Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (625)

Search Parameters:
Keywords = non-stationarity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5129 KiB  
Article
Multi-Source Indicator Modeling and Spatiotemporal Evolution of Spring Sowing Agricultural Risk Along the Great Wall Belt, China
by Guofang Wang, Juanling Wang, Mingjing Huang, Jiancheng Zhang, Xuefang Huang and Wuping Zhang
Agronomy 2025, 15(8), 1930; https://doi.org/10.3390/agronomy15081930 - 10 Aug 2025
Viewed by 147
Abstract
The spatiotemporal heterogeneity of hydrothermal conditions during the spring sowing period profoundly shapes cropping layouts and sowing strategies. Using NASA’s GLDAS remote sensing reanalysis, we developed a continuous agricultural climate risk index that integrates three remotely driven indicators—spring sowing window days (SWDs) derived [...] Read more.
The spatiotemporal heterogeneity of hydrothermal conditions during the spring sowing period profoundly shapes cropping layouts and sowing strategies. Using NASA’s GLDAS remote sensing reanalysis, we developed a continuous agricultural climate risk index that integrates three remotely driven indicators—spring sowing window days (SWDs) derived from a “continuous suitable-day” logic, the hydrothermal coordination degree (D value), and a comprehensive suitability index (SSH_SI)—thus advancing risk assessment from single metrics to a multidimensional framework. Methodologically, dominant periodic structures of spring sowing hydrothermal risk were extracted via a combination of wavelet power spectra and the global wavelet spectrum (GWS), while spatial trend-surface fitting and three-dimensional directional analysis captured spatial non-stationarity. The index’s spatial migration trajectories and centroid-evolution paths were then quantified. Results reveal pronounced gradients along the Great Wall Belt: SWD displays a “central-high, terminal-low” pattern, with sowing windows restricted to only 3–6 days in northeastern Inner Mongolia and western Liaoning but extending to 11–13 days in the central plains of Inner Mongolia and Shanxi; SSH_SI and D values form an overall “south-west high, north-east low” pattern, indicating more favorable hydrothermal coordination in southwestern areas. Temporally, although SWD and SSH_SI show no significant downward trend, their interannual variability has increased, signaling rising instability, whereas the D value declines markedly in most regions, reflecting intensified hydrothermal imbalance. The integrated risk index identifies high-risk hotspots in eastern Inner Mongolia and northern North China, and low-risk zones in western provinces such as Gansu and Ningxia. Centroid-shift analysis further uncovers a dynamic regional adjustment in optimal sowing patterns, offering scientific evidence for addressing spring sowing climate risks. These findings provide a theoretical foundation and decision support for optimizing regional cropping structures, issuing climate risk warnings, and precisely regulating spring sowing schedules. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

23 pages, 1231 KiB  
Article
Short-Term Wind Power Forecasting Based on ISFOA-SVM
by Li Chen, Xufeng Liu and Zupeng Zhou
Electronics 2025, 14(16), 3172; https://doi.org/10.3390/electronics14163172 - 8 Aug 2025
Viewed by 118
Abstract
Short-term wind power prediction is critical for stable power system operation, but the non-stationarity and randomness of wind power output hinder prediction accuracy. To address this, this study proposes an improved superb fairy-wren optimization algorithm (ISFOA), which dynamically adjusts search step size via [...] Read more.
Short-term wind power prediction is critical for stable power system operation, but the non-stationarity and randomness of wind power output hinder prediction accuracy. To address this, this study proposes an improved superb fairy-wren optimization algorithm (ISFOA), which dynamically adjusts search step size via an adaptive learning factor to enhance global exploration and integrates a differential evolution strategy to optimize local search, improving convergence speed and optimization accuracy. Convergence analysis based on the Markov chain model verifies ISFOA’s stability. The ISFOA is combined with a Support Vector Machine (SVM) to construct the ISFOA-SVM model for short-term wind power prediction and is validated on real datasets from a southern China wind farm. Performance comparisons with four state-of-the-art models (SFOA-SVM, PSO-SVM, MFO-SVM, and GWO-SVM) show ISFOA-SVM achieves the best results across all metrics: MAE (0.3158), MBE (0.0126), RMSE (0.3304), and R2 (0.9982). Compared to SFOA-SVM, it reduces RMSE by 67.08%, MBE by 54.68%, MAE by 1.10%, and increases R2 by 0.34%. It outperforms PSO-SVM and MFO-SVM, which show intermediate results, and GWO-SVM, which exhibits the worst MAE, RMSE, and R2 despite better MBE. These results confirm ISFOA-SVM’s effectiveness in improving short-term wind power prediction accuracy. Full article
Show Figures

