Late Neoproterozoic Rare-Metal Pegmatites with Mixed NYF-LCT Features: A Case Study from the Egyptian Nubian Shield
Abstract
:1. Introduction
2. Geologic Setting
3. Materials and Methods
3.1. Fieldwork and Sampling
3.2. Petrographic Studies
3.3. Analytical Conditions
4. Results
4.1. Petrography
4.1.1. Pegmatite
4.1.2. Sheared Granite
4.1.3. Greisen
4.2. Mineral Chemistry
4.2.1. Silicate Minerals
4.2.2. Ore Minerals
4.3. Geochemical Characteristics
5. Discussion
5.1. Geodynamic Implications
5.2. Source Rocks
5.3. Magmatic Evolution and Hydrothermal Effect
5.4. Mixed NYF-LCT Pegmatite
6. Summary
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El Aassy, I.E.; Shazly, A.G.; Hussein, H.A.; Heikel, M.T.S.; El Galy, M.M. Pegmatites of Nuweiba-Dahab Area, West Gulf of Aqaba, Sinai, Egypt: Field Aspects, Mineralogy, Geochemistry and Radioactivity. In Proceedings of the 3rd Conf. on Geochemistry, Alexandria, Egypt, 22–27 September 1997; pp. 139–151. [Google Scholar]
- Heikal, M.T.S.; Moharem, A.F.; El-Nashar, E.R. Petrogenesis and radioactive inspection of Li-mica pegmatites at Wadi Zareib, central Eastern Desert, Egypt. In Proceedings of the 2nd International Conference on the Geology of Africa, Assiut, Egypt, 28–30 October 2001; Volume 2, pp. 227–305. [Google Scholar]
- Sun, D.; Wang, S.; Gou, J.; Zhang, D.; Deng, C.; Yang, D.; Tian, L. Petrogenesis of Shihuiyao Rare-Metal Granites in the Southern Great Xing’an Range, NE China. Minerals 2023, 13, 701. [Google Scholar] [CrossRef]
- Wu, H.R.; Yang, H.; Ge, W.C.; Santosh, M.; Jing, J.H.; Ji, Z.; Jing, Y. The origin of high-silica granites and rare metal mineralization: Insights from geochemistry and U-Pb-Sr-Nd-Hf-O isotopes of Early Cretaceous granitoids in the southern Great Xing’an Range, NE China. Bulletin 2024, 136, 1151–1170. [Google Scholar] [CrossRef]
- Adamu, L.M.; Sunday, A.E.; Ohiemi, A.F.; Ayuba, R.; Ugbena, K.G.; Baba, Y.; Abraham, T.; Ogunkolu, B.A.; Ebeh, A. Petrogenesis and Geochemical Evolution of Rocks and Pegmatites in Kwarra Area, Northcentral Nigeria: Implications for Rare Metal Mineralization. Int. J. Econ. Environ. Geol. 2024, 57, 735–768. [Google Scholar] [CrossRef]
- Rocher, O.; Ballouard, C.; Richard, A.; Monnier, L.; Carr, P.; Laurent, O.; Khebabza, Y.; Lecomte, A.; Bouden, N.; Villeneuve, J.; et al. Unravelling the magmatic and hydrothermal evolution of rare-metal granites through apatite geochemistry and geochronology: The Variscan Beauvoir granite (French Massif Central). Chem. Geol. 2024, 670, 122400. [Google Scholar] [CrossRef]
- Zoheir, B.; Carr, P.; Xu, X.; Zeh, A.; Kraemer, D.; McAleer, R.; Steele-MacInnis, M.; Ragab, A.; Deshesh, F. The Igla Sn-(W-Be) deposit, Egypt: Prolonged magmatic-metasomatic processes during the middle stage evolution of the Arabian-Nubian Shield. Gondwana Res. 2025, 142, 20–43. [Google Scholar] [CrossRef]
- Xiong, Y.Q.; Fan, Z.W.; Yu, H.Y.; Di, H.; Cao, Y.H.; Wen, C.H.; Jiang, S.Y. Genetic linkage between parent granite and zoned rare metal pegmatite in the Renli-Chuanziyuan granite-pegmatite system, South China. Geol. Soc. Am. Bull. 2025, 137, 1607–1627. [Google Scholar] [CrossRef]
- Zheng, S.; Su, J.H.; Wang, J.; Liu, S.J.; Zhao, X.F. Origin and evolution of granitic pegmatite rare metal deposits in the northern Mufushan batholith, South China: Insights from muscovite chemistry. Am. Mineral. 2025. published online. [Google Scholar] [CrossRef]
- Goodenough, K.M.; Lusty, P.A.J.; Roberts, N.M.W.; Key, R.M.; Garba, A. Post-collisional Pan-African granitoids and rare metal pegmatites in western Nigeria: Age, petrogenesis, and the ‘pegmatite conundrum’. Lithos 2014, 200, 22–34. [Google Scholar] [CrossRef]
