Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (157)

Search Parameters:
Keywords = non-starch polysaccharides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 589 KiB  
Review
Strategies for Efficient Utilization of Corn Distillers Dried Grains with Solubles in Diets of Pigs: A Review
by Chunsheng Wang, Xinru Huang, Xue Liu, Ruixue Wang, Jianping Li, Qingwei Meng and Anshan Shan
Animals 2025, 15(12), 1727; https://doi.org/10.3390/ani15121727 - 11 Jun 2025
Viewed by 1722
Abstract
With the increasing demand for ethanol fuel, corn distillers dried grains with solubles (DDGS) production is increasing annually. Current global ethanol output is approximately 120–130 billion liters annually, of which bioethanol constitutes 90–95% of total production. Corn DDGS is widely used as a [...] Read more.
With the increasing demand for ethanol fuel, corn distillers dried grains with solubles (DDGS) production is increasing annually. Current global ethanol output is approximately 120–130 billion liters annually, of which bioethanol constitutes 90–95% of total production. Corn DDGS is widely used as a feed ingredient for pigs due to its low cost and crude protein content ranging from 19% to 34%. However, corn DDGS is not effectively utilized because of factors such as raw material sources and inadequate drying processes, and a large portion of it is wasted and lost. It has become a difficult challenge to use DDGS in pig diets because of its weaknesses, including being rich in fiber and polyunsaturated fatty acids, which can lead to decreases in growth performance, feed conversion, and the pork shelf life of pigs. In recent years, researchers focusing on ways to improve the effective utility of corn DDGS in pig diets have made some progress. In this study, we review the nutritional characteristics of corn DDGS; the limiting factors in pig production, such as the higher concentration of non-starch polysaccharides, linoleic acid, and zein in corn DDGS; and the current improvement measures being taken to provide a reference for the improved utilization of corn DDGS resources in the diets of pigs. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Graphical abstract

21 pages, 9234 KiB  
Article
Effects of Aqueous Extracts from Wheat Bran Layers on the Functional Properties of Wheat Starch and Gluten
by Bingbing Wu, Chunlei Yu, Zhongwei Chen and Bin Xu
Foods 2025, 14(11), 1988; https://doi.org/10.3390/foods14111988 - 4 Jun 2025
Viewed by 537
Abstract
Wheat bran (WB) is rich in bioactive compounds, but its incorporation into food products often negatively affects dough properties. The soluble components in WB, including polysaccharides, minerals, and proteins, exhibit significant variations across different bran layers and may dissolve and interact with flour [...] Read more.
Wheat bran (WB) is rich in bioactive compounds, but its incorporation into food products often negatively affects dough properties. The soluble components in WB, including polysaccharides, minerals, and proteins, exhibit significant variations across different bran layers and may dissolve and interact with flour components during food processing, affecting dough properties. This study aims to investigate the influence of aqueous extracts from different WB layers (aleurone layer, AL; non-aleurone layer, NAL) and their components on the functional properties of wheat starch and gluten. The results indicate that the AL-rich fraction yielded a higher extract content (30.6%) compared to the NAL-rich fraction (15.1%), attributable to the higher cellular content in the AL. Both the extracts and residues from AL and NAL significantly lowered the denaturation temperature of wheat gluten. The aqueous extracts reduced the storage (G′) and loss (G″) moduli of wheat gluten, primarily attributed to the effect of polysaccharide components, whereas the protein and ash fractions elevated the G′ and G″ at suitable dosages. The extracts elevated the gelatinization temperature of starch, but reduced enthalpy (ΔH). Moreover, the pasting viscosity of starch with WB extract decreased due to the combined effects of protein and ash fractions. These findings provide insights into the roles of water extracts from different WB layers and their components in modulating wheat-based product quality. This study also offers a theoretical basis for optimizing WB utilization in foods, thus providing a theoretical foundation for promoting whole-wheat foods or foods containing WB. Full article
Show Figures