Figure 1

20 pages, 3135 KiB  
Article
Nonstationary Streamflow Variability and Climate Drivers in the Amur and Yangtze River Basins: A Comparative Perspective Under Climate Change
by Qinye Ma, Jue Wang, Nuo Lei, Zhengzheng Zhou, Shuguang Liu, Aleksei N. Makhinov and Aleksandra F. Makhinova
Water 2025, 17(15), 2339; https://doi.org/10.3390/w17152339 - 6 Aug 2025
Viewed by 190
Abstract
Climate-driven hydrological extremes and anthropogenic interventions are increasingly altering streamflow regimes worldwide. While prior studies have explored climate or regulation effects separately, few have integrated multiple teleconnection indices and reservoir chronologies within a cross-basin comparative framework. This study addresses this gap by assessing [...] Read more.
Climate-driven hydrological extremes and anthropogenic interventions are increasingly altering streamflow regimes worldwide. While prior studies have explored climate or regulation effects separately, few have integrated multiple teleconnection indices and reservoir chronologies within a cross-basin comparative framework. This study addresses this gap by assessing long-term streamflow nonstationarity and its drivers at two key stations—Khabarovsk on the Amur River and Datong on the Yangtze River—representing distinct hydroclimatic settings. We utilized monthly discharge records, meteorological data, and large-scale climate indices to apply trend analysis, wavelet transform, percentile-based extreme diagnostics, lagged random forest regression, and slope-based attribution. The results show that Khabarovsk experienced an increase in winter baseflow from 513 to 1335 m3/s and a notable reduction in seasonal discharge contrast, primarily driven by temperature and cold-region reservoir regulation. In contrast, Datong displayed increased discharge extremes, with flood discharges increasing by +71.9 m3/s/year, equivalent to approximately 0.12% of the mean flood discharge annually, and low discharges by +24.2 m3/s/year in recent decades, shaped by both climate variability and large-scale hydropower infrastructure. Random forest models identified temperature and precipitation as short-term drivers, with ENSO-related indices showing lagged impacts on streamflow variability. Attribution analysis indicated that Khabarovsk is primarily shaped by cold-region reservoir operations in conjunction with temperature-driven snowmelt dynamics, while Datong reflects a combined influence of both climate variability and regulation. These insights may provide guidance for climate-responsive reservoir scheduling and basin-specific regulation strategies, supporting the development of integrated frameworks for adaptive water management under climate change. Full article
(This article belongs to the Special Issue Risks of Hydrometeorological Extremes)
Show Figures

Figure 1

25 pages, 1488 KiB  
Article
DKWM-XLSTM: A Carbon Trading Price Prediction Model Considering Multiple Influencing Factors
by Yunlong Yu, Xuan Song, Guoxiong Zhou, Lingxi Liu, Meixi Pan and Tianrui Zhao
Entropy 2025, 27(8), 817; https://doi.org/10.3390/e27080817 - 31 Jul 2025
Viewed by 212
Abstract
Forestry carbon sinks play a crucial role in mitigating climate change and protecting ecosystems, significantly contributing to the development of carbon trading systems. Remote sensing technology has become increasingly important for monitoring carbon sinks, as it allows for precise measurement of carbon storage [...] Read more.
Forestry carbon sinks play a crucial role in mitigating climate change and protecting ecosystems, significantly contributing to the development of carbon trading systems. Remote sensing technology has become increasingly important for monitoring carbon sinks, as it allows for precise measurement of carbon storage and ecological changes, which are vital for forecasting carbon prices. Carbon prices fluctuate due to the interaction of various factors, exhibiting non-stationary characteristics and inherent uncertainties, making accurate predictions particularly challenging. To address these complexities, this study proposes a method for predicting carbon trading prices influenced by multiple factors. We introduce a Decomposition (DECOMP) module that separates carbon price data and its influencing factors into trend and cyclical components. To manage non-stationarity, we propose the KAN with Multi-Domain Diffusion (KAN-MD) module, which efficiently extracts relevant features. Furthermore, a Wave-MH attention module, based on wavelet transformation, is introduced to minimize interference from uncertainties, thereby enhancing the robustness of the model. Empirical research using data from the Hubei carbon trading market demonstrates that our model achieves superior predictive accuracy and resilience to fluctuations compared to other benchmark methods, with an MSE of 0.204% and an MAE of 0.0277. These results provide reliable support for pricing carbon financial derivatives and managing associated risks. Full article
Show Figures