- Abuamarah, B.A. Genesis and petrology of postcollisional rare-metal-bearing granites in the Arabian Shield: A case study of Aja Ring Complex, Northern Saudi Arabia. J. Geol. 2020, 128, 131–156. [Google Scholar] [CrossRef]
- Beskin, S.M.; Marin, Y.B. Granite systems with rare-metal pegmatites. Geol. Ore Depos. 2020, 62, 554–563. [Google Scholar] [CrossRef]
- López-Moro, F.J.; Díez-Montes, A.; Timón-Sánchez, S.M.; Llorens-González, T.; Sánchez-García, T. Peraluminous Rare Metal Granites in Iberia: Geochemical, Mineralogical, Geothermobarometric, and Petrogenetic Constraints. Minerals 2024, 14, 249. [Google Scholar] [CrossRef]
- Irber, W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu∗, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim. Cosmochim. Acta 1999, 63, 489–508. [Google Scholar] [CrossRef]
- Jahn, B.M.; Wu, F.; Capdevila, R.; Martineau, F.; Zhao, Z.; Wang, Y. Highly evolved juvenile granites with tetrad REE patterns: The Woduhe and Baerzhe granites from the Great Xing’an Mountains in NE China. Lithos 2001, 59, 171–198. [Google Scholar] [CrossRef]
- Xiong, Y.Q.; Jiang, S.Y.; Wen, C.H.; Yu, H.Y. Granite–pegmatite connection and mineralization age of the giant Renli TaNb deposit in South China: Constraints from U–Th–Pb geochronology of coltan, monazite, and zircon. Lithos 2020, 358, 105422. [Google Scholar] [CrossRef]
- Khedr, M.Z.; Abo Khashaba, S.M.; Takazawa, E.; Hassan, S.M.; Azer, M.K.; El-Shibiny, N.H.; Abdelrahman, K.; Ichiyama, Y. Genesis of Rare Metal Granites in the Nubian Shield: Tectonic Control and Magmatic and Metasomatic Processes. Minerals 2024, 14, 522. [Google Scholar] [CrossRef]
- Johnson, P.R.; Woldehaimanot, B. Development of the Arabian–Nubian Shield: Perspectives on accretion and deformation in the northern East African Orogen and the assembly of Gondwana. In Proterozoic East Gondwana: Supercontinent Assembly and Breakup; Geological Society: London, UK, 2003; Volume 206, pp. 289–325. [Google Scholar]
- Ali, S.; Abart, R.; Sayyed, M.I.; Hauzenberger, C.A.; Sami, M. Petrogenesis of the Wadi El-Faliq Gabbroic Intrusion in the Central Eastern Desert of Egypt: Implications for Neoproterozoic Post-Collisional Magmatism Associated with the Najd Fault System. Minerals 2023, 13, 10. [Google Scholar] [CrossRef]
- Ali, K.; Azer, M.; Gahlan, H.; Wilde, S.; Samuel, M.; Stern, R. Age of formation and emplacement of Neoproterozoic ophiolites and related rocks along the Allaqi Suture, south Eastern Desert, Egypt. Gondwana Res. 2010, 18, 583–595. [Google Scholar] [CrossRef]
- Azer, M.K.; Abdelfadil, K.M.; Asimow, P.D.; Khalil, A.E. Tracking the transition from subduction-related to post-collisional magmatism in the north Arabian–Nubian Shield: A case study from the Homrit Waggat area of the Eastern Desert of Egypt. Geol. J. 2020, 55, 4426–4452. [Google Scholar] [CrossRef]
- Azer, M.K.; Abuamarah, B.A.; Srour, M.M.; Wilde, S.A.; Gomaa, R.M. Mineralogy, geochemistry, and petrogenesis of postcollisional granites from the Arabian-Nubian Shield: Case study from the Gabal Nugrus area in the South Eastern Desert of Egypt. J. Geol. 2023, 131, 221–263. [Google Scholar] [CrossRef]
- Khedr, M.Z.; Abo Khashaba, S.M.; El-Shibiny, N.H.; El-Arafy, R.A.; Takazawa, E.; Azer, M.K.; Palin, R.M. Remote sensing techniques and geochemical constraints on the formation of the Wadi El-Hima mineralized granites, Egypt: New insights into the genesis and accumulation of garnets. Int. J. Earth Sci. 2022, 111, 2409–2443. [Google Scholar] [CrossRef]
- Azer, M.K.; Asimow, P.D. Petrogenetic Evolution of the Neoproterozoic Igneous Rocks of Egypt. In The Geology of the Egyptian Nubian Shield; Springer International Publishing: Cham, Switzerland, 2021; pp. 343–382. [Google Scholar]
