Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (140)

Search Parameters:
Keywords = non-stationary channel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6057 KB  
Article
Object Detection in Single SAR Images via a Saliency Framework Integrating Bayesian Inference and Adaptive Iteration
by Haixiang Li, Haohao Ren, Yun Zhou, Lin Zou and Xuegang Wang
Remote Sens. 2025, 17(17), 2939; https://doi.org/10.3390/rs17172939 - 24 Aug 2025
Abstract
Object detection in single synthetic aperture radar (SAR) imagery has always been essential for SAR interpretation. Over the years, the saliency-based detection method is considered as a strategy that can overcome some inherent deficiencies in traditional SAR detection and arouses widespread attention. Considering [...] Read more.
Object detection in single synthetic aperture radar (SAR) imagery has always been essential for SAR interpretation. Over the years, the saliency-based detection method is considered as a strategy that can overcome some inherent deficiencies in traditional SAR detection and arouses widespread attention. Considering that the conventional saliency method usually suffers performance loss in saliency map generation from lacking specific task priors or highlighted non-object regions, this paper is devoted to achieving excellent salient object detection in single SAR imagery via a two-channel framework integrating Bayesian inference and adaptive iteration. Our algorithm firstly utilizes the two processing channels to calculate the object/background prior without specific task information and extract four typical features that can enhance the object presence, respectively. Then, these two channels are fused to generate an initial saliency map by Bayesian inference, in which object areas are assigned with high saliency values. After that, we develop an adaptive iteration mechanism to further modify the saliency map, during which object saliency is progressively enhanced while the background is continuously suppressed. Thus, in the final saliency map, there will be a distinct difference between object components and the background, allowing object detection to be realized easily by global threshold segmentation. Extensive experiments on real SAR images from the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset and SAR Ship Detection Dataset (SSDD) qualitatively and quantitatively demonstrate that our saliency map is superior to those of four classical benchmark methods, and final detection results of the proposed algorithm present better performance than several comparative methods across both ground and maritime scenarios. Full article
Show Figures

Figure 1

19 pages, 1307 KB  
Article
Three-Dimensional Non-Stationary MIMO Channel Modeling for UAV-Based Terahertz Wireless Communication Systems
by Kai Zhang, Yongjun Li, Xiang Wang, Zhaohui Yang, Fenglei Zhang, Ke Wang, Zhe Zhao and Yun Wang
Entropy 2025, 27(8), 788; https://doi.org/10.3390/e27080788 - 25 Jul 2025
Viewed by 282
Abstract
Terahertz (THz) wireless communications can support ultra-high data rates and secure wireless links with miniaturized devices for unmanned aerial vehicle (UAV) communications. In this paper, a three-dimensional (3D) non-stationary geometry-based stochastic channel model (GSCM) is proposed for multiple-input multiple-output (MIMO) communication links between [...] Read more.
Terahertz (THz) wireless communications can support ultra-high data rates and secure wireless links with miniaturized devices for unmanned aerial vehicle (UAV) communications. In this paper, a three-dimensional (3D) non-stationary geometry-based stochastic channel model (GSCM) is proposed for multiple-input multiple-output (MIMO) communication links between the UAVs in the THz band. The proposed channel model considers not only the 3D scattering and reflection scenarios (i.e., reflection and scattering fading) but also the atmospheric molecule absorption attenuation, arbitrary 3D trajectory, and antenna arrays of both terminals. In addition, the statistical properties of the proposed GSCM (i.e., the time auto-correlation function (T-ACF), space cross-correlation function (S-CCF), and Doppler power spectrum density (DPSD)) are derived and analyzed under several important UAV-related parameters and different carrier frequencies, including millimeter wave (mmWave) and THz bands. Finally, the good agreement between the simulated results and corresponding theoretical ones demonstrates the correctness of the proposed GSCM, and some useful observations are provided for the system design and performance evaluation of UAV-based air-to-air (A2A) THz-MIMO wireless communications. Full article
Show Figures