Figure 1

22 pages, 20436 KiB  
Article
An Adaptive Decomposition Method with Low Parameter Sensitivity for Non-Stationary Noise Suppression in Magnetotelluric Data
by Zhenyu Guo, Cheng Huang, Wen Jiang, Tao Hong and Jiangtao Han
Minerals 2025, 15(8), 808; https://doi.org/10.3390/min15080808 - 30 Jul 2025
Viewed by 158
Abstract
Magnetotelluric (MT) sounding is a crucial technique in mineral exploration. However, MT data are highly susceptible to various types of noise. Traditional data processing methods, which rely on the assumption of signal stationarity, often result in severe distortion when suppressing non-stationary noise. In [...] Read more.
Magnetotelluric (MT) sounding is a crucial technique in mineral exploration. However, MT data are highly susceptible to various types of noise. Traditional data processing methods, which rely on the assumption of signal stationarity, often result in severe distortion when suppressing non-stationary noise. In this study, we propose a novel, adaptive, and less parameter-dependent signal decomposition method for MT signal denoising, based on time–frequency domain analysis and the application of modal decomposition. The method uses Variational Mode Decomposition (VMD) to adaptively decompose the MT signal into several intrinsic mode functions (IMFs), obtaining the instantaneous time–frequency energy distribution of the signal. Subsequently, robust statistical methods are introduced to extract the independent components of each IMF, thereby identifying signal and noise components within the decomposition results. Synthetic data experiments show that our method accurately separates high-amplitude non-stationary interference. Furthermore, it maintains stable decomposition results under various parameter settings, exhibiting strong robustness and low parameter dependency. When applied to field MT data, the method effectively filters out non-stationary noise, leading to significant improvements in both apparent resistivity and phase curves, indicating its practical value in mineral exploration. Full article
(This article belongs to the Special Issue Novel Methods and Applications for Mineral Exploration, Volume III)
Show Figures

Figure 1

29 pages, 2830 KiB  
Article
BCINetV1: Integrating Temporal and Spectral Focus Through a Novel Convolutional Attention Architecture for MI EEG Decoding
by Muhammad Zulkifal Aziz, Xiaojun Yu, Xinran Guo, Xinming He, Binwen Huang and Zeming Fan
Sensors 2025, 25(15), 4657; https://doi.org/10.3390/s25154657 - 27 Jul 2025
Viewed by 398
Abstract
Motor imagery (MI) electroencephalograms (EEGs) are pivotal cortical potentials reflecting cortical activity during imagined motor actions, widely leveraged for brain-computer interface (BCI) system development. However, effectively decoding these MI EEG signals is often overshadowed by flawed methods in signal processing, deep learning methods [...] Read more.
Motor imagery (MI) electroencephalograms (EEGs) are pivotal cortical potentials reflecting cortical activity during imagined motor actions, widely leveraged for brain-computer interface (BCI) system development. However, effectively decoding these MI EEG signals is often overshadowed by flawed methods in signal processing, deep learning methods that are clinically unexplained, and highly inconsistent performance across different datasets. We propose BCINetV1, a new framework for MI EEG decoding to address the aforementioned challenges. The BCINetV1 utilizes three innovative components: a temporal convolution-based attention block (T-CAB) and a spectral convolution-based attention block (S-CAB), both driven by a new convolutional self-attention (ConvSAT) mechanism to identify key non-stationary temporal and spectral patterns in the EEG signals. Lastly, a squeeze-and-excitation block (SEB) intelligently combines those identified tempo-spectral features for accurate, stable, and contextually aware MI EEG classification. Evaluated upon four diverse datasets containing 69 participants, BCINetV1 consistently achieved the highest average accuracies of 98.6% (Dataset 1), 96.6% (Dataset 2), 96.9% (Dataset 3), and 98.4% (Dataset 4). This research demonstrates that BCINetV1 is computationally efficient, extracts clinically vital markers, effectively handles the non-stationarity of EEG data, and shows a clear advantage over existing methods, marking a significant step forward for practical BCI applications. Full article
(This article belongs to the Special Issue Advanced Biomedical Imaging and Signal Processing)
Show Figures