- Gahlan, H.A.; Azer, M.K.; Al-Hashim, M.H.; Heikal, M.T.S. Highly evolved rare-metal bearing granite overprinted by alkali metasomatism in the Arabian Shield: A case study from the Jabal Tawlah granites. J. Afr. Earth Sci. 2022, 192, 104556. [Google Scholar] [CrossRef]
- Gahlan, H.A.; Azer, M.K.; Asimow, P.D.; Al-Hashim, M.H. Geochemistry, petrogenesis and alteration of rare-metal-bearing granitoids and mineralized silexite of the Al-Ghurayyah stock, Arabian Shield, Saudi Arabia. J. Earth Sci. 2023, 34, 1488–1510. [Google Scholar] [CrossRef]
- Khedr, M.Z.; Khashaba, S.M.A.; El-Shibiny, N.H.; Takazawa, E.; Hassan, S.M.; Azer, M.K.; Whattam, S.A.; El-Arafy, R.A.; Ichiyama, Y. Integration of remote sensing and geochemical data to characterize mineralized A-type granites, Egypt: Implications for origin and concentration of rare metals. Int. J. Earth Sci. 2023, 112, 1717–1745. [Google Scholar] [CrossRef]
- Abo Khashaba, S.M.A.; El-Shibiny, N.H.; Hassan, S.M.; Drüppel, K.; Azer, M.K. Remote sensing and geochemistry of A-type granites, North Arabian-Nubian shield: Insights into the origin and evolution of the granitic suites and processes responsible for rare metals enrichment. Ore Geol. Rev. 2024, 175, 106391. [Google Scholar] [CrossRef]
- Sami, M.; Ntaflos, T.; Farahat, E.S.; Mohamed, H.A.; Ahmed, A.F.; Hauzenberger, C. Mineralogical, geochemical and Sr-Nd isotopes characteristics of fluorite-bearing granites in the Northern Arabian-Nubian Shield, Egypt: Constraints on petrogenesis and evolution of their associated rare metal mineralization. Ore Geol. Rev. 2017, 88, 1–22. [Google Scholar] [CrossRef]
- Seddik, A.M.; Darwish, M.H.; Azer, M.K.; Asimow, P.D. Assessment of magmatic versus post-magmatic processes in the Mueilha rare-metal granite, Eastern Desert of Egypt, Arabian-Nubian Shield. Lithos 2020, 366, 105542. [Google Scholar] [CrossRef]
- Moussa, H.E.; Asimow, P.D.; Azer, M.K.; Abou El Maaty, M.A.; Akarish, A.I.; Yanni, N.N.; Mubarak, H.S.; Wilner, O.D.; Elsagheer, M.A. Magmatic and hydrothermal evolution of highly-fractionated rare-metal granites at Gabal Nuweibi, Eastern Desert, Egypt. Lithos 2021, 400, 106405. [Google Scholar] [CrossRef]
- Abuamarah, B.A.; Azer, M.K.; Seddik, A.M.; Asimow, P.D.; Guzman, P.; Fultz, B.T.; Wilner, O.D.; Dalleska, N.; Darwish, M.H. Magmatic and post-magmatic evolution of post-collisional rare-metal bearing granite: The Neoproterozoic Homrit Akarem Granitic Intrusion, south Eastern Desert of Egypt, Arabian-Nubian Shield. Geochemistry 2022, 82, 125840. [Google Scholar] [CrossRef]
- Saleh, G.M.; Khaleal, F.M.; El-Bialy, M.Z.; Kamar, M.S.; Azer, M.K.; Omar, M.M.; El Dawy, M.N.; Abdelaal, A.; Lasheen, E.S.R. Origin and geochemical characteristics of beryllium mineralization in the Zabara-Wadi El Gemal region, South Eastern Desert, Egypt. Acta Geochim. 2024, 43, 1105–1122. [Google Scholar] [CrossRef]
- Ali, M.A.; Lentz, D.R.; Hall, D.C. Mineralogy and geochemistry of Nb-, Ta-, Sn-, U-, Th-, and Zr-Bearing granitic rocks from Abu Rusheid Shear Zones, South Eastern Desert, Egypt. Chin. J. Geochem. 2011, 30, 226–247. [Google Scholar] [CrossRef]
- Kamar, M.S. Geochemical and mineralogical studies of the mylonite xenoliths and monzogranite rocks at Wadi Abu Rusheid, south eastern desert, Egypt: Insights on the genesis of mineralization. Acta Geol. Sin. 2021, 95, 1551–1567. [Google Scholar] [CrossRef]
- Saleh, G.M.; Kamar, M.S.; El Saeed, R.L.; Ibrahim, I.H.; Azer, M.K. Whole rock and mineral chemistry of the rare metals-bearing mylonitic rocks, Abu Rusheid borehole, south Eastern Desert, Egypt. J. Afr. Earth Sci. 2022, 196, 104736. [Google Scholar] [CrossRef]
