Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (381)

Search Parameters:
Keywords = non-metallic minerals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 7414 KiB  
Article
Carbon Decoupling of the Mining Industry in Mineral-Rich Regions Based on Driving Factors and Multi-Scenario Simulations: A Case Study of Guangxi, China
by Wei Wang, Xiang Liu, Xianghua Liu, Luqing Rong, Li Hao, Qiuzhi He, Fengchu Liao and Han Tang
Processes 2025, 13(8), 2474; https://doi.org/10.3390/pr13082474 - 5 Aug 2025
Abstract
The mining industry (MI) in mineral-rich regions is pivotal for economic growth but is challenged by significant pollution and emissions. This study examines Guangxi, a representative region in China, in light of the country’s “Dual Carbon” goals. We quantified carbon emissions from the [...] Read more.
The mining industry (MI) in mineral-rich regions is pivotal for economic growth but is challenged by significant pollution and emissions. This study examines Guangxi, a representative region in China, in light of the country’s “Dual Carbon” goals. We quantified carbon emissions from the MI from 2005 to 2021, employing the generalized Divisia index method (GDIM) to analyze the factors driving these emissions. Additionally, a system dynamics (SD) model was developed, integrating economic, demographic, energy, environmental, and policy variables to assess decarbonization strategies and the potential for carbon decoupling. The key findings include the following: (1) Carbon accounting analysis reveals a rising emission trend in Guangxi’s MI, predominantly driven by electricity consumption, with the non-ferrous metal mining sector contributing the largest share of total emissions. (2) The primary drivers of carbon emissions were identified as economic scale, population intensity, and energy intensity, with periodic fluctuations in sector-specific drivers necessitating coordinated policy adjustments. (3) Scenario analysis showed that the Emission Reduction Scenario (ERS) is the only approach that achieves a carbon peak before 2030, indicating that it is the most effective decarbonization pathway. (4) Between 2022 and 2035, carbon decoupling from total output value is projected to improve under both the Energy-Saving Scenario (ESS) and ERS, achieving strong decoupling, while the resource extraction shows limited decoupling effects often displaying an expansionary connection. This study aims to enhance the understanding and promote the advancement of green and low-carbon development within the MI in mineral-rich regions. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

32 pages, 1689 KiB  
Review
Photocatalytic Degradation of Microplastics in Aquatic Environments: Materials, Mechanisms, Practical Challenges, and Future Perspectives
by Yelriza Yeszhan, Kalampyr Bexeitova, Samgat Yermekbayev, Zhexenbek Toktarbay, Jechan Lee, Ronny Berndtsson and Seitkhan Azat
Water 2025, 17(14), 2139; https://doi.org/10.3390/w17142139 - 18 Jul 2025
Viewed by 543
Abstract
Due to its persistence and potential negative effects on ecosystems and human health, microplastic pollution in aquatic environments has become a major worldwide concern. Photocatalytic degradation is a sustainable manner to degrade microplastics to non-toxic by-products. In this review, comprehensive discussion focuses on [...] Read more.
Due to its persistence and potential negative effects on ecosystems and human health, microplastic pollution in aquatic environments has become a major worldwide concern. Photocatalytic degradation is a sustainable manner to degrade microplastics to non-toxic by-products. In this review, comprehensive discussion focuses on the synergistic effects of various photocatalytic materials including TiO2, ZnO, WO3, graphene oxide, and metal–organic frameworks for producing heterojunctions and involving multidimensional nanostructures. Such mechanisms can include the generation of reactive oxygen species and polymer chain scission, which can lead to microplastic breakdown and mineralization. The advancements of material modifications in the (nano)structure of photocatalysts, doping, and heterojunction formation methods to promote UV and visible light-driven photocatalytic activity is discussed in this paper. Reactor designs, operational parameters, and scalability for practical applications are also reviewed. Photocatalytic systems have shown a lot of development but are hampered by shortcomings which include a lack of complete mineralization and production of intermediary secondary products; variability in performance due to the fluctuation in the intensity of solar light, limited UV light, and environmental conditions such as weather and the diurnal cycle. Future research involving multifunctional, environmentally benign photocatalytic techniques—e.g., doped composites or composite-based catalysts that involve adsorption, photocatalysis, and magnetic retrieval—are proposed to focus on the mechanism of utilizing light effectively and the environmental safety, which are necessary for successful operational and industrial-scale remediation. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