Figure 1

13 pages, 3516 KB  
Article
Research on Fault Diagnosis of High-Voltage Circuit Breakers Using Gramian-Angular-Field-Based Dual-Channel Convolutional Neural Network
by Mingkun Yang, Liangliang Wei, Pengfeng Qiu, Guangfu Hu, Xingfu Liu, Xiaohui He, Zhaoyu Peng, Fangrong Zhou, Yun Zhang, Xiangyu Tan and Xuetong Zhao
Energies 2025, 18(14), 3837; https://doi.org/10.3390/en18143837 - 18 Jul 2025
Viewed by 278
Abstract
The challenge of accurately diagnosing mechanical failures in high-voltage circuit breakers is exacerbated by the non-stationary characteristics of vibration signals. This study proposes a Dual-Channel Convolutional Neural Network (DC-CNN) framework based on the Gramian Angular Field (GAF) transformation, which effectively captures both global [...] Read more.
The challenge of accurately diagnosing mechanical failures in high-voltage circuit breakers is exacerbated by the non-stationary characteristics of vibration signals. This study proposes a Dual-Channel Convolutional Neural Network (DC-CNN) framework based on the Gramian Angular Field (GAF) transformation, which effectively captures both global and local information about faults. Specifically, vibration signals from circuit breaker sensors are firstly transformed into Gramian Angular Summation Field (GASF) and Gramian Angular Difference Field (GADF) images. These images are then combined into multi-channel inputs for parallel CNN modules to extract and fuse complementary features. Experimental validation under six operational conditions of a 220 kV high-voltage circuit breaker demonstrates that the GAF-DC-CNN method achieves a fault diagnosis accuracy of 99.02%, confirming the model’s effectiveness. This work provides substantial support for high-precision and reliable fault diagnosis in high-voltage circuit breakers within power systems. Full article
Show Figures

Figure 1

14 pages, 1563 KB  
Article
High-Resolution Time-Frequency Feature Selection and EEG Augmented Deep Learning for Motor Imagery Recognition
by Mouna Bouchane, Wei Guo and Shuojin Yang
Electronics 2025, 14(14), 2827; https://doi.org/10.3390/electronics14142827 - 14 Jul 2025
Viewed by 403
Abstract
Motor Imagery (MI) based Brain Computer Interfaces (BCIs) have promising applications in neurorehabilitation for individuals who have lost mobility and control over parts of their body due to brain injuries, such as stroke patients. Accurately classifying MI tasks is essential for effective BCI [...] Read more.
Motor Imagery (MI) based Brain Computer Interfaces (BCIs) have promising applications in neurorehabilitation for individuals who have lost mobility and control over parts of their body due to brain injuries, such as stroke patients. Accurately classifying MI tasks is essential for effective BCI performance, but this task remains challenging due to the complex and non-stationary nature of EEG signals. This study aims to improve the classification of left and right-hand MI tasks by utilizing high-resolution time-frequency features extracted from EEG signals, enhanced with deep learning-based data augmentation techniques. We propose a novel deep learning framework named the Generalized Wavelet Transform-based Deep Convolutional Network (GDC-Net), which integrates multiple components. First, EEG signals recorded from the C3, C4, and Cz channels are transformed into detailed time-frequency representations using the Generalized Morse Wavelet Transform (GMWT). The selected features are then expanded using a Deep Convolutional Generative Adversarial Network (DCGAN) to generate additional synthetic data and address data scarcity. Finally, the augmented feature maps data are subsequently fed into a hybrid CNN-LSTM architecture, enabling both spatial and temporal feature learning for improved classification. The proposed approach is evaluated on the BCI Competition IV dataset 2b. Experimental results showed that the mean classification accuracy and Kappa value are 89.24% and 0.784, respectively, making them the highest compared to the state-of-the-art algorithms. The integration of GMWT and DCGAN significantly enhances feature quality and model generalization, thereby improving classification performance. These findings demonstrate that GDC-Net delivers superior MI classification performance by effectively capturing high-resolution time-frequency dynamics and enhancing data diversity. This approach holds strong potential for advancing MI-based BCI applications, especially in assistive and rehabilitation technologies. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