Graphical abstract

17 pages, 5458 KiB  
Article
Integrated Metabolome and Microbiome Analysis Reveals the Regulatory Effects of Fermented Soybean Meal on the Gut Microbiota of Late Gestation
by Yantao Li, Lele Fu, Yushi Chen, Hua Yang, Yingping Xiao, Ying Ren and Cheng Wang
Fermentation 2025, 11(6), 315; https://doi.org/10.3390/fermentation11060315 - 31 May 2025
Viewed by 770
Abstract
Late gestation is a critical period for regulating maternal peripartum physiological metabolism and gut microbiota balance. Fermented diets have been widely recognized as effective exogenous nutritional interventions capable of modulating the maintenance of gut microbiota homeostasis. However, the mechanism through which fermented diets [...] Read more.
Late gestation is a critical period for regulating maternal peripartum physiological metabolism and gut microbiota balance. Fermented diets have been widely recognized as effective exogenous nutritional interventions capable of modulating the maintenance of gut microbiota homeostasis. However, the mechanism through which fermented diets modulate the gut microbiota in late-gestation remains poorly understood. In this study, an in vitro fermentation model combined with chemical composition analysis, untargeted metabolomics, and high-throughput sequencing was employed to investigate the metabolic alterations during soybean meal (SBM) fermentation and the regulatory effects of fermented soybean meal (FSBM) on gut microbiota of late-gestation sows. The findings revealed that fermentation significantly increased the levels of crude protein, lactic acid, acid-soluble protein, lysine, histidine, and total amino acids of SBM. Conversely, the levels of crude fiber, NDF, ADF, starch, and non-starch polysaccharides were markedly reduced, compared to the unfermented group. A total of 941 differentially expressed metabolites were identified between SBM and FSBM. Specifically, FSBM elevated the levels of lactic acid, L-pyroglutamic acid, 2-aminoisobutyric acid, and tyrosine, while substantially decreasing the levels of raffinose, sucrose, and stachyose. Metabolic pathway analysis identified glutathione metabolism, tyrosine metabolism, and pantothenate and coenzyme A (CoA) biosynthesis as the key pathways involved in SBM fermentation. In vitro fermentation experiments demonstrated that FSBM substantially increased the production of short-chain fatty acids (SCFAs) and notably increased the relative abundance of sows gut commensal Lactobacillus and Limosilactobacillus in late gestation. In summary, this study demonstrated that co-fermentation with bacteria and enzymes pretreatment of soybean meal reduced fiber components and enriched bioactive metabolites, optimizing intestinal microbial composition and increasing SCFA production in late-pregnant period. The present study provides novel insights into the regulatory effects of fermented diets on gut microbiota in late-gestation period from the perspectives of nutritional composition and metabolites. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
Show Figures

Figure 1

12 pages, 1627 KiB  
Article
Wheat Bran Polymer Scaffolds: Supporting Triple-Negative Breast Cancer Cell Growth and Development
by Abulquasem Rayat Hossain, Md Sultan Mahmud, Kaydee Koistinen, George Davisson, Brooke Roeges, Hayle Boechler, Md Abdur Rahim Badsha, Md Rakib Hasan Khan, Michael Kjelland, Dorsa Fereydoonpour, Mohiuddin Quadir, Sanku Mallik and Khwaja Hossain
Bioengineering 2025, 12(6), 568; https://doi.org/10.3390/bioengineering12060568 - 26 May 2025
Viewed by 622
Abstract
Arabinoxylans (AX) are functional biopolymers, the main non-starch polysaccharides in cereals and other plants. AX is composed of xylose and arabinose, and the ester-linkage of ferulic acid to arabinose confers its bioactive properties. The backbone of AX resembles that of glycosaminoglycans, a major [...] Read more.
Arabinoxylans (AX) are functional biopolymers, the main non-starch polysaccharides in cereals and other plants. AX is composed of xylose and arabinose, and the ester-linkage of ferulic acid to arabinose confers its bioactive properties. The backbone of AX resembles that of glycosaminoglycans, a major component of the human extracellular matrix. This study explores the potential of wheat bran AX-based scaffolds as a novel platform for the growth and development of triple-negative breast cancer (TNBC) cells, an aggressive form of breast cancer. Importantly, patients face the worst prognosis due to the stemness of the TNBC cells and the formation of hypoxic cell clumps. Wheat bran constitutes 15–25% of the byproducts after milling and adds limited economic value. We have extracted AX from wheat bran (WBAX) and developed soft scaffolds with Na-alginate. The scaffolds were seeded with the triple-negative breast cancer cell line MDA-MB-231. Over 21 days, cell growth and development, cell migration within the hydrogels, and the formation of hypoxic regions within cell clumps were observed. These findings suggest that WBAX-based scaffolds provide a conducive environment for TNBC cell proliferation and development, offering a promising avenue for further research into cancer cell biology and potential therapeutic applications. Full article
(This article belongs to the Special Issue From Residues to Bio-Based Products through Bioprocess Engineering)
Show Figures