- Mokhtar, H.; Surour, A.A.; Azer, M.K.; Ren, M.; Said, A. New insights into chemical and spectroscopic characterization of beryl mineralization related to leucogranites in the west Wadi El Gemal area, southern Eastern Desert of Egypt. Geochemistry 2023, 83, 125980. [Google Scholar] [CrossRef]
- Greiling, R.O.; El Ramly, M.F.; El Akhal, H.; Stern, R.J. Tectonic evolution of the northwestern Red Sea margin as related to basement structure. Tectonophysics 1988, 153, 179–191. [Google Scholar] [CrossRef]
- Fritz, H.; Wallbrecher, E.; Khudeir, A.A.; El Ela, F.A.; Dallmeyer, D.R. Formation of Neoproterozoic metamorphic complex during oblique convergence (Eastern Desert, Egypt). J. Afr. Earth Sci. 1996, 23, 311–329. [Google Scholar] [CrossRef]
- Fowler, A.; Osman, A.F. The Sha’it–Nugrus shear zone separating Central and South Eastern Deserts, Egypt: A post-arc collision low-angle normal ductile shear zone. J. Afr. Earth Sci. 2009, 53, 16–32. [Google Scholar] [CrossRef]
- El-Mezayen, A.M.; Falham, O.M.; Abu Zeid, E.K.; Mahmoud, M.M.; Shalan, A.S. Petrology and uranium potentiality of Abu-Rusheid subsurface gneisses, south Eastern Desert, Egypt. Al-Azhar Bull. Sci. 2015, 26, 51–68. [Google Scholar] [CrossRef]
- Hamimi, Z.; El-Fakharani, A.; Emam, A.; Barreiro, J.G.; Abdelrahman, E.; Abo-Soliman, M.Y. Reappraisal of the kinematic history of Nugrus shear zone using PALSAR and microstructural data: Implications for the tectonic evolution of the Eastern Desert tectonic terrane, northern Nubian Shield. Arab. J. Geosci. 2018, 11, 494. [Google Scholar] [CrossRef]
- Mokhtar, H.; Surour, A.A.; Azer, M.K.; Ren, M.; Said, A. Geochemistry and mineral chemistry of granitic rocks from west Wadi El Gemal area, southern Eastern Desert of Egypt: Indicators for highly fractionated syn-to post-collisional Neoproterozoic felsic magmatism. Acta Geochim. 2024, 44, 163–188. [Google Scholar] [CrossRef]
- Ibrahim, M.E.; El-Tokhi, M.M.; Saleh, G.M.; Hassan, M.A.; Rashed, M.A. Geochemistry of lamprophyres associated with uranium mineralization, Southeastern Desert, Egypt. Chin. J. Geochem. 2007, 26, 356–365. [Google Scholar] [CrossRef]
- Stern, R.J.; Hedge, C.E. Geochronologic and isotopic constraints on late Precambrian crustal evolution in the Eastern Desert of Egypt. Am. J. Sci. 1985, 285, 97–127. [Google Scholar] [CrossRef]
- Ibrahim, M.E.; Saleh, G.M.; Ibrahim, H.I.; Azab, M.S.; Oraby, F.; Abu El Hassan, E.; Rashed, M.A. Geology and rare metal mineralization of Abu Rusheid shear zone. Intern. Rep. 2004, 21, 155. [Google Scholar]
- Patiño Douce, A.E. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geol. Soc. 1999, 168, 55–75. [Google Scholar] [CrossRef]
- Miller, C.F.; Stoddard, E.F.; Bradfish, L.J.; Dollase, W.A. Composition of plutonic muscovite: Genetic implications. Canad Miner. 1981, 19, 25–34. [Google Scholar]
- Du Bray, E.A. Garnet compositions and their use as indicators of peraluminous granitoid petrogenesis—Southeastern Arabian Shield. Contrib. Mineral. Petrol. 1988, 100, 205–212. [Google Scholar] [CrossRef]
- Dahlquist, J.A.; Galindo, C.; Pankhurst, R.J.; Rapela, C.W.; Alasino, P.H.; Saavedra, J.; Fanning, C.M. Magmatic evolution of the Peñón Rosado granite: Petrogenesis of garnet-bearing granitoids. Lithos 2007, 95, 177–207. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, C.; She, Z. An Early Cretaceous garnet-bearing metaluminous A-type granite intrusion in the East Qinling Orogen, central China: Petrological, mineralogical and geochemical constraints. Geosci. Front. 2012, 3, 635–646. [Google Scholar] [CrossRef]
- Tischendorf, G.; Förster, H.J.; Gottesmann, B. Minor-and trace-element composition of trioctahedral micas: A review. Mineral. Mag. 2001, 65, 249–276. [Google Scholar] [CrossRef]