30 pages, 8543 KB  
Article
Multi-Channel Coupled Variational Bayesian Framework with Structured Sparse Priors for High-Resolution Imaging of Complex Maneuvering Targets
by Xin Wang, Jing Yang and Yong Luo
Remote Sens. 2025, 17(14), 2430; https://doi.org/10.3390/rs17142430 - 13 Jul 2025
Viewed by 313
Abstract
High-resolution ISAR (Inverse Synthetic Aperture Radar) imaging plays a crucial role in dynamic target monitoring for aerospace, maritime, and ground surveillance. Among various remote sensing techniques, ISAR is distinguished by its ability to produce high-resolution images of non-cooperative maneuvering targets. To meet the [...] Read more.
High-resolution ISAR (Inverse Synthetic Aperture Radar) imaging plays a crucial role in dynamic target monitoring for aerospace, maritime, and ground surveillance. Among various remote sensing techniques, ISAR is distinguished by its ability to produce high-resolution images of non-cooperative maneuvering targets. To meet the increasing demands for resolution and robustness, modern ISAR systems are evolving toward wideband and multi-channel architectures. In particular, multi-channel configurations based on large-scale receiving arrays have gained significant attention. In such systems, each receiving element functions as an independent spatial channel, acquiring observations from distinct perspectives. These multi-angle measurements enrich the available echo information and enhance the robustness of target imaging. However, this setup also brings significant challenges, including inter-channel coupling, high-dimensional joint signal modeling, and non-Gaussian, mixed-mode interference, which often degrade image quality and hinder reconstruction performance. To address these issues, this paper proposes a Hybrid Variational Bayesian Multi-Interference (HVB-MI) imaging algorithm based on a hierarchical Bayesian framework. The method jointly models temporal correlations and inter-channel structure, introducing a coupled processing strategy to reduce dimensionality and computational complexity. To handle complex noise environments, a Gaussian mixture model (GMM) is used to represent nonstationary mixed noise. A variational Bayesian inference (VBI) approach is developed for efficient parameter estimation and robust image recovery. Experimental results on both simulated and real-measured data demonstrate that the proposed method achieves significantly improved image resolution and noise robustness compared with existing approaches, particularly under conditions of sparse sampling or strong interference. Quantitative evaluation further shows that under the continuous sparse mode with a 75% sampling rate, the proposed method achieves a significantly higher Laplacian Variance (LV), outperforming PCSBL and CPESBL by 61.7% and 28.9%, respectively and thereby demonstrating its superior ability to preserve fine image details. Full article
Show Figures