Figure 1

19 pages, 2225 KiB  
Article
Fecal Microbiota and Performance of Dairy Cattle from a West Mexican Family Dairy Farm Supplemented with a Fiber-Degrading Enzymatic Complex
by José Martín Ruvalcaba-Gómez, Ramón Ignacio Arteaga-Garibay, Luis Miguel Anaya-Esparza, Lorena Jacqueline Gómez-Godínez, Jazmín Guadalupe Martínez-Sotelo, Elías Hernández-Cruz and Luis Eduardo Arias-Chávez
Vet. Sci. 2025, 12(6), 518; https://doi.org/10.3390/vetsci12060518 - 25 May 2025
Viewed by 677
Abstract
Non-starch polysaccharide-degrading enzymes are widely used as feed additives in monogastric and ruminant species, with positive effects reported. In this study, the commercial, fiber-degrading enzyme complex Hostazym® X, derived from Trichoderma citrinoviride (DSM34663), was included in the total mixed rations of 17 [...] Read more.
Non-starch polysaccharide-degrading enzymes are widely used as feed additives in monogastric and ruminant species, with positive effects reported. In this study, the commercial, fiber-degrading enzyme complex Hostazym® X, derived from Trichoderma citrinoviride (DSM34663), was included in the total mixed rations of 17 mid-lactating (135 ± 61 days in milk) Holstein cows for 10 weeks. A control group (n = 17) was included. Dry matter intake (DMI), milk yield, 4% fat-corrected milk, solid yield, and milk fatty acid profile were assessed. The structure and composition of fecal bacterial communities, as well as PICRUSt2-based functional prediction of bacterial communities, were also evaluated. Higher DMI and milk yield scores were observed in the supplemented group (27.20 vs. 26.59 kgDM/cow/d; and 39.01 vs. 36.70 L/cow/d, respectively). No effects were observed in fat yield, contrary to lactose and protein, which were greater in the supplemented group compared to the control group (1.18 vs. 1.13 and 1.83 vs. 1.75 kg/cow/d, respectively; p < 0.05). Palmitic and oleic acids, in addition to monounsaturated fat in milk, were increased in the supplemented group (p > 0.05). Enzyme supplementation increased the Patescibacteria (p < 0.5) and Actinobacteriota (p > 0.05) in feces, but slightly reduced the Bacteroidota and Firmicutes. The Turicibacter genus remained at a lower relative abundance after supplementation but Candidatus_Saccharimonas, Clostridioides, Prevotellaceae UCG 003, Corynebacterium, Akkermansia, Syntrophococcus, Erysipelotrichaceae UCG 008, other Lachnospiraceae, other members of the Eubacterium_coprostanoligenes_group, Bifidobacterium, Rumminococcus, Akkermansia, and other Spirochaetaceae increased, modifying the functional predicted profile of bacterial communities. In conclusion, a positive effect on performance and milk composition were observed through modulation of microbiota induced by enzyme supplementation. The enzyme complex could be a viable supplement alternative in the feeding of dairy cows in semi-intensive productive systems, mainly when an ad libitum feeding scheme is used. Full article
Show Figures