16 pages, 1792 KiB  
Article
The Russia–Ukraine Conflict and Stock Markets: Risk and Spillovers
by Maria Leone, Alberto Manelli and Roberta Pace
Risks 2025, 13(7), 130; https://doi.org/10.3390/risks13070130 - 4 Jul 2025
Viewed by 761
Abstract
Globalization and the spread of technological innovations have made world markets and economies increasingly unified and conditioned by international trade, not only for sales markets but above all for the supply of raw materials necessary for the functioning of the production complex of [...] Read more.
Globalization and the spread of technological innovations have made world markets and economies increasingly unified and conditioned by international trade, not only for sales markets but above all for the supply of raw materials necessary for the functioning of the production complex of each country. Alongside oil and gold, the main commodities traded include industrial metals, such as aluminum and copper, mineral products such as gas, electrical and electronic components, agricultural products, and precious metals. The conflict between Russia and Ukraine tested the unification of markets, given that these are countries with notable raw materials and are strongly dedicated to exports. This suggests that commodity prices were able to influence the stock markets, especially in the countries most closely linked to the two belligerents in terms of import-export. Given the importance of industrial metals in this period of energy transition, the aim of our study is to analyze whether Industrial Metals volatility affects G7 stock markets. To this end, the BEKK-GARCH model is used. The sample period spans from 3 January 2018 to 17 September 2024. The results show that lagged shocks and volatility significantly and positively influence the current conditional volatility of commodity and stock returns during all periods. In fact, past shocks inversely influence the current volatility of stock indices in periods when external events disrupt financial markets. The results show a non-linear and positive impact of commodity volatility on the implied volatility of the stock markets. The findings suggest that the war significantly affected stock prices and exacerbated volatility, so investors should diversify their portfolios to maximize returns and reduce risk differently in times of crisis, and a lack of diversification of raw materials is a risky factor for investors. Full article
(This article belongs to the Special Issue Risk Management in Financial and Commodity Markets)
Show Figures

Figure 1

26 pages, 9572 KiB  
Article
Geochemical Characteristics and Risk Assessment of PTEs in the Supergene Environment of the Former Zoige Uranium Mine
by Na Zhang, Zeming Shi, Chengjie Zou, Yinghai Zhu and Yun Hou
Toxics 2025, 13(7), 561; https://doi.org/10.3390/toxics13070561 - 30 Jun 2025
Viewed by 287
Abstract
Carbonaceous–siliceous–argillaceous rock-type uranium deposits, a major uranium resource in China, pose significant environmental risks due to heavy metal contamination. Geochemical investigations in the former Zoige uranium mine revealed elevated As, Cd, Cr, Cu, Ni, U, and Zn concentrations in soils and sediments, particularly [...] Read more.
Carbonaceous–siliceous–argillaceous rock-type uranium deposits, a major uranium resource in China, pose significant environmental risks due to heavy metal contamination. Geochemical investigations in the former Zoige uranium mine revealed elevated As, Cd, Cr, Cu, Ni, U, and Zn concentrations in soils and sediments, particularly at river confluences and downstream regions, attributed to leachate migration from ore bodies and tailings ponds. Surface samples exhibited high Cd bioavailability. The integrated BCR and mineral analysis reveals that Acid-soluble and reducible fractions of Ni, Cu, Zn, As, and Pb are governed by carbonate dissolution and Fe-Mn oxide dynamics via silicate weathering, while residual and oxidizable fractions show weak mineral-phase dependencies. Positive Matrix Factorization identified natural lithogenic, anthropogenic–natural composite, mining-related sources. Pollution assessments using geo-accumulation index and contamination factor demonstrated severe contamination disparities: soils showed extreme Cd pollution, moderate U, As, Zn contamination, and no Cr, Pb pollution (overall moderate risk); sediments exhibited extreme Cd pollution, moderate Ni, Zn, U levels, and negligible Cr, Pb impacts (overall extreme risk). USEPA health risk models indicated notable non-carcinogenic (higher in adults) and carcinogenic risks (higher in children) for both age groups. Ecological risk assessments categorized As, Cr, Cu, Ni, Pb, and Zn as low risk, contrasting with Cd (extremely high risk) and sediment-bound U (high risk). These findings underscore mining legacy as a critical environmental stressor and highlight the necessity for multi-source pollution mitigation strategies. Full article
(This article belongs to the Special Issue Assessment and Remediation of Heavy Metal Contamination in Soil)
Show Figures

