, is proposed to directly solve the single non-symmetrical governing equation for the whole system with non-proportional damping. For the modal analysis, a state–space method is adopted to solve the coupled eigenproblem, and complex eigenvalues and eigenvectors are computed, corresponding to non-stationary vibration modes. For the seismic analysis, a time-stepping method is applied to the coupled dynamic equation, and the stress–transfer method is introduced to simulate the nonlinear behavior, innovatively combining a constitutive joint model and a concrete damage model with softening and two independent scalar damage variables (tension and compression). This formulation is implemented in the computer program DamDySSA5.0, developed by the authors. To validate the formulation, this paper provides the experimental and numerical results in the case of the Cahora Bassa dam, instrumented in 2010 with a continuous vibration monitoring system designed by the authors. The good comparison achieved between the monitoring data and the dam–reservoir–foundation model shows that the formulation is suitable for simulating the modal response (natural frequencies and mode shapes) for different reservoir water levels and the seismic response under low-intensity earthquakes, using accelerograms measured at the dam base as input. Additionally, the dam’s nonlinear seismic response is simulated under an artificial accelerogram of increasing intensity, showing the structural effects due to vertical joint movements (release of arch tensions near the crest) and the concrete damage evolution. Full article
(This article belongs to the Special Issue Advances in Dam Engineering of the 21st Century)
Show Figures

Figure 1

24 pages, 6464 KiB  
Article
A Hybrid Model for Carbon Price Forecasting Based on Secondary Decomposition and Weight Optimization
by Yongfa Chen, Yingjie Zhu, Jie Wang and Meng Li
Mathematics 2025, 13(14), 2323; https://doi.org/10.3390/math13142323 - 21 Jul 2025
Viewed by 270
Abstract
Accurate carbon price forecasting is essential for market stability, risk management, and policy-making. To address the nonlinear, non-stationary, and multiscale nature of carbon prices, this paper proposes a forecasting framework integrating secondary decomposition, two-stage feature selection, and dynamic ensemble learning. Firstly, the original [...] Read more.
Accurate carbon price forecasting is essential for market stability, risk management, and policy-making. To address the nonlinear, non-stationary, and multiscale nature of carbon prices, this paper proposes a forecasting framework integrating secondary decomposition, two-stage feature selection, and dynamic ensemble learning. Firstly, the original price series is decomposed into intrinsic mode functions (IMFs), using complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). The IMFs are then grouped into low- and high-frequency components based on multiscale entropy (MSE) and K-Means clustering. To further alleviate mode mixing in the high-frequency components, an improved variational mode decomposition (VMD) optimized by particle swarm optimization (PSO) is applied for secondary decomposition. Secondly, a two-stage feature-selection method is employed, in which the partial autocorrelation function (PACF) is used to select relevant lagged features, while the maximal information coefficient (MIC) is applied to identify key variables from both historical and external data. Finally, this paper introduces a dynamic integration module based on sliding windows and sequential least squares programming (SLSQP), which can not only adaptively adjust the weights of four base learners but can also effectively leverage the complementary advantages of each model and track the dynamic trends of carbon prices. The empirical results of the carbon markets in Hubei and Guangdong indicate that the proposed method outperforms the benchmark model in terms of prediction accuracy and robustness, and the method has been tested by Diebold Mariano (DM). The main contributions are the improved feature-extraction process and the innovative use of a sliding window-based SLSQP method for dynamic ensemble weight optimization. Full article
Show Figures

Figure 1

24 pages, 4099 KiB  
Article
Dynamic Control of Coating Accumulation Model in Non-Stationary Environment Based on Visual Differential Feedback
by Chengzhi Su, Danyang Yu, Wenyu Song, Huilin Tian, Haifeng Bao, Enguo Wang and Mingzhen Li
Coatings 2025, 15(7), 852; https://doi.org/10.3390/coatings15070852 - 19 Jul 2025
Viewed by 292
Abstract
To address the issue of coating accumulation model failure in unstable environments, this paper proposes a dynamic control method based on visual differential feedback. An image difference model is constructed through online image data modeling and real-time reference image feedback, enabling real-time correction [...] Read more.
To address the issue of coating accumulation model failure in unstable environments, this paper proposes a dynamic control method based on visual differential feedback. An image difference model is constructed through online image data modeling and real-time reference image feedback, enabling real-time correction of the coating accumulation model. Firstly, by combining the Arrhenius equation and the Hagen–Poiseuille equation, it is demonstrated that pressure regulation and temperature changes are equivalent under dataset establishment conditions, thereby reducing data collection costs. Secondly, online paint mist image acquisition and processing technology enables real-time modeling, overcoming the limitations of traditional offline methods. This approach reduces modeling time to less than 4 min, enhancing real-time parameter adjustability. Thirdly, an image difference model employing a CNN + MLP structure, combined with feature fusion and optimization strategies, achieved high prediction accuracy: R2 > 0.999, RMSE < 0.79 kPa, and σe < 0.74 kPa on the test set for paint A; and R2 > 0.997, RMSE < 0.67 kPa, and σe < 0.66 kPa on the test set for aviation paint B. The results show that the model can achieve good dynamic regulation for both types of typical aviation paint used in the experiment: high-viscosity polyurethane enamel (paint A, viscosity 22 s at 25 °C) and epoxy polyamide primer (paint B, viscosity 18 s at 25 °C). In summary, the image difference model can achieve dynamic regulation of the coating accumulation model in unstable environments, ensuring the stability of the coating accumulation model. This technology can be widely applied in industrial spraying scenarios with high requirements for coating uniformity and stability, especially in occasions with significant fluctuations in environmental parameters or complex process conditions, and has important engineering application value. Full article
Show Figures