Graphical abstract

23 pages, 1452 KiB  
Article
Effect of Two Different Pretreatments of Brewers Spent Grain Used as Feed Ingredient on Nutritional, Immunological, and Metabolical Parameters in Gilthead Seabream (Sparus aurata)
by Francisca P. Martínez-Antequera, Paula Simó-Mirabet, Verónica de las Heras, Marta Román, Juan Miguel Mancera, Juan Antonio Martos-Sitcha and Francisco J. Moyano
Biology 2025, 14(6), 585; https://doi.org/10.3390/biology14060585 - 22 May 2025
Viewed by 583
Abstract
Brewer’s spent grain (BSG), the primary byproduct generated by the brewing industry, holds significant potential as an ingredient in aquafeeds. However, its high content of non-starch polysaccharides (NSP) restricts the amount that can be incorporated into fish diets. To address these limitations, various [...] Read more.
Brewer’s spent grain (BSG), the primary byproduct generated by the brewing industry, holds significant potential as an ingredient in aquafeeds. However, its high content of non-starch polysaccharides (NSP) restricts the amount that can be incorporated into fish diets. To address these limitations, various pretreatment methods (physical, chemical, or enzymatic) can be applied prior to its inclusion in feed formulations. The objectives of the present study were (i) to optimize the conditions for enzymatic or microwave pretreatments to enhance the nutritional and functional profile of BSG, (ii) to determine the bioaccessibility and availability of specific nutrients and antioxidant compounds in diets including a high amount of BSG (pretreated or not) using an in vitro assay simulating the digestion of the gilthead seabream (Sparus aurata), and (iii) to evaluate the effect of such diet pretreatments on growth, metabolism, intestinal microbiota, and oxidative status in live fish. For this study, three experimental diets were formulated: one containing 20% untreated BSG (C) and two containing the same amount of BSG pretreated either enzymatically (H) or with microwave heating (MW). Each diet was administered ad libitum to triplicate groups of 22 juvenile sea bream (mean weight 60 g) over a period of three months. The results indicated that the microwave-treated BSG led to improved growth (0.69 ± 0.02%) and feed efficiency (0.80 ± 0.02 weight gain/total feed intake) and enhanced immune status (alkaline phosphatase activity = 11,811.68 ± 3426.92 U/mg SP), compared to the control diet (SGR = 0.59 ± 0.06%; FE: 0.68 ± 0.03 weight gain/total feed intake; alkaline phosphatase activity = 8590.29 ± 3663.44 U/mg SP). Moreover, fish fed on both pretreated BSG diets exhibited significant differences in metabolic parameters and functional profile of their intestinal microbiota when compared to the control group. Consequently, the findings suggest that the pretreatment of BSG, whether by enzymatic or microwave methods, results in notable differences in its nutritional value and the bioavailability of functional components, which, in turn, have a substantial impact on the growth and metabolism of gilthead seabream. Full article
(This article belongs to the Special Issue Aquatic Animal Nutrition and Feed)
Show Figures

Figure 1

25 pages, 3806 KiB  
Review
Technological Advancements of Insoluble Dietary Fiber from Food By-Product Processing: A Review
by Domenico Mammolenti, Francesca Romana Lupi, Noemi Baldino and Domenico Gabriele
Foods 2025, 14(10), 1822; https://doi.org/10.3390/foods14101822 - 21 May 2025
Viewed by 961
Abstract
Insoluble dietary fibers (IDFs) represent one of the most promising candidates for novel food formulations, since they can be produced from a wide range of food by-products and wastes, have health benefits, and often enhance the rheology and stability of foods. Recently, the [...] Read more.
Insoluble dietary fibers (IDFs) represent one of the most promising candidates for novel food formulations, since they can be produced from a wide range of food by-products and wastes, have health benefits, and often enhance the rheology and stability of foods. Recently, the most innovative engineering and processing aspects of these attractive ingredients have received considerable attention. The present work is aimed at enlightening the technological state of the art regarding IDFs (much less investigated than soluble fibers, as discussed in this review). The review begins with a brief but crucial discussion on the definition of this type of dietary fiber by highlighting the raw materials, functional properties, physiological activity, and stabilization capacity in food products. The analysis of the rheological methods dedicated to the technical investigations of these ingredients and recent advancements are discussed. Finally, food processing technologies used in the formulation of foods containing insoluble IDFs, such as homogenization techniques, are discussed. Full article
(This article belongs to the Special Issue Feature Review on Food Nutrition)
Show Figures