Figure 1

17 pages, 424 KiB  
Article
HyMePre: A Spatial–Temporal Pretraining Framework with Hypergraph Neural Networks for Short-Term Weather Forecasting
by Fei Wang, Dawei Lin, Baojun Chen, Guodong Jing, Yi Geng, Xudong Ge, Daoming Wei and Ning Zhang
Appl. Sci. 2025, 15(15), 8324; https://doi.org/10.3390/app15158324 - 26 Jul 2025
Viewed by 325
Abstract
Accurate short-term weather forecasting plays a vital role in disaster response, agriculture, and energy management, where timely and reliable predictions are essential for decision-making. Graph neural networks (GNNs), known for their ability to model complex spatial structures and relational data, have achieved remarkable [...] Read more.
Accurate short-term weather forecasting plays a vital role in disaster response, agriculture, and energy management, where timely and reliable predictions are essential for decision-making. Graph neural networks (GNNs), known for their ability to model complex spatial structures and relational data, have achieved remarkable success in meteorological forecasting by effectively capturing spatial dependencies among distributed weather stations. However, most existing GNN-based approaches rely on pairwise station connections, limiting their capacity to represent higher-order spatial interactions. Moreover, their dependence on supervised learning makes them vulnerable to spatial heterogeneity and temporal non-stationarity. This paper introduces a novel spatial–temporal pretraining framework, Hypergraph-enhanced Meteorological Pretraining (HyMePre), which combines hypergraph neural networks with self-supervised learning to model high-order spatial dependencies and improve generalization across diverse climate regimes. HyMePre employs a two-stage masking strategy, applying spatial and temporal masking separately, to learn disentangled representations from unlabeled meteorological time series. During forecasting, dynamic hypergraphs group stations based on meteorological similarity, explicitly capturing high-order dependencies. Extensive experiments on large-scale reanalysis datasets show that HyMePre outperforms conventional GNN models in predicting temperature, humidity, and wind speed. The integration of pretraining and hypergraph modeling enhances robustness to noisy data and improves generalization to unseen climate patterns, offering a scalable and effective solution for operational weather forecasting. Full article
Show Figures

Figure 1

11 pages, 1161 KiB  
Proceeding Paper
Spatio-Temporal PM2.5 Forecasting Using Machine Learning and Low-Cost Sensors: An Urban Perspective
by Mateusz Zareba, Szymon Cogiel and Tomasz Danek
Eng. Proc. 2025, 101(1), 6; https://doi.org/10.3390/engproc2025101006 - 25 Jul 2025
Viewed by 257
Abstract
This study analyzes air pollution time-series big data to assess stationarity, seasonal patterns, and the performance of machine learning models in forecasting PM2.5 concentrations. Fifty-two low-cost sensors (LCS) were deployed across Krakow city and its surroundings (Poland), collecting hourly air quality data and [...] Read more.
This study analyzes air pollution time-series big data to assess stationarity, seasonal patterns, and the performance of machine learning models in forecasting PM2.5 concentrations. Fifty-two low-cost sensors (LCS) were deployed across Krakow city and its surroundings (Poland), collecting hourly air quality data and generating nearly 20,000 observations per month. The network captured both spatial and temporal variability. The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test confirmed trend-based non-stationarity, which was addressed through differencing, revealing distinct daily and 12 h cycles linked to traffic and temperature variations. Additive seasonal decomposition exhibited time-inconsistent residuals, leading to the adoption of multiplicative decomposition, which better captured pollution outliers associated with agricultural burning. Machine learning models—Ridge Regression, XGBoost, and LSTM (Long Short-Term Memory) neural networks—were evaluated under high spatial and temporal variability (winter) and low variability (summer) conditions. Ridge Regression showed the best performance, achieving the highest R2 (0.97 in winter, 0.93 in summer) and the lowest mean squared errors. XGBoost showed strong predictive capabilities but tended to overestimate moderate pollution events, while LSTM systematically underestimated PM2.5 levels in December. The residual analysis confirmed that Ridge Regression provided the most stable predictions, capturing extreme pollution episodes effectively, whereas XGBoost exhibited larger outliers. The study proved the potential of low-cost sensor networks and machine learning in urban air quality forecasting focused on rare smog episodes (RSEs). Full article
Show Figures