Graphical abstract

31 pages, 5571 KB  
Article
Resolving Non-Proportional Frequency Components in Rotating Machinery Signals Using Local Entropy Selection Scaling–Reassigning Chirplet Transform
by Dapeng Quan, Yuli Niu, Zeming Zhao, Caiting He, Xiaoze Yang, Mingyang Li, Tianyang Wang, Lili Zhang, Limei Ma, Yong Zhao and Hongtao Wu
Aerospace 2025, 12(7), 616; https://doi.org/10.3390/aerospace12070616 - 8 Jul 2025
Viewed by 339
Abstract
Under complex operating conditions, vibration signals from rotating machinery often exhibit non-stationary characteristics with non-proportional and closely spaced instantaneous frequency (IF) components. Traditional time–frequency analysis (TFA) methods struggle to accurately extract such features due to energy leakage and component mixing. In response to [...] Read more.
Under complex operating conditions, vibration signals from rotating machinery often exhibit non-stationary characteristics with non-proportional and closely spaced instantaneous frequency (IF) components. Traditional time–frequency analysis (TFA) methods struggle to accurately extract such features due to energy leakage and component mixing. In response to these issues, an enhanced time–frequency analysis approach, termed Local Entropy Selection Scaling–Reassigning Chirplet Transform (LESSRCT), has been developed to improve the representation accuracy for complex non-stationary signals. This approach constructs multi-channel time–frequency representations (TFRs) by introducing multiple scales of chirp rates (CRs) and utilizes a Rényi entropy-based criterion to adaptively select multiple optimal CRs at the same time center, enabling accurate characterization of multiple fundamental components. In addition, a frequency reassignment mechanism is incorporated to enhance energy concentration and suppress spectral diffusion. Extensive validation was conducted on a representative synthetic signal and three categories of real-world data—bat echolocation, inner race bearing faults, and wind turbine gearbox vibrations. In each case, the proposed LESSRCT method was compared against SBCT, GLCT, CWT, SET, EMCT, and STFT. On the synthetic signal, LESSRCT achieved the lowest Rényi entropy of 13.53, which was 19.5% lower than that of SET (16.87) and 35% lower than GLCT (18.36). In the bat signal analysis, LESSRCT reached an entropy of 11.53, substantially outperforming CWT (19.91) and SBCT (15.64). For bearing fault diagnosis signals, LESSRCT consistently achieved lower entropy across varying SNR levels compared to all baseline methods, demonstrating strong noise resilience and robustness. The final case on wind turbine signals demonstrated its robustness and computational efficiency, with a runtime of 1.31 s and excellent resolution. These results confirm that LESSRCT delivers robust, high-resolution TFRs with strong noise resilience and broad applicability. It holds strong potential for precise fault detection and condition monitoring in domains such as aerospace and renewable energy systems. Full article
Show Figures

Figure 1

33 pages, 2533 KB  
Article
VBTCKN: A Time Series Forecasting Model Based on Variational Mode Decomposition with Two-Channel Cross-Attention Network
by Zhiguo Xiao, Changgen Li, Huihui Hao, Siwen Liang, Qi Shen and Dongni Li
Symmetry 2025, 17(7), 1063; https://doi.org/10.3390/sym17071063 - 4 Jul 2025
Viewed by 540
Abstract
Time series forecasting serves a critical function in domains such as energy, meteorology, and power systems by leveraging historical data to predict future trends. However, existing methods often prioritize long-term dependencies while neglecting the integration of local features and global patterns, resulting in [...] Read more.
Time series forecasting serves a critical function in domains such as energy, meteorology, and power systems by leveraging historical data to predict future trends. However, existing methods often prioritize long-term dependencies while neglecting the integration of local features and global patterns, resulting in limited accuracy for short-term predictions of non-stationary multivariate sequences. To address these challenges, this paper proposes a time series forecasting model named VBTCKN based on variational mode decomposition and a dual-channel cross-attention network. First, the model employs variational mode decomposition (VMD) to decompose the time series into multiple frequency-complementary modal components, thereby reducing sequence volatility. Subsequently, the BiLSTM channel extracts temporal dependencies between sequences, while the transformer channel captures dynamic correlations between local features and global patterns. The cross-attention mechanism dynamically fuses features from both channels, enhancing complementary information integration. Finally, prediction results are generated through Kolmogorov–Arnold networks (KAN). Experiments conducted on four public datasets demonstrated that VBTCKN outperformed other state-of-the-art methods in both accuracy and robustness. Compared with BiLSTM, VBTCKN reduced RMSE by 63.32%, 68.31%, 57.98%, and 90.76%, respectively. Full article
Show Figures