Graphical abstract

23 pages, 881 KiB  
Review
Comparative Characteristics of Various Cereals in Terms of Fodder Value, Antinutrients and Use for Poultry Feeding
by Olena V. Gaviley, Oleg O. Katerynych, Igor A. Ionov, Darren K. Griffin, Olena O. Dekhtiarova and Michael N. Romanov
Encyclopedia 2025, 5(2), 63; https://doi.org/10.3390/encyclopedia5020063 - 12 May 2025
Viewed by 1814
Abstract
The primary ingredients in poultry feed, cereals, are among the most widely used crops in worldwide agriculture, with principal staples being wheat, rice, corn (maize), sorghum, barley, oat and millet. The scope of this review is to provide a detailed comparative analysis of [...] Read more.
The primary ingredients in poultry feed, cereals, are among the most widely used crops in worldwide agriculture, with principal staples being wheat, rice, corn (maize), sorghum, barley, oat and millet. The scope of this review is to provide a detailed comparative analysis of the nutritive values of cereal crops, and the antinutrients they contain, with reference specifically to their use for feeding poultry. These cereal crops range in biological value from 55 to 77.7%, in protein digestibility from 77 to 99.7%, and in net protein utilization from 50 to 73.8%. Most essential amino acids, including lysine, are found in cereal grains, whereas the nutritional value of cereals is impacted by antinutritional elements. These include non-starch polysaccharides (NSPs), such as pentosans (arabinoxylans) and β-glucan, as well as alkylresorcinols. Around 100 g/kg of pentosans are found in rye, 50–80 g/kg in wheat and 68–92 g/kg in triticale. There are strategies to reduce NSPs and other antinutrients and maximize the effectiveness of utilizing grains in compound feed for poultry. These include the application of enzyme preparations, along with dry and wet extrusion methods, for processing grains. By restricting our narrative to a direct comparison of all major staples for poultry feed, we conclude that further research is required specifically in the area of determining how economically viable it is to feed adult and young chickens with compound feeds containing various cereal crops. Furthermore, we speculate on the utility of employing enzyme preparations and extrudates to maximize feed efficiency. Full article
(This article belongs to the Section Biology & Life Sciences)
Show Figures

Figure 1

19 pages, 8122 KiB  
Article
Gamma Irradiation for Agrifood: Non-Destructive Approaches to Study the Secondary Effects Produced in Italian Wheat Matrices
by Rocco Carcione, Leonardo Lanzetta, Beatrice D’Orsi, Ilaria Di Sarcina, Emiliana Mansi, Jessica Scifo and Alessia Cemmi
Polysaccharides 2025, 6(2), 39; https://doi.org/10.3390/polysaccharides6020039 - 7 May 2025
Viewed by 568
Abstract
This work investigates the effects of gamma irradiation (0.1–10 kGy) on four Italian wheat matrices, such as durum, conventional soft, integrated soft, and biological soft wheat, by coupling Raman, FTIR-ATR and EPR spectroscopies to provide complementary insights into the structural, conformational, and radical-based [...] Read more.
This work investigates the effects of gamma irradiation (0.1–10 kGy) on four Italian wheat matrices, such as durum, conventional soft, integrated soft, and biological soft wheat, by coupling Raman, FTIR-ATR and EPR spectroscopies to provide complementary insights into the structural, conformational, and radical-based transformations occurring in starch, the primary polysaccharide in wheat. As a general trend, gamma irradiation up to 10 kGy does not induce drastic degradation or depolymerization of wheat components. However, deeper investigations reveal that wheat composition is crucial in modulating the effects of gamma irradiation on structural and conformational rearrangements of starch units. Raman and FTIR-ATR spectroscopy analyses showed an increase in random coil fractions, with the most significant changes observed in durum wheat, plausibly attributed to its higher protein content. EPR analyses confirmed a dose-dependent increase in free radicals, with different recombination kinetics between wheat types influenced by their intrinsic composition and molecular organization. The proposed spectroscopic approaches allow for rapid and non-destructive analyses of molecular structure, chemical composition, and free radical content in irradiated wheat matrices with minimal sample preparation. These approaches can be extended in the development of screening methods for a wide range of polysaccharides in a variety of crops. Full article
Show Figures