Graphical abstract

27 pages, 4959 KiB  
Article
Factors of Bottom Sediment Variability in an Abandoned Alkaline Waste Settling Pond: Mineralogical and Geochemical Evidence
by Pavel Belkin, Sergey Blinov, Elena Drobinina, Elena Menshikova, Sergey Vaganov, Roman Perevoshchikov and Elena Tomilina
Minerals 2025, 15(6), 662; https://doi.org/10.3390/min15060662 - 19 Jun 2025
Viewed by 244
Abstract
The aim of this study is to determine the characteristics of the chemical and mineral composition of sediment layers in a technogenic settling pond. This pond is located on urban land in Berezniki (Perm Krai, Russia), outside the territory of operating industrial facilities, [...] Read more.
The aim of this study is to determine the characteristics of the chemical and mineral composition of sediment layers in a technogenic settling pond. This pond is located on urban land in Berezniki (Perm Krai, Russia), outside the territory of operating industrial facilities, and contains alkaline saline industrial wastes. The origin of this waste was related to sludge from the Solvay soda production process, which had been deposited in this pond over a long period of time. However, along with the soda waste, the pond also received wastewater from other industries. As a result, the accumulated sediment is characterized by variation in morphological properties both in depth and laterally. Five undisturbed columns were taken to study the composition of the accumulated sediment. The obtained samples were analyzed by X-ray diffraction (XRD), synchronous thermal analysis (STA), and X-ray fluorescence (XRF) analysis. The results showed that the mineral composition of bottom sediments in each layer of all studied columns is characterized by the predominance of calcite precipitated from wastewater. Along with calcite, due to the presence of magnesium and sodium in the solution, other carbonates precipitated—dolomite and soda (natron), as well as complex transitional carbonate phases (northupite and trona). Together with carbonate minerals, the chloride salts halite and sylvin, sulfate minerals gypsum and bassanite, and pyrite and nugget sulfur were established. The group of terrigenous mineral components is represented by quartz, feldspars, and aluminosilicates. The chemical composition of sediments in the upper part of the section generally corresponds to the mineral composition. In the lower sediment layers, the role of amorphous phase and non-mineral compounds increased, which was determined by the results of thermal analysis. The content of heavy metals and metalloids also increases in the middle and lower sediment layers. When categorized according to the Igeo value, an excessive degree of contamination (class 6) was observed in all investigated columns for copper content (Igeo 5.2–6.1). Chromium content corresponds to class 5 (Igeo 4.1–4.6), antimony to class 4 (Igeo 3.0–4.0), and lead, arsenic, and vanadium to classes 2 and 3 (moderately polluted and highly polluted). The data obtained on variations in the mineral and chemical composition of sediments represent the initial information for the selection of methods of accumulated waste management. Full article
Show Figures

Figure 1

27 pages, 5180 KiB  
Article
Nano-Enhanced Cactus Oil as an MQL Cutting Fluid: Physicochemical, Rheological, Tribological, and Machinability Insights into Machining H13 Steel
by Nada K. ElBadawy, Mohamed G. A. Nassef, Ibrahem Maher, Belal G. Nassef, Mohamed A. Daha, Florian Pape and Galal A. Nassef
Lubricants 2025, 13(6), 267; https://doi.org/10.3390/lubricants13060267 - 15 Jun 2025
Viewed by 830
Abstract
The widespread use of mineral cutting fluids in metalworking poses challenges due to their poor wettability, toxicity, and non-biodegradability. This study explores cactus oil-based nanofluids as sustainable alternatives for metal cutting applications. Samples of cactus oil are prepared in plain form and with [...] Read more.
The widespread use of mineral cutting fluids in metalworking poses challenges due to their poor wettability, toxicity, and non-biodegradability. This study explores cactus oil-based nanofluids as sustainable alternatives for metal cutting applications. Samples of cactus oil are prepared in plain form and with 0.025 wt.%, 0.05 wt.%, and 0.1 wt.% activated carbon nanoparticles (ACNPs) from recycled plastic waste. Plain cactus oil exhibited a 34% improvement in wettability over commercial soluble oil, further enhanced by 60% with 0.05 wt.% ACNPs. Cactus oil displayed consistent Newtonian behavior with a high viscosity index (283), outperforming mineral-based cutting fluid in thermal stability. The addition of ACNPs enhanced the dynamic viscosity by 108–130% across the temperature range of 40–100 °C. The presence of nano-additives reduced the friction coefficient in the boundary lubrication zone by a maximum reduction of 32% for CO2 compared to plain cactus oil. The physical and rheological results translated directly to the observed improvements in surface finish and tool wear during machining operations on H13 steel. Cactus oil with 0.05 wt.% ACNP outperformed conventional fluids, reducing surface roughness by 35% and flank wear by 57% compared to dry. This work establishes cactus oil-based nanofluids as a sustainable alternative, combining recycled waste-derived additives and non-edible feedstock for greener manufacturing. Full article
(This article belongs to the Special Issue Tribology of 2D Nanomaterials and Active Control of Friction Behavior)
Show Figures