Graphical abstract

26 pages, 5110 KB  
Article
Rolling Based on Multi-Source Time–Frequency Feature Fusion with a Wavelet-Convolution, Channel-Attention-Residual Network-Bearing Fault Diagnosis Method
by Tongshuhao Feng, Zhuoran Wang, Lipeng Qiu, Hongkun Li and Zhen Wang
Sensors 2025, 25(13), 4091; https://doi.org/10.3390/s25134091 - 30 Jun 2025
Cited by 1 | Viewed by 457
Abstract
As a core component of rotating machinery, the condition of rolling bearings is directly related to the reliability and safety of equipment operation; therefore, the accurate and reliable monitoring of bearing operating status is critical. However, when dealing with non-stationary and noisy vibration [...] Read more.
As a core component of rotating machinery, the condition of rolling bearings is directly related to the reliability and safety of equipment operation; therefore, the accurate and reliable monitoring of bearing operating status is critical. However, when dealing with non-stationary and noisy vibration signals, traditional fault diagnosis methods are often constrained by limited feature characterization from single time–frequency analysis and inadequate feature extraction capabilities. To address this issue, this study proposes a lightweight fault diagnosis model (WaveCAResNet) enhanced with multi-source time–frequency features. By fusing complementary time–frequency features derived from continuous wavelet transform, short-time Fourier transform, Hilbert–Huang transform, and Wigner–Ville distribution, the capability to characterize complex fault patterns is significantly improved. Meanwhile, an efficient and lightweight deep learning model (WaveCAResNet) is constructed based on residual networks by integrating multi-scale analysis via a wavelet convolutional layer (WTConv) with the dynamic feature optimization properties of channel-attention-weighted residuals (CAWRs) and the efficient temporal modeling capabilities of weighted residual efficient multi-scale attention (WREMA). Experimental validation indicates that the proposed method achieves higher diagnostic accuracy and robustness than existing mainstream models on typical bearing datasets, and the classification performance of the newly proposed model exceeds that of state-of-the-art bearing fault diagnostic models on the same dataset, even under noisy conditions. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

33 pages, 10136 KB  
Article
Carbon Price Forecasting Using a Hybrid Deep Learning Model: TKMixer-BiGRU-SA
by Yuhong Li, Nan Yang, Guihong Bi, Shiyu Chen, Zhao Luo and Xin Shen
Symmetry 2025, 17(6), 962; https://doi.org/10.3390/sym17060962 - 17 Jun 2025
Cited by 1 | Viewed by 658
Abstract
As a core strategy for carbon emission reduction, carbon trading plays a critical role in policy guidance and market stability. Accurate forecasting of carbon prices is essential, yet remains challenging due to the nonlinear, non-stationary, noisy, and uncertain nature of carbon price time [...] Read more.
As a core strategy for carbon emission reduction, carbon trading plays a critical role in policy guidance and market stability. Accurate forecasting of carbon prices is essential, yet remains challenging due to the nonlinear, non-stationary, noisy, and uncertain nature of carbon price time series. To address this, this paper proposes a novel hybrid deep learning framework that integrates dual-mode decomposition and a TKMixer-BiGRU-SA model for carbon price prediction. First, external variables with high correlation to carbon prices are identified through correlation analysis and incorporated as inputs. Then, the carbon price series is decomposed using Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) to extract multi-scale features embedded in the original data. The core prediction model, TKMixer-BiGRU-SA Net, comprises three integrated branches: the first processes the raw carbon price and highly relevant external time series, and the second and third process multi-scale components obtained from VMD and EWT, respectively. The proposed model embeds Kolmogorov–Arnold Networks (KANs) into the Time-Series Mixer (TSMixer) module, replacing the conventional time-mapping layer to form the TKMixer module. Each branch alternately applies the TKMixer along the temporal and feature-channel dimensions to capture dependencies across time steps and variables. Hierarchical nonlinear transformations enhance higher-order feature interactions and improve nonlinear modeling capability. Additionally, the BiGRU component captures bidirectional long-term dependencies, while the Self-Attention (SA) mechanism adaptively weights critical features for integrated prediction. This architecture is designed to uncover global fluctuation patterns in carbon prices, multi-scale component behaviors, and external factor correlations, thereby enabling autonomous learning and the prediction of complex non-stationary and nonlinear price dynamics. Empirical evaluations using data from the EU Emission Allowance (EUA) and Hubei Emission Allowance (HBEA) demonstrate the model’s high accuracy in both single-step and multi-step forecasting tasks. For example, the eMAPE of EUA predictions for 1–4 step forecasts are 0.2081%, 0.5660%, 0.8293%, and 1.1063%, respectively—outperforming benchmark models and confirming the proposed method’s effectiveness and robustness. This study provides a novel approach to carbon price forecasting with practical implications for market regulation and decision-making. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