Graphical abstract

17 pages, 6693 KiB  
Article
Covalent Grafting of Inorganic Selenium to the Water-Soluble and Nondigestive Chinese Yam Polysaccharides Causes Greater Protection of IEC-6 Cells with Acrylamide Injury
by Zhen-Xing Wang, Li-Li Zhang and Xin-Huai Zhao
Foods 2025, 14(9), 1560; https://doi.org/10.3390/foods14091560 - 29 Apr 2025
Viewed by 424
Abstract
Acrylamide, a harmful substance generated during the normal thermal treatment of foods, has been shown to adversely affect human health, particularly the vital intestinal barrier function. Meanwhile, natural polysaccharides are recognized to exert an important biofunction in the intestine by protecting barrier integrity. [...] Read more.
Acrylamide, a harmful substance generated during the normal thermal treatment of foods, has been shown to adversely affect human health, particularly the vital intestinal barrier function. Meanwhile, natural polysaccharides are recognized to exert an important biofunction in the intestine by protecting barrier integrity. In this study, the non-starch, water-soluble, and nondigestive yam polysaccharide (YP) was extracted from fresh Chinese yam, while two selenylated derivatives with different extents of selenylation were prepared via the HNO3-Na2SeO3 reaction system, and designated as YPSe-I and YPSe-II, respectively. Their protective activities and the associated molecular mechanisms of these substances against acrylamide-induced damage in rat intestinal epithelial (IEC-6) cells were thereby investigated. The experimental results demonstrated that the selenium contents of YPSe-I and YPSe-II were 0.80 and 1.48 g/kg, respectively, whereas that of the original YP was merely 0.04 g/kg. In IEC-6 cells, in comparison with YP, both YPSe-I and YPSe-II showed higher efficacy than YP in alleviating acrylamide-induced cell toxicity through promoting cell viability, suppressing the release of lactate dehydrogenase, and decreasing the generation of intracellular reactive oxygen species. Both YPSe-I and YPSe-II could also manifest higher effectiveness than YP in maintaining cell barrier integrity against the acrylamide-induced barrier disruption. The mentioned barrier protection was achieved by increasing transepithelial electrical resistance, reducing paracellular permeability, facilitating the distribution and expression of F-actin between the cells, and up-regulating the production of three tight junctions, namely ZO-1, occludin, and claudin-1. Additionally, acrylamide was observed to trigger the activation of the MAPK signaling pathway, thereby leading to cell barrier dysfunction. In contrast, YPSe-I and particularly YPSe-II were capable of down-regulating two MAPK-related proteins, namely p-p38 and p-JNK, and thereby inhibiting the acrylamide-induced activation of the MAPK signaling pathway. Moreover, YPSe-II in the cells was consistently shown to provide greater barrier protection than YPSe-I. In conclusion, chemical selenylation of YP could cause higher activity in mitigating acrylamide-induced cytotoxicity and intestinal barrier dysfunction, while the efficacy of activity enhancement was positively affected by the selenylation extent. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Graphical abstract

13 pages, 1077 KiB  
Article
Synergistic Effect of Microorganisms and Enzymes on Nutritional Value of Corn Stover and Wheat Straw
by Binglong Chen, Jiancheng Liu, Mengjian Liu, Huiling Zhang, Xuanyue Li, Congcong Tian and Yong Chen
Fermentation 2025, 11(4), 210; https://doi.org/10.3390/fermentation11040210 - 10 Apr 2025
Cited by 1 | Viewed by 796
Abstract
In this study, Candida utilis, Lactobacillus plantarum, and non-starch polysaccharide enzymes (cellulase, laccase, β-glucanase, xylanase, and mannanase) were employed to examine the effects of various microorganism–enzyme combinations on the nutritional composition, fiber structure, and fermentation quality of corn stover and wheat [...] Read more.
In this study, Candida utilis, Lactobacillus plantarum, and non-starch polysaccharide enzymes (cellulase, laccase, β-glucanase, xylanase, and mannanase) were employed to examine the effects of various microorganism–enzyme combinations on the nutritional composition, fiber structure, and fermentation quality of corn stover and wheat straw. Furthermore, the synergistic effects of these treatments were assessed through the use of in vitro rumen fermentation. The results showed that the microorganism–enzyme combinations significantly increased the crude protein content (p < 0.05), while reducing the acid detergent fiber and neutral detergent fiber levels (p < 0.05) in both substrates. The fermentation broth pH decreased (p = 0.06 for corn stover; p < 0.05 for wheat straw) as a result of the treatments, with a significant increase in the lactate concentration (p < 0.05). The reducing sugar levels varied across the treatments (p < 0.05). Mycotoxin analysis revealed trace amounts of zearalenone, well below the Chinese feed hygiene standard. Scanning electron microscopy showed structural modifications, including fiber breakage and surface wrinkling, in the treated substrates. In vitro rumen fermentation demonstrated significant changes in the NH3-N production and volatile fatty acid profiles (p < 0.05). In conclusion, the addition of different microorganism–enzyme combinations can effectively improve the nutritional composition, fiber structure, and fermentation quality of corn stover and wheat straw. Among the treatments, the T3 group (25% each of C. utilis, L. plantarum, cellulase, and laccase, with a total addition ratio of 0.3% w/w) exhibited the most pronounced improvement in nutritional value for both corn stover and wheat straw. These findings suggest that microorganism–enzyme combinations effectively enhance the nutritional and fermentative quality of agricultural residues. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
Show Figures