Figure 1

12 pages, 2003 KiB  
Article
Study of Oxidative–Reductive Potential Changes in the Enrichment of Oxidized Polymetallic Ores
by Alima Mambetaliyeva, Tansholpan Tussupbekova, Leyla Sabirova, Guldana Makasheva, Kanay Rysbekov and Madina Barmenshinova
Appl. Sci. 2025, 15(11), 6091; https://doi.org/10.3390/app15116091 - 28 May 2025
Viewed by 350
Abstract
This paper presents an analysis of the current state of processing lead–zinc ores from the Koskudyk deposit (Kazakhstan). At present, polymetallic ores are being extracted from the Ridder-Sokolnoye, Zyryanovskoye, Maleevskoye, and Achisai deposits. However, the reserves of rich and easily beneficiable ores are [...] Read more.
This paper presents an analysis of the current state of processing lead–zinc ores from the Koskudyk deposit (Kazakhstan). At present, polymetallic ores are being extracted from the Ridder-Sokolnoye, Zyryanovskoye, Maleevskoye, and Achisai deposits. However, the reserves of rich and easily beneficiable ores are being depleted, and the supply of raw materials from the developed deposits does not exceed 25 years. As a result, more complex and difficult-to-enrich oxidized and mixed ores are being involved in production, and the extraction of non-ferrous metals from these ores presents a significant technological challenge. The most effective method for enriching oxidized polymetallic ores is flotation with preliminary sulfidization. Laboratory studies were conducted on a sample of oxidized lead–zinc ore from the Koskudyk deposit, which contains 79.69% oxidized lead compounds and 84.72% oxidized zinc compounds. This study examines the effect of sulfidization using sodium sulfide and determines the oxidative–reductive potential (ORP) levels for various reagent dosages. The experiments demonstrated that a sodium sulfide dosage of 700 g/t at an ORP of −200 mV yields the most effective lead flotation, resulting in a lead recovery of 50.07%. Zinc recovery remained relatively unchanged across all tests, confirming the limited response of oxidized zinc minerals under the applied sulfidization conditions. The highest beneficiation efficiency was achieved within the ORP range of −160 to −200 mV, beyond which lead recovery began to decline. The findings underscore the importance of optimizing ORP to ensure the formation of a stable sulfide film on mineral surfaces and efficient collector attachment. These results provide practical guidance for improving flotation performance of oxidized ores and demonstrate the need for additional activation strategies in zinc recovery. Full article
Show Figures

Figure 1

15 pages, 3185 KiB  
Article
Future Development of Raw Material Policy Based on Statistical Data Analysis
by Lucia Domaracká, Damiana Šaffová, Katarína Čulková, Marcela Taušová, Barbara Kowal and Simona Matušková
Resources 2025, 14(6), 90; https://doi.org/10.3390/resources14060090 - 27 May 2025
Viewed by 627
Abstract
For the European Union in the field of raw material policy, it is primarily important to ensure reliable, seamless, and unrestricted access to raw materials in all EU countries. An important aspect in assessing the European Union’s raw material policy is a detailed [...] Read more.
For the European Union in the field of raw material policy, it is primarily important to ensure reliable, seamless, and unrestricted access to raw materials in all EU countries. An important aspect in assessing the European Union’s raw material policy is a detailed analysis of selected significant raw materials. This paper focuses on raw material policy within the European Union (EU). Specifically, it examines five types of raw materials: critical raw materials, metal ores, non-metallic minerals, fossil energy materials, and biomass. The research is oriented to analyzing the materials from the perspectives of consumption, mining, export, and import. The objective is to assess the European Union’s (EU) raw material policy by employing specific tools and statistical methodologies to analyze individual data. We aimed to assess the European Union (EU) raw material policy using selected statistical methods such as regression and correlation analysis, multivariate analysis, and pairwise correlation to reveal and describe the relationships between variables. Based on the examination of import and export data, it is evident that imports are on the rise while exports are declining. This trend underscores the EU’s continued reliance on raw materials sourced from other global regions. The results show that domestic production and consumption are sufficient; on the other hand, the EU remains dependent on imports of critical raw materials. The results are useful for the development of future EU raw material policy. Full article
Show Figures