Figure 1

28 pages, 7608 KiB  
Article
A Forecasting Method for COVID-19 Epidemic Trends Using VMD and TSMixer-BiKSA Network
by Yuhong Li, Guihong Bi, Taonan Tong and Shirui Li
Computers 2025, 14(7), 290; https://doi.org/10.3390/computers14070290 - 18 Jul 2025
Viewed by 215
Abstract
The spread of COVID-19 is influenced by multiple factors, including control policies, virus characteristics, individual behaviors, and environmental conditions, exhibiting highly complex nonlinear dynamic features. The time series of new confirmed cases shows significant nonlinearity and non-stationarity. Traditional prediction methods that rely solely [...] Read more.
The spread of COVID-19 is influenced by multiple factors, including control policies, virus characteristics, individual behaviors, and environmental conditions, exhibiting highly complex nonlinear dynamic features. The time series of new confirmed cases shows significant nonlinearity and non-stationarity. Traditional prediction methods that rely solely on one-dimensional case data struggle to capture the multi-dimensional features of the data and are limited in handling nonlinear and non-stationary characteristics. Their prediction accuracy and generalization capabilities remain insufficient, and most existing studies focus on single-step forecasting, with limited attention to multi-step prediction. To address these challenges, this paper proposes a multi-module fusion prediction model—TSMixer-BiKSA network—that integrates multi-feature inputs, Variational Mode Decomposition (VMD), and a dual-branch parallel architecture for 1- to 3-day-ahead multi-step forecasting of new COVID-19 cases. First, variables highly correlated with the target sequence are selected through correlation analysis to construct a feature matrix, which serves as one input branch. Simultaneously, the case sequence is decomposed using VMD to extract low-complexity, highly regular multi-scale modal components as the other input branch, enhancing the model’s ability to perceive and represent multi-source information. The two input branches are then processed in parallel by the TSMixer-BiKSA network model. Specifically, the TSMixer module employs a multilayer perceptron (MLP) structure to alternately model along the temporal and feature dimensions, capturing cross-time and cross-variable dependencies. The BiGRU module extracts bidirectional dynamic features of the sequence, improving long-term dependency modeling. The KAN module introduces hierarchical nonlinear transformations to enhance high-order feature interactions. Finally, the SA attention mechanism enables the adaptive weighted fusion of multi-source information, reinforcing inter-module synergy and enhancing the overall feature extraction and representation capability. Experimental results based on COVID-19 case data from Italy and the United States demonstrate that the proposed model significantly outperforms existing mainstream methods across various error metrics, achieving higher prediction accuracy and robustness. Full article
Show Figures