Figure 1

15 pages, 2857 KiB  
Article
Effects of Fortified Wheat Bran Arabinoxylan on the Quality of Wheat Malt Beer
by Kai Jiang and Yuhong Jin
Foods 2025, 14(6), 1036; https://doi.org/10.3390/foods14061036 - 18 Mar 2025
Viewed by 524
Abstract
Arabinoxylan, a key non-starch polysaccharide in wheat bran, significantly influences the quality and health benefits of wheat beer. This study aimed to investigate how wheat bran addition (0–20%) affects water-extracted arabinoxylan (WEAX) content and beer quality in 100% wheat malt beer. The study [...] Read more.
Arabinoxylan, a key non-starch polysaccharide in wheat bran, significantly influences the quality and health benefits of wheat beer. This study aimed to investigate how wheat bran addition (0–20%) affects water-extracted arabinoxylan (WEAX) content and beer quality in 100% wheat malt beer. The study integrated physicochemical analyses (polysaccharide composition, WEAX molecular weight), process parameters (wort filtration time, foam stability), and sensory evaluation to establish structure–function relationships. Results showed that the WEAX content in beer increased from 1.36 mg/mL in pure malt beer (0% bran) to 2.25 mg/mL with 20% bran addition. Bran addition shortened wort filtration time by 20–45%. The molecular weight of WEAX was mainly 2936–7062 Da, enhancing foam expansion (36.18%) and stability (15.54%) due to elevated polymerization and arabinose-to-xylose (A/X) ratios. WEAX fractions (7062–10,134 Da and 859–2936 Da) correlated positively with beer turbidity and viscosity. Sensory analysis identified 15% bran as optimal for balanced quality. These findings demonstrate that bran addition enhances WEAX content, polymerization, and A/X ratios, improving foam performance, reducing filtration time, and optimizing beer quality without altering arabinogalactan, glucan, or mannose polymer content. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

25 pages, 1532 KiB  
Review
Polysaccharide Hydrogels as Delivery Platforms for Natural Bioactive Molecules: From Tissue Regeneration to Infection Control
by Fabrizia Sepe, Anna Valentino, Loredana Marcolongo, Orsolina Petillo, Anna Calarco, Sabrina Margarucci, Gianfranco Peluso and Raffaele Conte
Gels 2025, 11(3), 198; https://doi.org/10.3390/gels11030198 - 12 Mar 2025
Cited by 3 | Viewed by 1326
Abstract
Polysaccharide-based hydrogels have emerged as indispensable materials in tissue engineering and wound healing, offering a unique combination of biocompatibility, biodegradability, and structural versatility. Indeed, their three-dimensional polymeric network and high water content closely resemble the natural extracellular matrix, creating a microenvironment for cell [...] Read more.
Polysaccharide-based hydrogels have emerged as indispensable materials in tissue engineering and wound healing, offering a unique combination of biocompatibility, biodegradability, and structural versatility. Indeed, their three-dimensional polymeric network and high water content closely resemble the natural extracellular matrix, creating a microenvironment for cell growth, differentiation, and tissue regeneration. Moreover, their intrinsic biodegradability, tunable chemical structure, non-toxicity, and minimal immunogenicity make them optimal candidates for prolonged drug delivery systems. Notwithstanding numerous advantages, these polysaccharide-based hydrogels are confronted with setbacks such as variability in material qualities depending on their source, susceptibility to microbial contamination, unregulated water absorption, inadequate mechanical strength, and unpredictable degradation patterns which limit their efficacy in real-world applications. This review summarizes recent advancements in the application of polysaccharide-based hydrogels, including cellulose, starch, pectin, zein, dextran, pullulan and hyaluronic acid as innovative solutions in wound healing, drug delivery, tissue engineering, and regenerative medicine. Future research should concentrate on optimizing hydrogel formulations to enhance their effectiveness in regenerative medicine and antimicrobial therapy. Full article
Show Figures