Figure 1

15 pages, 2302 KiB  
Article
Experimental Investigation and Molecular Dynamics Modeling of the Effects of K2O on the Structure and Viscosity of SiO2-CaO-Al2O3-MgO-K2O Slags at High Temperatures
by Fan Yang, Qingguo Xue, Haibin Zuo, Yu Liu and Jingsong Wang
Metals 2025, 15(6), 590; https://doi.org/10.3390/met15060590 - 25 May 2025
Viewed by 431
Abstract
Variations in slag properties critically influence smelting operations and product quality. The effects of K2O on the CaO-SiO2-MgO-Al2O3-K2O slag system at 1823 K were systematically analyzed through an integrated approach combining viscosity measurements, [...] Read more.
Variations in slag properties critically influence smelting operations and product quality. The effects of K2O on the CaO-SiO2-MgO-Al2O3-K2O slag system at 1823 K were systematically analyzed through an integrated approach combining viscosity measurements, FTIR spectroscopy, and molecular dynamics simulations. The results revealed a rapid 52% decrease in slag viscosity and an 18.32 kJ/mol reduction in activation energy as K2O content increased from 0% to 3%. K2O releases O2− ions that depolymerize Si-O network structures. Within the 3% to 5% range, structural network formation is promoted by the K2O-SiO2 reaction, resulting in increased slag viscosity and elevated activation energy. Molecular dynamics simulations elucidate the depolymerization of complex Si-O networks, accompanied by a proliferation of smaller [AlO4] tetrahedral fragments. The diminished Si-O-Si bridging oxygen (BO) bonds contrast with the enhanced increase in Si-O-K non-bridging oxygen (NBO) linkages. When K2O exceeds 3%, the diffusion capacity of K atoms becomes constrained as K2O participates in structural network assembly, a phenomenon validated by FTIR spectroscopic analysis. Elevated K2O concentrations enhance slag network polymerization, leading to increased viscosity. Therefore, the precise control of K2O content is critical during smelting operations and by-product manufacturing (e.g., glass or mineral wool) to optimize material performance. These findings provide theoretical support for controlling the alkali metal content during the actual metallurgical process and thus further optimizing blast furnace operation. Full article
Show Figures

Figure 1

26 pages, 5048 KiB  
Article
Estimation of Copper Grade, Acid Consumption, and Moisture Content in Heap Leaching Using Extended and Unscented Kalman Filters
by Lisbel Bárzaga-Martell, Simón Diaz-Quezada, Humberto Estay and Javier Ruiz-del-Solar
Minerals 2025, 15(5), 521; https://doi.org/10.3390/min15050521 - 14 May 2025
Viewed by 559
Abstract
The leaching process is essential in the mining industry, because it efficiently extracts valuable minerals, such as copper. However, monitoring and controlling the leaching process presents significant challenges due to material variability, uneven distribution of the leaching solution, and the effects of environmental [...] Read more.
The leaching process is essential in the mining industry, because it efficiently extracts valuable minerals, such as copper. However, monitoring and controlling the leaching process presents significant challenges due to material variability, uneven distribution of the leaching solution, and the effects of environmental factors like temperature and moisture content. One of the main technological challenges is measuring variables within the leaching heap. Implementing state observers or estimators (i.e., virtual sensors) offers a promising solution, allowing for a cost-effective estimation of non-measurable process variables. To validate this approach, this paper proposes and analyzes the use of two estimation methods, the Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF), to estimate the moisture content, copper in the ore, and acid consumption based on measurements of acid and copper concentrations in the heap leaching process. The results obtained from simulations demonstrate accurate estimations from both state observers. The variable best estimated with EKF was the moisture content, achieving a 0.041% Integral Absolute Error (IAE) and a 0.069% Integral Square Error (ISE) in one of the analyzed scenarios. Utilizing these state estimators improves the understanding of the internal dynamics of heap leaching, often limited by the lack of field-level instrumentation, such as sensors and transmitters. This approach can enhance the operational efficiency of heap leaching plants by enabling the real-time estimation of unmeasurable variables, ultimately improving metal recovery and reducing acid consumption. Full article
Show Figures