Figure 1

24 pages, 2267 KiB  
Article
A Mechanical Fault Diagnosis Method for On-Load Tap Changers Based on GOA-Optimized FMD and Transformer
by Ruifeng Wei, Zhenjiang Chen, Qingbo Wang, Yongsheng Duan, Hui Wang, Feiming Jiang, Daoyuan Liu and Xiaolong Wang
Energies 2025, 18(14), 3848; https://doi.org/10.3390/en18143848 - 19 Jul 2025
Viewed by 305
Abstract
Mechanical failures frequently occur in On-Load Tap Changers (OLTCs) during operation, potentially compromising the reliability and stability of power systems. The goal of this study is to develop an intelligent and accurate diagnostic approach for OLTC mechanical fault identification, particularly under the challenge [...] Read more.
Mechanical failures frequently occur in On-Load Tap Changers (OLTCs) during operation, potentially compromising the reliability and stability of power systems. The goal of this study is to develop an intelligent and accurate diagnostic approach for OLTC mechanical fault identification, particularly under the challenge of non-stationary vibration signals. To achieve this, a novel hybrid method is proposed that integrates the Gazelle Optimization Algorithm (GOA), Feature Mode Decomposition (FMD), and a Transformer-based classification model. Specifically, GOA is employed to automatically optimize key FMD parameters, including the number of filters (K), filter length (L), and number of decomposition modes (N), enabling high-resolution signal decomposition. From the resulting intrinsic mode functions (IMFs), statistical time domain features—peak factor, impulse factor, waveform factor, and clearance factor—are extracted to form feature vectors. After feature extraction, the resulting vectors are utilized by a Transformer to classify fault types. Benchmark comparisons with other decomposition and learning approaches highlight the enhanced performance of the proposed framework. The model achieves a 95.83% classification accuracy on the test set and an average of 96.7% under five-fold cross-validation, demonstrating excellent accuracy and generalization. What distinguishes this research is its incorporation of a GOA–FMD and a Transformer-based attention mechanism for pattern recognition into a unified and efficient diagnostic framework. With its high effectiveness and adaptability, the proposed framework shows great promise for real-world applications in the smart fault monitoring of power systems. Full article
Show Figures

Figure 1

28 pages, 2140 KiB  
Article
Application of the GEV Distribution in Flood Frequency Analysis in Romania: An In-Depth Analysis
by Cristian Gabriel Anghel and Dan Ianculescu
Climate 2025, 13(7), 152; https://doi.org/10.3390/cli13070152 - 18 Jul 2025
Viewed by 684
Abstract
This manuscript investigates the applicability and behavior of the Generalized Extreme Value (GEV) distribution in flood frequency analysis, comparing it with the Pearson III and Wakeby distributions. Traditional approaches often rely on a limited set of statistical distributions and estimation techniques, which may [...] Read more.
This manuscript investigates the applicability and behavior of the Generalized Extreme Value (GEV) distribution in flood frequency analysis, comparing it with the Pearson III and Wakeby distributions. Traditional approaches often rely on a limited set of statistical distributions and estimation techniques, which may not adequately capture the behavior of extreme events. The study focuses on four hydrometric stations in Romania, analyzing maximum discharges associated with rare and very rare events. The research employs seven parameter estimation methods: the method of ordinary moments (MOM), the maximum likelihood estimation (MLE), the L-moments, the LH-moments, the probability-weighted moments (PWMs), the least squares method (LSM), and the weighted least squares method (WLSM). Results indicate that the GEV distribution, particularly when using L-moments, consistently provides more reliable predictions for extreme events, reducing biases compared to MOM. Compared to the Wakeby distribution for an extreme event (T = 10,000 years), the GEV distribution produced smaller deviations than the Pearson III distribution, namely +7.7% (for the Danube River, Giurgiu station), +4.9% (for the Danube River, Drobeta station), and +35.3% (for the Ialomita River). In the case of the Siret River, the Pearson III distribution generated values closer to those obtained by the Wakeby distribution, being 36.7% lower than those produced by the GEV distribution. These results support the use of L-moments in national hydrological guidelines for critical infrastructure design and highlight the need for further investigation into non-stationary models and regionalization techniques. Full article
(This article belongs to the Special Issue Hydroclimatic Extremes: Modeling, Forecasting, and Assessment)
Show Figures

Figure 1

Back to TopTop