Figure 1

25 pages, 2364 KiB  
Article
Hemp Seed-Based Foods and Processing By-Products Are Sustainable Rich Sources of Nutrients and Plant Metabolites Supporting Dietary Biodiversity, Health, and Nutritional Needs
by Ricardo Ramos-Sanchez, Nicholas J. Hayward, Donna Henderson, Gary J. Duncan, Wendy R. Russell, Sylvia H. Duncan and Madalina Neacsu
Foods 2025, 14(5), 875; https://doi.org/10.3390/foods14050875 - 4 Mar 2025
Cited by 1 | Viewed by 2486
Abstract
Processing hemp seeds into foods generates several by-products that are rich in nutrients and bioactive phytochemicals. This paper presents a thorough plant metabolite analysis and a comprehensive assessment of the nutrient content of 14 hemp seed-based foods and by-products and evaluates their feasibility [...] Read more.
Processing hemp seeds into foods generates several by-products that are rich in nutrients and bioactive phytochemicals. This paper presents a thorough plant metabolite analysis and a comprehensive assessment of the nutrient content of 14 hemp seed-based foods and by-products and evaluates their feasibility to deliver dietary needs and daily recommendations. The protein-85-product was the hemp food and hemp fudge the hemp by-product with the highest content of protein, 93.01 ± 0.18% and 37.66 ± 0.37%, respectively. Hemp seed-hull flour had the richest insoluble non-starch polysaccharide content (39.80 ± 0.07%). Linoleic acid was the most abundant fatty acid across all the hemp seed-based samples (ranging from 53.80 ± 2.02% in the protein-85-product to 69.53 ± 0.45% in the hemp cream). The omega-6 to omega-3 fatty acid ratio varied from 3:1 to 4:1 across all hemp seed-based samples. The majority of hemp seed-based samples were rich sources of potassium, magnesium, and phosphorus. Gentisic acid, p-coumaric acid, and syringaresinol were the most abundant plant metabolites measured and found mainly in bound form. Hemp seed by-products are valuable sources of nutrients capable of meeting dietary needs and, therefore, should be re-valorized into developing healthy food formulations to deliver a truly zero-waste hemp food production. Full article
(This article belongs to the Special Issue Comprehensive Utilization of By-Products in Food Industry)
Show Figures

Figure 1

16 pages, 1213 KiB  
Review
Polysaccharides: The Sweet and Bitter Impacts on Cardiovascular Risk
by Grzegorz Kalisz and Joanna Popiolek-Kalisz
Polymers 2025, 17(3), 405; https://doi.org/10.3390/polym17030405 - 3 Feb 2025
Cited by 2 | Viewed by 1637
Abstract
Cardiovascular risk is a clinical factor that represents the probability of developing cardiovascular diseases (CVDs). This risk is shaped by non-modifiable and modifiable factors, including dietary patterns, which are the main lifestyle factor influencing CVD. Dietary polysaccharides, integral to nutrition, have varying effects [...] Read more.
Cardiovascular risk is a clinical factor that represents the probability of developing cardiovascular diseases (CVDs). This risk is shaped by non-modifiable and modifiable factors, including dietary patterns, which are the main lifestyle factor influencing CVD. Dietary polysaccharides, integral to nutrition, have varying effects on cardiovascular health depending on their type and source. They include starches, non-starch polysaccharides, and prebiotic fibers, categorized further into soluble and insoluble fibers. Soluble fibers, found in oats, legumes, and fruits, dissolve in water, forming gels that help lower serum cholesterol and modulate blood glucose levels. Insoluble fibers, present in whole grains and vegetables, aid in bowel regularity. The cardiovascular benefits of polysaccharides are linked to their ability to bind bile acids, reducing cholesterol levels, and the production of short-chain fatty acids by gut microbiota, which have anti-inflammatory properties. However, not all polysaccharides are beneficial; refined starches can lead to adverse metabolic effects, and chitosan to mixed effects on gut microbiota. This review examines the dualistic nature of polysaccharides, highlighting their beneficial roles in reducing cardiovascular risk factors and the potential adverse effects of specific types. Full article
(This article belongs to the Special Issue Advanced Polymers for Cardiovascular Applications)
Show Figures

Figure 1

Back to TopTop