Figure 1

18 pages, 5182 KiB  
Review
Evolutionary Routes to Modern Metabolic Pathways
by Alberto Vázquez-Salazar and Israel Muñoz-Velasco
Macromol 2025, 5(2), 23; https://doi.org/10.3390/macromol5020023 - 8 May 2025
Viewed by 2378
Abstract
Metabolism, the network of biochemical reactions that powers life, arose under conditions radically different from those on Earth today. Investigating its origins reveals how initially simple chemical processes gradually integrated nucleic acid and then protein catalysts, becoming progressively more complex and regulated until [...] Read more.
Metabolism, the network of biochemical reactions that powers life, arose under conditions radically different from those on Earth today. Investigating its origins reveals how initially simple chemical processes gradually integrated nucleic acid and then protein catalysts, becoming progressively more complex and regulated until they evolved into the enzyme-rich systems observed in modern organisms. Here, we integrate multiple perspectives on the origin of metabolism, focusing primarily on an evolutionary trajectory from an RNA-based world, where ribozymes, metal ions, coenzymes, small peptides, and other small organic molecules worked in concert, to enzyme-driven metabolic networks. We also address the longstanding debates on whether these early metabolic pathways were largely autotrophic or heterotrophic, and consider so-called “pre-metabolisms” (non-enzymatic networks) as an alternative conceptual framework. We discuss key examples such as the Wood–Ljungdahl (W–L) pathway and the reverse tricarboxylic acid (TCA) cycle, both posited to function under early Earth conditions. Finally, we examine how the environment (e.g., minerals, clays, hydrothermal vents) shaped early metabolism, describe unresolved questions about the Last Common Ancestor’s catalytic repertoire and propose future directions that link geochemical insights with molecular biology and synthetic approaches. Full article
Show Figures

Graphical abstract

17 pages, 4101 KiB  
Article
Dynamic Parameterization and Optimized Flight Paths for Enhanced Aeromagnetic Compensation in Large Unmanned Aerial Vehicles
by Zhentao Yu, Liwei Ye, Can Ding, Cheng Chi, Cong Liu and Pu Cheng
Sensors 2025, 25(9), 2954; https://doi.org/10.3390/s25092954 - 7 May 2025
Viewed by 545
Abstract
Aeromagnetic detection is a geophysical exploration technology that utilizes aircraft-mounted magnetometers to map variations in the Earth’s magnetic field. As a critical methodology for subsurface investigations, it has been extensively applied in geological mapping, mineral resource prospecting, hydrocarbon exploration, and engineering geological assessments. [...] Read more.
Aeromagnetic detection is a geophysical exploration technology that utilizes aircraft-mounted magnetometers to map variations in the Earth’s magnetic field. As a critical methodology for subsurface investigations, it has been extensively applied in geological mapping, mineral resource prospecting, hydrocarbon exploration, and engineering geological assessments. However, the metallic composition of aircraft platforms inherently generates magnetic interference, which significantly distorts the measurements acquired by onboard magnetometers. Aeromagnetic compensation aims to mitigate these platform-induced magnetic disturbances, thereby enhancing the accuracy of magnetic anomaly detection. Building upon the conventional Tolles-Lawson (T-L) model, this study introduces an enhanced compensation framework that addresses two key limitations: (1) minor deformations that occur due to the non-rigidity of the aircraft fuselage, resulting in additional interfering magnetic fields, and (2) coupled interference between geomagnetic field variations and aircraft maneuvers. The proposed model expands the original 18 compensation coefficients to 57 through dynamic parameterization, achieving a 22.41% improvement in compensation efficacy compared with the traditional T-L model. Furthermore, recognizing the operational challenges of large unmanned aerial vehicles (UAVs) in conventional calibration flights, this work redesigns the flight protocol by eliminating high-risk yaw maneuvers and optimizing the flight path geometry. Experimental validations conducted in the South China Sea demonstrate exceptional performance, with the interference magnetic field reduced to 0.0385 nT (standard deviation) during level flight, achieving an improvement ratio (IR) of 4.1688. The refined methodology not only enhances compensation precision but also substantially improves operational safety for large UAVs, offering a robust solution for modern aeromagnetic surveys. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