18 pages, 2731 KB  
Article
Prediction of Dissolved Gas in Transformer Oil Based on Variational Mode Decomposition Integrated with Long Short-Term Memory
by Guoping Chen, Jianhong Li, Yong Li, Xinming Hu, Jian Wang and Tao Li
Processes 2025, 13(5), 1446; https://doi.org/10.3390/pr13051446 - 9 May 2025
Viewed by 551
Abstract
To address the nonlinear and non-stationary characteristics of dissolved gas concentration data in transformer oil, this paper proposes a hybrid prediction model (VMD-SSA-LSTM-SE) that integrates Variational Mode Decomposition (VMD), the Whale Optimization Algorithm (WOA), the Sparrow Search Algorithm (SSA), Long Short-Term Memory (LSTM), [...] Read more.
To address the nonlinear and non-stationary characteristics of dissolved gas concentration data in transformer oil, this paper proposes a hybrid prediction model (VMD-SSA-LSTM-SE) that integrates Variational Mode Decomposition (VMD), the Whale Optimization Algorithm (WOA), the Sparrow Search Algorithm (SSA), Long Short-Term Memory (LSTM), and the Squeeze-and-Excitation (SE) attention mechanism. First, WOA dynamically optimizes VMD parameters (mode number k and penalty factor α to effectively separate noise and valid signals, avoiding modal aliasing). Then, SSA globally searches for optimal LSTM hyperparameters (hidden layer nodes, learning rate, etc.) to enhance feature mining for non-continuous data. The SE attention mechanism recalibrates channel-wise feature weights to capture critical time-series patterns. Experimental validation using real transformer oil data demonstrates that the model outperforms existing methods in prediction accuracy and computational efficiency. For instance, the CH4 test set achieves a Mean Absolute Error (MAE) of 0.17996 μL/L, a Mean Absolute Percentage Error (MAPE) of 1.4423%, and an average runtime of 82.7 s, making it significantly faster than CEEMDAN-based models. These results provide robust technical support for transformer fault prediction and condition-based maintenance, highlighting the model’s effectiveness in handling non-stationary time-series data. Full article
Show Figures

Figure 1

19 pages, 9204 KB  
Article
Numerical Study of Salt Ion Transport in Electromembrane Systems with Ion-Exchange Membranes Having Geometrically Structured Surfaces
by Evgenia Kirillova, Natalia Chubyr, Anna Kovalenko and Mahamet Urtenov
Mathematics 2025, 13(9), 1523; https://doi.org/10.3390/math13091523 - 6 May 2025
Viewed by 452
Abstract
This article is devoted to numerically modeling the effect of the geometric modification of the surfaces of ion-exchange membranes in electromembrane systems (EMSs) on the salt ion transport using a 2D mathematical model of the transport process in the desalination channel based on [...] Read more.
This article is devoted to numerically modeling the effect of the geometric modification of the surfaces of ion-exchange membranes in electromembrane systems (EMSs) on the salt ion transport using a 2D mathematical model of the transport process in the desalination channel based on boundary value problems for the coupled system of Nernst–Planck–Poisson and Navier–Stokes equations. The main patterns of salt ion transport are established taking into account diffusion, electromigration, forced convection, electroconvection, and the geometric modification of the surface of ion-exchange membranes. It is shown that the geometric modification of the surface of ion-exchange membranes significantly changes both the formation and development of electroconvection. A significant combined effect of electroconvection and geometric modification of the surface of ion-exchange membranes in the desalination channel on the salt ion transport is shown, as well as a complex, nonlinear, and non-stationary interaction of all the main effects of concentration polarization in the desalination channel. Full article
(This article belongs to the Special Issue Mathematical Applications in Electrical Engineering, 2nd Edition)
Show Figures