- Miller, C.F.; Stoddard, E.F. The role of manganese in the paragenesis of magmatic garnet: An example from the Old Woman-Piute Range, California. J. Geol. 1981, 89, 233–246. [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.A.; Zussman, J. An Introduction to the Rock Forming Minerals, 2nd ed.; Longman Scientific and Technical: London, UK, 1992; 696p. [Google Scholar]
- Nachit, H.; Ibhi, A.; Abia, E.H.; Ohoud, M.B. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Comptes Rendus. Géoscience 2005, 337, 1415–1420. [Google Scholar] [CrossRef]
- Abdel-Rahman, A.M. Nature of biotites from alkaline, calc-alkaline and peraluminous magmas. J. Petrol. 1994, 35, 525–541. [Google Scholar] [CrossRef]
- Tischendorf, G.; Gottesmann, B.; Förster, H.J.; Trumbull, R.B. On Li-bearing micas: Estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineral. Mag. 1997, 61, 809–834. [Google Scholar] [CrossRef]
- Hey, M.H. A new review of the chlorites. Mineral. Mag. 1954, 30, 277–292. [Google Scholar] [CrossRef]
- Ercit, T.S. The mess that is “allanite”. Can. Mineral. 2002, 40, 1411–1419. [Google Scholar] [CrossRef]
- De la Roche, H.; Leterrier, J.; Grandclaude, P.; Marchal, M. A classification of volcanic and plutonic rocks using R1-R2 diagrams and major-element analyses-Its relation with current nomenclature. Chem. Geol. 1980, 29, 183–210. [Google Scholar] [CrossRef]
- Streckeisen, A.; Le Maitre, R.W. A chemical approximation to the modal QAPF classification of the igneous rocks. Pascal Fr. Bibliogr. Databases 1979, 136, 169–206. [Google Scholar]
- Nesbitt, H.W.; Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Liégeois, J.P.; Navez, J.; Black, R.; Hertogen, J. Contrasting origin of post-collision high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. Use Sliding Norm. Lithos 1998, 45, 1–28. [Google Scholar]
- Sylvester, P.J. Post-collisional alkaline granites. J. Geol. 1989, 97, 261–280. [Google Scholar] [CrossRef]
- Bonin, B. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos 2007, 97, 1–29. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappel, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Clemens, J.D.; Holloway, J.R.; White, A.J.R. Origin of an A-type granites: Experimental constraints. Am. Min. 1986, 71, 317–324. [Google Scholar]
- Sun, S.; McDonough, W.F. Chemical and isotopic systematic of oceanic basalts: Implications for mantle compositions and processes. In Magmatism in the Ocean Basin; Geological Society Special Publication: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- Evensen, N.M.; Hamilton, P.J.; O’ Nions, R.K. Rare earth abundances in chondritic meteorites. GCA 1978, 42, 1199–1212. [Google Scholar]
- Broska, I.; Kubiš, M. Accessory minerals and evolution of tin-bearing S-type granites in the western segment of the Gemeric Unit (Western Carpathians). Geol. Carpath. 2018, 69, 483–497. [Google Scholar] [CrossRef]
- Le Maitre, R.W.; Bateman, P.; Dudek, A.; Keller, J.; Lameyre, J.; Le Bas, M.J.; Sabine, P.A.; Schmid, R.; Sorensen, H.; Streckeisen, A.; et al. A Classification of Igneous Rocks and Glossary of Terms. Recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks; Blackwell: Oxford, UK, 1989; 193p. [Google Scholar]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Rollinson, H. Using Geochemical Data: Evaluation, Presentation, Interpretation; Longman Scientific & Technical—John Wiley & Sons Inc.: New York, NY, USA, 1994; 352p. [Google Scholar]
- Eisenlohr, B.N.; Groves, D.L.; Partington, G.A. Crustal-scale shear zones and their significance to Archaean gold mineralization in Western Australia. Miner. Depos. 1989, 24, 1–8. [Google Scholar] [CrossRef]