36 pages, 14723 KiB  
Article
Late Neoproterozoic Rare-Metal Pegmatites with Mixed NYF-LCT Features: A Case Study from the Egyptian Nubian Shield
by Mustafa A. Elsagheer, Mokhles K. Azer, Hilmy E. Moussa, Ayman E. Maurice, Mabrouk Sami, Moustafa A. Abou El Maaty, Adel I. M. Akarish, Mohamed Th. S. Heikal, Mohamed Z. Khedr, Ahmed A. Elnazer, Heba S. Mubarak, Amany M. A. Seddik, Mohamed O. Ibrahim and Hadeer Sobhy
Minerals 2025, 15(5), 495; https://doi.org/10.3390/min15050495 - 7 May 2025
Viewed by 738
Abstract
The current work records for the first time the rare-metal pegmatites with mixed NYF-LCT located at Wadi Sikait, south Eastern Desert of the Egyptian Nubian Shield. Most of the Sikait pegmatites are associated with sheared granite and are surrounded by an alteration zone [...] Read more.
The current work records for the first time the rare-metal pegmatites with mixed NYF-LCT located at Wadi Sikait, south Eastern Desert of the Egyptian Nubian Shield. Most of the Sikait pegmatites are associated with sheared granite and are surrounded by an alteration zone cross-cutting through greisen bodies. Sikait pegmatites show zoned and complex types, where the outer wall zones are highly mineralized (Nb, Ta, Y, Th, Hf, REE, U) than the barren cores. They consist essentially of K-feldspar, quartz, micas (muscovite, lepidolite, and zinnwaldite), and less albite. They contain a wide range of accessory minerals, including garnet, columbite, fergusonite-(Y), cassiterite, allanite, monazite, bastnaesite (Y, Ce, Nd), thorite, zircon, beryl, topaz, apatite, and Fe-Ti oxides. In the present work, the discovery of Li-bearing minerals for the first time in the Wadi Sikait pegmatite is highly significant. Sikait pegmatites are highly mineralized and yield higher maximum concentrations of several metals than the associated sheared granite. They are strongly enriched in Li (900–1791 ppm), Nb (1181–1771 ppm), Ta (138–191 ppm), Y (626–998 ppm), Hf (201–303 ppm), Th (413–685 ppm), Zr (2592–4429 ppm), U (224–699 ppm), and ∑REE (830–1711 ppm). The pegmatites and associated sheared granite represent highly differentiated peraluminous rocks that are typical of post-collisional rare-metal bearing granites. They show parallel chondrite-normalized REE patterns, enriched in HREE relative to LREE [(La/Lu)n = 0.04–0.12] and strongly negative Eu anomalies [(Eu/Eu*) = 0.03–0.10]. The REE patterns show an M-type tetrad effect, usually observed in granites that are strongly differentiated and ascribed to hydrothermal fluid exchange. The pegmatite has mineralogical and geochemical characteristics of the mixed NYF-LCT family and shows non-CHARAC behavior due to a hydrothermal effect. Late-stage metasomatism processes caused redistribution, concentrated on the primary rare metals, and drove the development of greisen and quartz veins along the fracture systems. The genetic relationship between the Sikait pegmatite and the surrounding sheared granite was demonstrated by the similarities in their geochemical properties. The source magmas were mostly derived from the juvenile continental crust of the Nubian Shield through partial melting and subsequently subjected to a high fractional crystallization degree. During the late hydrothermal stage, the exsolution of F-rich fluids transported some elements and locally increased their concentrations to the economic grades. The investigated pegmatite and sheared granite should be considered as a potential resource to warrant exploration for REEs and other rare metals. Full article
Show Figures