Figure 1

15 pages, 9198 KB  
Article
Microwave Antenna Sensing for Glucose Monitoring in a Vein Model Mimicking Human Physiology
by Youness Zaarour, Fatimazahrae El Arroud, Tomas Fernandez, Juan Luis Cano, Rafiq El Alami, Otman El Mrabet, Abdelouheb Benani, Abdessamad Faik and Hafid Griguer
Biosensors 2025, 15(5), 282; https://doi.org/10.3390/bios15050282 - 30 Apr 2025
Viewed by 1183
Abstract
Non-invasive glucose monitoring has become a critical area of research for diabetes management, offering a less intrusive and more patient-friendly alternative to traditional methods such as finger-prick tests. This study presents a novel approach using a semi-solid tissue-mimicking phantom designed to replicate the [...] Read more.
Non-invasive glucose monitoring has become a critical area of research for diabetes management, offering a less intrusive and more patient-friendly alternative to traditional methods such as finger-prick tests. This study presents a novel approach using a semi-solid tissue-mimicking phantom designed to replicate the dielectric properties of human skin and blood vessels. The phantom was simplified to focus solely on the skin layer, with embedded channels representing veins to achieve realistic glucose monitoring conditions. These channels were filled with D-(+)-Glucose solutions at varying concentrations (60 mg/dL to 200 mg/dL) to simulate physiological changes in blood glucose levels. A miniature patch antenna optimized to operate at 14 GHz with a penetration depth of approximately 1.5 mm was designed and fabricated. The antenna was tested in direct contact with the skin phantom, allowing for precise measurements of the changes in glucose concentration without interference from deeper tissue layers. Simulations and experiments demonstrated the antenna’s sensitivity to variations in glucose concentration, as evidenced by measurable shifts in the dielectric properties of the phantom. Importantly, the system enabled stationary measurements by injecting glucose solutions into the same blood vessels, eliminating the need to reposition the sensor while ensuring reliable and repeatable results. This work highlights the importance of shallow penetration depth in targeting close vessels for noninvasive glucose monitoring, and emphasizes the potential of microwave-based sensing systems as a practical solution for continuous glucose management. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

37 pages, 996 KB  
Article
Kolmogorov Capacity with Overlap
by Anshuka Rangi and Massimo Franceschetti
Entropy 2025, 27(5), 472; https://doi.org/10.3390/e27050472 - 27 Apr 2025
Viewed by 472
Abstract
The notion of δ-mutual information between non-stochastic uncertain variables is introduced as a generalization of Nair’s non-stochastic information functional. Several properties of this new quantity are illustrated and used in a communication setting to show that the largest δ-mutual information between [...] Read more.
The notion of δ-mutual information between non-stochastic uncertain variables is introduced as a generalization of Nair’s non-stochastic information functional. Several properties of this new quantity are illustrated and used in a communication setting to show that the largest δ-mutual information between received and transmitted codewords over ϵ-noise channels equals the (ϵ,δ)-capacity. This notion of capacity generalizes the Kolmogorov ϵ-capacity to packing sets of overlap at most δ and is a variation of a previous definition proposed by one of the authors. Results are then extended to more general noise models, including non-stochastic, memoryless, and stationary channels. The presented theory admits the possibility of decoding errors, as in classical information theory, while retaining the worst-case, non-stochastic character of Kolmogorov’s approach. Full article
(This article belongs to the Collection Feature Papers in Information Theory)
Show Figures