- Fossen, H.; Cavalcante, G.C.G. Shear zones—A review. Earth-Sci. Rev. 2017, 171, 434–455. [Google Scholar] [CrossRef]
- Creus, P.K.; Sanislav, I.V.; Dirks, P.H.; Jago, C.M.; Davis, B.K. The Dugald River-type, shear zone hosted, Zn-Pb-Ag mineralisation, Mount Isa Inlier, Australia. Ore Geol. Rev. 2023, 155, 105369. [Google Scholar] [CrossRef]
- Azer, M.K.; Abdelfadil, K.M.; Ramadan, A.A. Geochemistry and petrogenesis of Late Ediacaran rare-metal albite granite of the Nubian Shield: Case study of Nuweibi intrusion, Eastern Desert, Egypt. J. Geol. 2019, 127, 665–689. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, R.; Marignac, C.; Cuney, M.; Mercadier, J.; Che, X.; Lespinasse, M.Y. A new style of rare metal granite with Nb-rich mica: The Early Cretaceous Huangshan rare-metal granite suite, northeast Jiangxi Province, southeast China. Am. Min. 2018, 103, 1530–1544. [Google Scholar] [CrossRef]
- Abuamarah, B.A.; Azer, M.K.; Asimow, P.D.; Ghrefat, H.; Mubarak, H.S. Geochemistry and Petrogenesis of late Ediacaran Rare-metal Albite Granites of the Arabian-Nubian Shield. Acta Geol. Sin. 2021, 95, 459–480. [Google Scholar] [CrossRef]
- Hanson, S.L. A tectonic evaluation of pegmatite parent granites. Can. Mineral. 2016, 54, 917–933. [Google Scholar] [CrossRef]
- Harraz, H.Z.; Hassan, A.M.; Furuyama, K. The Wadi Sikait Complex: A fertile post-collisional granite-pegmatite suite, Eastern Desert, Egypt. Ann. Geol. Surv. Egypt. 2005, 28, 1–35. [Google Scholar]
- Ibrahim, M.E.; Saleh, G.M.; Dawood, M.I.; Kamar, M.S.; Saleh, S.M.; Mahmoud, M.A.; El-Tohamy, A.M. Rare metals mineralization in pegmatite at Abu Rusheid area, south Eastern Desert, Egypt. IJMS 2017, 3, 44–63. [Google Scholar]
- Saleh, G.M.; Kamar, M.S.; Tohamy, A.M.E.; Ali, G.M.; Ragab, A. Origin and tectonic environment of silicified ultramylonite in Abu Rusheid, Southeastern Desert, Egypt: Geochemical aspects and spectrometric prospecting. Euro-Mediterr. J. Environ. Integr. 2024, 10, 985–1010. [Google Scholar] [CrossRef]
- London, D. Ore-forming processes within granitic pegmatites. Ore Geol. Rev. 2018, 101, 349–383. [Google Scholar] [CrossRef]
- Winter, J.D. Principles of Igneous and Metamorphic Petrology; Pearson Education: Harlow, UK, 2014; Volume 2. [Google Scholar]
- Bau, M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib. Mineral. Petrol. 1996, 123, 323–333. [Google Scholar] [CrossRef]
- Jahn, S. Alteration processes and related shift of elements: The albite granite of Abu Dabbab, Egypt. Eur. J. Miner. Beih. 1994, 1, 124. [Google Scholar]
- Bau, M. The lanthanide tetrad effect in highly evolved felsic igneous rocks–a reply to the comment by Y. Pan. Contrib. Mineral. Petrol. 1997, 128, 409–412. [Google Scholar] [CrossRef]
- Antipin, V.S.; Savina, E.A.; Mitichkin, M.A. Geochemistry and formation conditions of rare-metal granites with various fluorine-bearing minerals (fluorite, topaz, and cryolite). Geochem. Int. 2006, 44, 965–975. [Google Scholar] [CrossRef]
- Soufi, M.; Remmal, T.; EL Amrani El Hassani, I.E.; Makhoukhi, S. Topaz solid solution in the F-rich granitic rocks from Blond (NW Massif Central, France). Arab. J. Geosci. 2018, 11, 370. [Google Scholar] [CrossRef]
- Soufi, M. Origin and physical-chemical control of topaz crystallization in felsic igneous rocks: Contrasted effect of temperature on its OH–F substitution. Earth-Sci. Rev. 2021, 213, 103467. [Google Scholar] [CrossRef]
- Precisvalle, N. Relationship Between Chemical and Structural Features of Topaz to Unravel the Formation Conditions: A Multidisciplinary Approach. Ph.D. Thesis, Università Degli Studi di Ferrara, Ferrara, Italy, 4 July 2022. [Google Scholar]
- Clarke, D.B. Granitoid Rocks; Springer Science & Business Media: London, UK, 1992; Volume 7. [Google Scholar]