Figure 1

29 pages, 5916 KiB  
Article
Metal Fingerprints of Eocene Rhyolite Magmas Coincident with Carlin-Type Gold Deposition in Nevada USA
by Celestine N. Mercer, Hannah R. Babel, Cameron M. Mercer and Albert H. Hofstra
Minerals 2025, 15(5), 479; https://doi.org/10.3390/min15050479 - 4 May 2025
Viewed by 574
Abstract
Eocene magmatic systems contemporaneous with world-class Carlin-type Au deposits in Nevada (USA) have been proposed by some researchers as a key ingredient for Au mineralization, though evidence conclusively demonstrating their genetic relationship remains tenuous. This study provides the first direct evidence of the [...] Read more.
Eocene magmatic systems contemporaneous with world-class Carlin-type Au deposits in Nevada (USA) have been proposed by some researchers as a key ingredient for Au mineralization, though evidence conclusively demonstrating their genetic relationship remains tenuous. This study provides the first direct evidence of the pre-eruptive metal budget of volatile- and metal-charged silicic magmas coincident in time (~41 to 34 Ma) and space (within 5 km) with Carlin-type Au deposits. We characterize the pre-eruptive metal fingerprints of these diverse magmatic systems to assess their potential as sources of metals for Carlin-type Au mineralization. Metal abundances from quartz-hosted melt inclusions (Au, Te, Ag, Sb, Tl, Mo, W, Sn, As, Pb, Co, Cu, Ni, and Zn) characterized in situ by SHRIMP-RG and LA-ICP-MS represent our best (and only) estimates for the pre-eruptive metal budget in these systems. Median metal concentrations are generally within one order of magnitude of average upper crust and average continental rhyolite values. But there are two notable exceptions, with median Au contents extending >1 order of magnitude higher than average upper crust and median Cu contents ranging >1 order of magnitude lower than upper crust. Despite this, melts contain lower Au/Cu (<0.1), Au/Ag (<5), and Au/Tl (<0.3) than most ore-grade Carlin-type rock samples and quartz-hosted fluid inclusions, regardless of their age and timing relative to nearby Carlin-type Au mineralization. The metal fingerprints of these magmatic systems, defined both by traditional and multivariate compositional data analysis techniques, are distinct from one another. Yet none are particularly specialized, e.g., high Au/Cu, in terms of being ideal ingredients as postulated by magmatic models for Carlin-type Au mineralization. Magmatic Au contents do not appear to be correlated with rhyolite “flavors” in the way that Cu, Sn, and Nb contents are. Fluid/melt partitioning modeling and magma volume estimates support the idea that a diverse array of non-specialized silicic magmas could feasibly contribute some or potentially all of the Au, Ag, and Cu in Carlin-type systems. The compositional diversity among contemporaneous magmatic systems could possibly contribute to some of the diversity observed across Carlin-type Au districts in Nevada. Full article
Show Figures

Graphical abstract

18 pages, 17857 KiB  
Article
Construction of Knowledge Graphs for the Constituent Elements and Mineralization Process of Urban Minerals: A Case of Iron and Steel Resources
by Youliang Chen, Lifen Zhang, Lin Chen and Yan Shi
Sustainability 2025, 17(9), 4136; https://doi.org/10.3390/su17094136 - 2 May 2025
Viewed by 495
Abstract
Urban minerals are secondary resources with economic value that can be recycled and utilized, including iron and steel, non-ferrous metals, rubber, and others. Accurately estimating the quantities of various components is a critical element in the urban mining operations that support sustainable resource [...] Read more.
Urban minerals are secondary resources with economic value that can be recycled and utilized, including iron and steel, non-ferrous metals, rubber, and others. Accurately estimating the quantities of various components is a critical element in the urban mining operations that support sustainable resource management. To achieve this, ontology construction was employed to systematically define and structure the relationships among different entities in the domain. Knowledge graphs were developed to identify the constituent elements and mineralization process of iron and steel, contributing to improved sustainability in urban resource utilization. The knowledge graphs were constructed using a top-down approach and stored in a Neo4j database. When a knowledge graph of iron and steel components is constructed, the iron and steel products are classified into 5 major categories and 14 subcategories. The knowledge graph of the iron and steel mineralization process is divided into five iron and steel mineralization stages and combines industrialization and urbanization to represent the factors that play a role in the iron and steel mineralization process. By leveraging ontology construction, the knowledge graph can improve the efficiency of refining and analyzing data in urban mineral-related fields. This, in turn, provides an essential data basis for establishing a circular economic system for iron and steel industry resources and advancing sustainability-oriented urban mining practices. Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Figure 1

Back to TopTop