Figure 1

28 pages, 7756 KiB  
Article
An Interpretable Machine Learning Framework for Unraveling the Dynamics of Surface Soil Moisture Drivers
by Zahir Nikraftar, Esmaeel Parizi, Mohsen Saber, Mahboubeh Boueshagh, Mortaza Tavakoli, Abazar Esmaeili Mahmoudabadi, Mohammad Hassan Ekradi, Rendani Mbuvha and Seiyed Mossa Hosseini
Remote Sens. 2025, 17(14), 2505; https://doi.org/10.3390/rs17142505 - 18 Jul 2025
Viewed by 459
Abstract
Understanding the impacts of the spatial non-stationarity of environmental factors on surface soil moisture (SSM) in different seasons is crucial for effective environmental management. Yet, our knowledge of this phenomenon remains limited. This study introduces an interpretable machine learning framework that combines the [...] Read more.
Understanding the impacts of the spatial non-stationarity of environmental factors on surface soil moisture (SSM) in different seasons is crucial for effective environmental management. Yet, our knowledge of this phenomenon remains limited. This study introduces an interpretable machine learning framework that combines the SHapley Additive exPlanations (SHAP) method with two-step clustering to unravel the spatial drivers of SSM across Iran. Due to the limited availability of in situ SSM data, the performance of three global SSM datasets—SMAP, MERRA-2, and CFSv2—from 2015 to 2023 was evaluated using agrometeorological stations. SMAP outperformed the others, showing the highest median correlation and the lowest Root Mean Square Error (RMSE). Using SMAP, we estimated SSM across 609 catchments employing the Random Forest (RF) algorithm. The RF model yielded R2 values of 0.89, 0.83, 0.70, and 0.75 for winter, spring, summer, and autumn, respectively, with corresponding RMSE values of 0.076, 0.081, 0.098, and 0.061 m3/m3. SHAP analysis revealed that climatic factors primarily drive SSM in winter and autumn, while vegetation and soil characteristics are more influential in spring and summer. The clustering results showed that Iran’s catchments can be grouped into five categories based on the SHAP method coefficients, highlighting regional differences in SSM controls. Full article
(This article belongs to the Special Issue Earth Observation Satellites for Soil Moisture Monitoring)
Show Figures

Graphical abstract

22 pages, 4306 KiB  
Article
A Novel Renewable Energy Scenario Generation Method Based on Multi-Resolution Denoising Diffusion Probabilistic Models
by Donglin Li, Xiaoxin Zhao, Weimao Xu, Chao Ge and Chunzheng Li
Energies 2025, 18(14), 3781; https://doi.org/10.3390/en18143781 - 17 Jul 2025
Cited by 1 | Viewed by 334
Abstract
As the global energy system accelerates its transition toward a low-carbon economy, renewable energy sources (RESs), such as wind and photovoltaic power, are rapidly replacing traditional fossil fuels. These RESs are becoming a critical element of deeply decarbonized power systems (DDPSs). However, the [...] Read more.
As the global energy system accelerates its transition toward a low-carbon economy, renewable energy sources (RESs), such as wind and photovoltaic power, are rapidly replacing traditional fossil fuels. These RESs are becoming a critical element of deeply decarbonized power systems (DDPSs). However, the inherent non-stationarity, multi-scale volatility, and uncontrollability of RES output significantly increase the risk of source–load imbalance, posing serious challenges to the reliability and economic efficiency of power systems. Scenario generation technology has emerged as a critical tool to quantify uncertainty and support dispatch optimization. Nevertheless, conventional scenario generation methods often fail to produce highly credible wind and solar output scenarios. To address this gap, this paper proposes a novel renewable energy scenario generation method based on a multi-resolution diffusion model. To accurately capture fluctuation characteristics across multiple time scales, we introduce a diffusion model in conjunction with a multi-scale time series decomposition approach, forming a multi-stage diffusion modeling framework capable of representing both long-term trends and short-term fluctuations in RES output. A cascaded conditional diffusion modeling framework is designed, leveraging historical trend information as a conditioning input to enhance the physical consistency of generated scenarios. Furthermore, a forecast-guided fusion strategy is proposed to jointly model long-term and short-term dynamics, thereby improving the generalization capability of long-term scenario generation. Simulation results demonstrate that MDDPM achieves a Wasserstein Distance (WD) of 0.0156 in the wind power scenario, outperforming DDPM (WD = 0.0185) and MC (WD = 0.0305). Additionally, MDDPM improves the Global Coverage Rate (GCR) by 15% compared to MC and other baselines. Full article
(This article belongs to the Special Issue Advances in Power Distribution Systems)
Show Figures