- Ballouard, C.; Poujol, M.; Boulvais, P.; Branquet, Y.; Tartèse, R.; Vigneresse, J.-L. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition. Geology 2016, 44, 231–234. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Wang, R.C.; Che, X.D.; Zhu, J.C.; Wei, X.L. Magmatic–hydrothermal rare-element mineralization in the Songshugang granite (northeastern Jiangxi, China): Insights from an electron-microprobe study of Nb–Ta–Zr minerals. Ore Geol. Rev. 2015, 65, 749–760. [Google Scholar] [CrossRef]
- Jiang, S.; Su, H.; Xiong, Y.; Liu, T.; Zhu, K.; Zhang, L. Spatial-Temporal Distribution, Geological Characteristics and Ore-Formation Controlling Factors of Major Types of Rare Metal Mineral Deposits in China. Acta Geol. Sin. 2020, 94, 1757–1773. [Google Scholar] [CrossRef]
- Su, H.M.; Jiang, S.Y.; Zhu, X.Y.; Duan, Z.P.; Huang, X.K.; Zou, T. Magmatic-hydrothermal processes and controls on rare-metal enrichment of the Baerzhe peralkaline granitic pluton, inner Mongolia, northeastern China. Ore Geol. Rev. 2021, 131, 103984. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, S.Y.; Romer, R.L.; Su, H.M. Relative importance of magmatic and hydrothermal processes for economic Nb-Ta-W-Sn mineralization in a peraluminous granite system: The Zhaojinggou rare-metal deposit, northern China. Bulletin 2023, 135, 2529–2553. [Google Scholar] [CrossRef]
- Dostal, J.; Kontak, D.J.; Gerel, O.; Shellnutt, J.G.; Fayek, M. Cretaceous ongonites (topaz-bearing albite-rich microleucogranites) from Ongon Khairkhan, Central Mongolia: Products of extreme magmatic fractionation and pervasive metasomatic fluid: Rock interaction. Lithos 2015, 236, 173–189. [Google Scholar] [CrossRef]
- Černý, P. Distribution, affiliation and derivation of rare-element granitic pegmatites in the Canadian Shield. Geol. Rundsch. 1990, 79, 183–226. [Google Scholar] [CrossRef]
- Černý, P.; Ercit, T.S. The classification of Granitic Pegmatites revisited. Can. Mineral. 2005, 43, 2005–2026. [Google Scholar] [CrossRef]
- Partington, G.A. A Review of the Geology, Mineralization, and Geochronology of the Greenbushes Pegmatite, Western Australia. Econ. Geol. 1995, 90, 616–635. [Google Scholar] [CrossRef]
- Goodenough, K.M.; Shaw, R.A.; Smith, M.; Estrade, G.; Marqu, E.; Bernard, C.; Nex, P. Economic mineralization in pegmatites: Comparing and contrasting NYF and LCT examples. Can. Mineral. 2019, 57, 753–755. [Google Scholar] [CrossRef]
Rock Type | Pegmatite | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sample No. | PG 1 | PG 3 | PG 5 | PG 6 | PG 7 | PG 9 | PG 10 | PG 11 | PG 12 | PG 14 |
Major oxides (wt.%) | ||||||||||
SiO2 | 74.69 | 74.66 | 75.35 | 74.21 | 74.35 | 75.17 | 74.8 | 75.68 | 74.43 | 74.37 |
TiO2 | 0.06 | 0.07 | 0.04 | 0.06 | 0.06 | 0.04 | 0.06 | 0.04 | 0.06 | 0.04 |
Al2O3 | 12.53 | 12.07 | 12.75 | 13.18 | 12.79 | 11.91 | 12.68 | 11.83 | 12.5 | 12.29 |
Fe2O3 | 1.16 | 0.89 | 0.91 | 1.07 | 0.92 | 1.02 | 0.89 | 0.94 | 1.02 | 1.14 |
MnO | 0.04 | 0.38 | 0.21 | 0.13 | 0.31 | 0.39 | 0.38 | 0.02 | 0.07 | 0.01 |
MgO | 0.04 | 0.06 | 0.04 | 0.04 | 0.05 | 0.06 | 0.05 | 0.04 | 0.03 | 0.05 |
CaO | 0.21 | 0.18 | 0.16 | 0.26 | 0.24 | 0.19 | 0.23 | 0.19 | 0.21 | 0.24 |
Na2O | 3.62 | 3.06 | 3.15 | 3.69 | 3.67 | 3.18 | 2.68 | 2.84 | 2.87 | 3.31 |
K2O | 4.88 | 4.93 | 4.91 | 4.77 | 4.6 | 4.89 | 5.63 | 5.39 | 5.44 | 5.07 |
P2O5 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.01 | 0.02 | 0.02 | 0.01 |
LOI | 0.38 | 1.11 | 0.66 | 0.67 | 1.75 | 1.02 | 1.26 | 0.7 | 0.98 | 0.87 |
Total | 97.5 | 97.9 | 98.59 | 97.98 | 98.88 | 98.41 | 98.95 | 97.82 | 97.92 | 97.5 |
Normative composition | ||||||||||
Quartz | 34.82 | 38.28 | 38.15 | 34.16 | 35.26 | 37.92 | 37.41 | 38.79 | 37.17 | 35.79 |