Figure 1

28 pages, 6374 KB  
Article
DIMK-GCN: A Dynamic Interactive Multi-Channel Graph Convolutional Network Model for Intrusion Detection
by Zhilin Han, Chunying Zhang, Guanghui Yang, Pengchao Yang, Jing Ren and Lu Liu
Electronics 2025, 14(7), 1391; https://doi.org/10.3390/electronics14071391 - 30 Mar 2025
Viewed by 546
Abstract
Existing network intrusion detection models effectively capture relationships between nodes and extract key features. However, they often struggle to accurately represent node characteristics, particularly in modeling the spatiotemporal dynamics and topological structures with sufficient granularity. To address these limitations, we propose the dynamic [...] Read more.
Existing network intrusion detection models effectively capture relationships between nodes and extract key features. However, they often struggle to accurately represent node characteristics, particularly in modeling the spatiotemporal dynamics and topological structures with sufficient granularity. To address these limitations, we propose the dynamic interaction multi-channel graph convolutional network (DIMK-GCN), which integrates three key components: a spatiotemporal feature weighting module, an interactive graph feature fusion module, and a temporal feature learning module. The spatiotemporal feature weighting module constructs a dynamic graph structure that incorporates both nodes and edges, leveraging self-attention mechanisms to enhance critical feature representations. The interactive graph feature fusion module employs graph attention networks (GATs) to refine node relationships while integrating a multi-channel graph convolutional network (GCN) to extract multi-perspective features, thereby enhancing model depth and robustness. The temporal feature learning module utilizes gated recurrent units (GRUs) to effectively capture long-term dependencies and address challenges posed by non-stationary time series data. Experimental results on the CIC-IDS2017, CIC-IDS2018, and Edge-IIoTSet datasets demonstrate that DIMK-GCN significantly outperforms existing models in key performance metrics, including detection accuracy, recall, and F1-score. Notably, on the Edge-IIoTSet dataset, DIMK-GCN achieves an accuracy of 97.31%, verifying its effectiveness and robustness in detecting various types of network attacks. Full article
Show Figures

Figure 1

16 pages, 1104 KB  
Article
Multi-Channel Underwater Acoustic Signal Analysis Using Improved Multivariate Multiscale Sample Entropy
by Jing Zhou, Yaan Li and Mingzhou Wang
J. Mar. Sci. Eng. 2025, 13(4), 675; https://doi.org/10.3390/jmse13040675 - 27 Mar 2025
Viewed by 419
Abstract
Underwater acoustic signals typically exhibit non-Gaussian, non-stationary, and nonlinear characteristics. When processing real-world underwater acoustic signals, traditional multivariate entropy algorithms often struggle to simultaneously ensure stability and extract cross-channel information. To address these issues, the improved multivariate multiscale sample entropy (IMMSE) algorithm is [...] Read more.
Underwater acoustic signals typically exhibit non-Gaussian, non-stationary, and nonlinear characteristics. When processing real-world underwater acoustic signals, traditional multivariate entropy algorithms often struggle to simultaneously ensure stability and extract cross-channel information. To address these issues, the improved multivariate multiscale sample entropy (IMMSE) algorithm is proposed, which extracts the complexity of multi-channel data, enabling a more comprehensive and stable representation of the dynamic characteristics of complex nonlinear systems. This paper explores the optimal parameter selection range for the IMMSE algorithm and compares its sensitivity to noise and computational efficiency with traditional multivariate entropy algorithms. The results demonstrate that IMMSE outperforms its counterparts in terms of both stability and computational efficiency. Analysis of various types of ship-radiated noise further demonstrates IMMSE’s superior stability in handling complex underwater acoustic signals. Moreover, IMMSE’s ability to extract features enables more accurate discrimination between different signal types. Finally, the paper presents data processing results in mechanical fault diagnosis, underscoring the broad applicability of IMMSE. Full article
(This article belongs to the Special Issue Navigation and Detection Fusion for Autonomous Underwater Vehicles)
Show Figures

Figure 1

Back to TopTop