Figure 1

26 pages, 39229 KiB  
Article
Local–Linear Two-Stage Estimation of Local Autoregressive Geographically and Temporally Weighted Regression Model
by Dan Xiang and Zhimin Hong
ISPRS Int. J. Geo-Inf. 2025, 14(7), 276; https://doi.org/10.3390/ijgi14070276 - 16 Jul 2025
Viewed by 210
Abstract
A geographically and temporally weighted regression (GTWR) model is an effective tool for dealing with spatial heterogeneity and temporal non-stationarity simultaneously. As an important characteristic of spatiotemporal data, spatiotemporal autocorrelation should be considered when constructing spatiotemporally varying coefficient models. The proposed local autoregressive [...] Read more.
A geographically and temporally weighted regression (GTWR) model is an effective tool for dealing with spatial heterogeneity and temporal non-stationarity simultaneously. As an important characteristic of spatiotemporal data, spatiotemporal autocorrelation should be considered when constructing spatiotemporally varying coefficient models. The proposed local autoregressive geographically and temporally weighted regression (GTWRLAR) model can simultaneously handle spatiotemporal autocorrelations among response variables and the spatiotemporal heterogeneity of regression relationships. The two-stage weighted least squares (2SLS) estimation can effectively reduce computational complexity. However, the weighted least squares estimation is essentially a Nadaraya–Watson kernel-smoothing approach for nonparametric regression models, and it suffers from a boundary effect. For spatiotemporally varying coefficient models, the three-dimensional spatiotemporal coefficients (longitude, latitude, and time) inherently exhibit larger boundaries than one-dimensional intervals. Therefore, the boundary effect of the 2SLS estimation of GTWRLAR will be more serious. A local–linear geographically and temporally weighted 2SLS (GTWRLAR-L) estimation is proposed to correct the boundary effect in both the spatial and temporal dimensions of GTWRLAR and simultaneously improve parameter estimation accuracy. The simulation experiment shows that the GTWRLAR-L method reduces the root mean square error (RMSE) of parameter estimates compared to the standard GTWRLAR approach. Empirical analyses of carbon emissions in China’s Yellow River Basin (2017–2021) show that GTWRLAR-L enhances the adjusted R2 from 0.888 to 0.893. Full article
Show Figures

Figure 1

19 pages, 4037 KiB  
Article
A Rolling Bearing Fault Diagnosis Method Based on Wild Horse Optimizer-Enhanced VMD and Improved GoogLeNet
by Xiaoliang He, Feng Zhao, Nianyun Song, Zepeng Liu and Libing Cao
Sensors 2025, 25(14), 4421; https://doi.org/10.3390/s25144421 - 16 Jul 2025
Viewed by 322
Abstract
To address the challenges of weak fault features and strong non-stationarity in early-stage vibration signals, this study proposes a novel fault diagnosis method combining enhanced variational mode decomposition (VMD) with a structurally improved GoogLeNet. Specifically, an improved wild horse optimizer (IWHO) with tent [...] Read more.
To address the challenges of weak fault features and strong non-stationarity in early-stage vibration signals, this study proposes a novel fault diagnosis method combining enhanced variational mode decomposition (VMD) with a structurally improved GoogLeNet. Specifically, an improved wild horse optimizer (IWHO) with tent chaotic mapping is employed to automatically optimize critical VMD parameters, including the number of modes K and the penalty factor α, enabling precise decomposition of non-stationary signals to extract weak fault features. The vibration signal is decomposed, and the top five intrinsic mode functions (IMFs) are selected based on the kurtosis criterion. Time–frequency features are then extracted from these IMFs and input into a modified GoogLeNet classifier. The GoogLeNet structure is improved by replacing standard n × n convolution kernels with cascaded 1 × n and n × 1 kernels, and by substituting the ReLU activation function with a parameterized TReLU function to enhance adaptability and convergence. Experimental results on two public rolling bearing datasets demonstrate that the proposed method effectively handles non-stationary signals, achieving 99.17% accuracy across four fault types and maintaining over 95.80% accuracy under noisy conditions. Full article
Show Figures

Figure 1

25 pages, 7859 KiB  
Article
Methodology for the Early Detection of Damage Using CEEMDAN-Hilbert Spectral Analysis of Ultrasonic Wave Attenuation
by Ammar M. Shakir, Giovanni Cascante and Taher H. Ameen
Materials 2025, 18(14), 3294; https://doi.org/10.3390/ma18143294 - 12 Jul 2025
Viewed by 451
Abstract
Current non-destructive testing (NDT) methods, such as those based on wave velocity measurements, lack the sensitivity necessary to detect early-stage damage in concrete structures. Similarly, common signal processing techniques often assume linearity and stationarity among the signal data. By analyzing wave attenuation measurements [...] Read more.
Current non-destructive testing (NDT) methods, such as those based on wave velocity measurements, lack the sensitivity necessary to detect early-stage damage in concrete structures. Similarly, common signal processing techniques often assume linearity and stationarity among the signal data. By analyzing wave attenuation measurements using advanced signal processing techniques, mainly Hilbert–Huang transform (HHT), this work aims to enhance the early detection of damage in concrete. This study presents a novel energy-based technique that integrates complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and Hilbert spectrum analysis (HSA), to accurately capture nonlinear and nonstationary signal behaviors. Ultrasonic non-destructive testing was performed in this study on manufactured concrete specimens subjected to micro-damage characterized by internal microcracks smaller than 0.5 mm, induced through controlled freeze–thaw cycles. The recorded signals were decomposed from the time domain using CEEMDAN into frequency-ordered intrinsic mode functions (IMFs). A multi-criteria selection strategy, including damage index evaluation, was employed to identify the most effective IMFs while distinguishing true damage-induced energy loss from spurious nonlinear artifacts or noise. Localized damage was then analyzed in the frequency domain using HSA, achieving an up to 88% reduction in wave energy via Marginal Hilbert Spectrum analysis, compared to 68% using Fourier-based techniques, demonstrating a 20% improvement in sensitivity. The results indicate that the proposed technique enhances early damage detection through wave attenuation analysis and offers a superior ability to handle nonlinear, nonstationary signals. The Hilbert Spectrum provided a higher time-frequency resolution, enabling clearer identification of damage-related features. These findings highlight the potential of CEEMDAN-HSA as a practical, sensitive tool for early-stage microcrack detection in concrete. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

19 pages, 2969 KiB  
Article
Damage Detection for Offshore Wind Turbines Subjected to Non-Stationary Ambient Excitations: A Noise-Robust Algorithm Using Partial Measurements
by Ning Yang, Peng Huang, Hongning Ye, Wuhua Zeng, Yusen Liu, Juhuan Zheng and En Lin
Energies 2025, 18(14), 3644; https://doi.org/10.3390/en18143644 - 10 Jul 2025
Viewed by 264
Abstract
Reliable damage detection in operational offshore wind turbines (OWTs) remains challenging due to the inherent non-stationarity of environmental excitations and signal degradation from noise-contaminated partial measurements. To address these limitations, this study proposes a robust damage detection method for OWTs under non-stationary ambient [...] Read more.
Reliable damage detection in operational offshore wind turbines (OWTs) remains challenging due to the inherent non-stationarity of environmental excitations and signal degradation from noise-contaminated partial measurements. To address these limitations, this study proposes a robust damage detection method for OWTs under non-stationary ambient excitations using partial measurements with strong noise resistance. The method is first developed for a scenario with known non-stationary ambient excitations. By reformulating the time-domain equation of motion in terms of non-stationary cross-correlation functions, structural stiffness parameters are estimated using partially measured acceleration responses through the extended Kalman filter (EKF). To account for the more common case of unknown excitations, the method is enhanced via the extended Kalman filter under unknown input (EKF-UI). This improved approach enables the simultaneous identification of the physical parameters of OWTs and unknown non-stationary ambient excitations through the data fusion of partial acceleration and displacement responses. The proposed method is validated through two numerical cases: a frame structure subjected to known non-stationary ground excitation, followed by an OWT tower under unknown non-stationary wind and wave excitations using limited measurements. The numerical results confirm the method’s capability to accurately identify structural damage even under significant noise contamination, demonstrating its practical potential for OWTs’ damage detection applications. Full article
Show Figures

Figure 1

Back to TopTop