Corundum | 0.96 | 1.45 | 2 | 1.53 | 1.42 | 1.12 | 1.83 | 1.05 | 1.61 | 0.97 |
Orthoclase | 29.68 | 30.27 | 29.76 | 28.96 | 28.04 | 29.85 | 34.18 | 32.87 | 33.29 | 31.07 |
Albite | 31.53 | 26.9 | 27.34 | 32.08 | 32.03 | 27.8 | 23.3 | 24.8 | 25.15 | 29.04 |
Anorthite | 1.01 | 0.86 | 0.85 | 1.26 | 1.09 | 0.84 | 1.11 | 0.84 | 0.94 | 1.17 |
Hypersthene | 1.57 | 1.75 | 1.52 | 1.58 | 1.67 | 1.99 | 1.73 | 1.29 | 1.41 | 1.57 |
Magnetite | 0.28 | 0.31 | 0.26 | 0.28 | 0.3 | 0.34 | 0.31 | 0.22 | 0.26 | 0.27 |
Ilmenite | 0.12 | 0.14 | 0.08 | 0.12 | 0.12 | 0.08 | 0.12 | 0.08 | 0.12 | 0.08 |
Apatite | 0.02 | 0.02 | 0.02 | 0.02 | 0.05 | 0.05 | 0.02 | 0.05 | 0.05 | 0.02 |
Geochemical parameters | ||||||||||
R1 | 2517 | 2708 | 2727 | 2488 | 2548 | 2707 | 2689 | 2746 | 2638 | 2562 |
R2 | 270 | 259 | 269 | 288 | 279 | 257 | 276 | 254 | 269 | 269 |
Ti | 360 | 420 | 240 | 360 | 360 | 240 | 360 | 240 | 360 | 240 |
K | 40510 | 40925 | 40759 | 39597 | 38186 | 40593 | 46736 | 44744 | 45159 | 42088 |
P | 44 | 44 | 44 | 44 | 87 | 87 | 44 | 87 | 87 | 44 |
AI | 0.90 | 0.86 | 0.82 | 0.85 | 0.86 | 0.88 | 0.83 | 0.89 | 0.85 | 0.89 |
ASI | 1.08 | 1.13 | 1.18 | 1.12 | 1.11 | 1.09 | 1.16 | 1.09 | 1.13 | 1.08 |
CIA | 0.52 | 0.53 | 0.54 | 0.53 | 0.53 | 0.52 | 0.54 | 0.52 | 0.53 | 0.52 |
Fe2O3/MgO | 29.00 | 14.83 | 22.75 | 26.75 | 18.40 | 17.00 | 17.80 | 23.50 | 34.00 | 22.80 |
Na2O + K2O | 8.50 | 7.99 | 8.06 | 8.46 | 8.27 | 8.07 | 8.31 | 8.23 | 8.31 | 8.38 |
Color Index | 1.97 | 2.2 | 1.86 | 1.98 | 2.09 | 2.41 | 2.15 | 1.59 | 1.79 | 1.92 |
Diff. Index | 96.04 | 95.45 | 95.26 | 95.2 | 95.34 | 95.58 | 94.88 | 96.45 | 95.6 | 95.9 |
ANOR | 3.29 | 2.76 | 2.78 | 4.17 | 3.74 | 2.74 | 3.15 | 2.49 | 2.75 | 3.63 |
Q/ | 35.88 | 39.75 | 39.70 | 35.41 | 36.57 | 39.33 | 38.97 | 39.87 | 38.50 | 36.87 |
Rock Type | Sheared Granite | |||||||||
Sample No. | SG 2 | SG 5 | SG 7 | SG 8 | SG 9 | SG 11 | SG 13 | SG 18 | SG 22 | |
Major oxides (wt.%) | ||||||||||
SiO2 | 72.07 | 71.18 | 70.66 | 72.87 | 70.03 | 71.34 | 70.47 | 72.84 | 72.27 | |
TiO2 | 0.1 | 0.14 | 0.14 | 0.08 | 0.13 | 0.12 | 0.15 | 0.08 | 0.1 | |
Al2O3 | 13.59 | 13.96 | 13.8 | 13.13 | 14.6 | 13.88 | 14.26 | 13.48 | 13.97 | |
Fe2O3 | 1.14 | 0.85 | 1.24 | 0.98 | 1.94 | 1.72 | 1.32 | 1.04 | 1.08 | |
MnO | 0.03 | 0.41 | 0.16 | 0.2 | 0.11 | 0.11 | 0.23 | 0.09 | 0.22 | |
MgO | 0.08 | 0.07 | 0.08 | 0.06 | 0.09 | 0.08 | 0.11 | 0.07 | 0.07 | |
CaO | 0.35 | 0.38 | 0.34 | 0.29 | 0.41 | 0.43 | 0.49 | 0.36 | 0.41 | |
Na2O | 4.75 | 4.75 | 4.75 | 4.06 | 5.02 | 4.52 | 4.34 | 4.46 | 4.79 | |
K2O | 4.57 | 5.01 | 4.73 | 4.64 | 4.21 | 4.54 | 4.98 | 4.67 | 4.3 | |
P2O5 | 0.01 | 0.01 | 0.01 | 0.03 | 0.02 | 0.02 | 0.02 | 0.03 | 0.01 | |
LOI | 1.14 | 1.37 | 1.37 | 1.51 | 1.25 | 1.59 | 1.67 | 1.27 | 1.17 | |
Total | 97.7 | 97.89 | 97.08 | 97.7 | 97.36 | 98.15 | 97.92 | 97.97 | 98.24 | |
Normative composition | ||||||||||
Quartz | 26.41 | 23.63 | 24.43 | 31.41 | 23.52 | 26.62 | 25.17 | 28.48 | 27.09 | |
Corundum | 0.22 | 0.05 | 0.28 | 1.01 | 1.12 | 0.82 | 0.92 | 0.52 | 0.73 | |
Orthoclase | 27.96 | 30.62 | 29.17 | 28.48 | 25.81 | 27.77 | 30.57 | 28.44 | 26.16 | |
Albite | 41.61 | 41.56 | 41.95 | 35.69 | 44.06 | 39.58 | 38.15 | 38.89 | 41.73 | |
Anorthite | 1.73 | 1.88 | 1.69 | 1.29 | 1.97 | 2.07 | 2.39 | 1.64 | 2.03 | |
Hypersthene | 1.55 | 1.62 | 1.81 | 1.59 | 2.7 | 2.4 | 2.06 | 1.52 | 1.72 | |
Magnetite | 0.29 | 0.33 | 0.35 | 0.29 | 0.49 | 0.44 | 0.39 | 0.27 | 0.32 | |
Ilmenite | 0.2 | 0.27 | 0.28 | 0.16 | 0.26 | 0.24 | 0.3 | 0.16 | 0.2 | |
Apatite | 0.02 | 0.02 | 0.02 | 0.07 | 0.05 | 0.05 | 0.05 | 0.07 | 0.02 | |
Geochemical parameters | ||||||||||
R1 | 2013 | 1857 | 1878 | 2299 | 1845 | 2038 | 1951 | 2147 | 2077 | |
R2 | 308 | 318 | 311 | 292 | 335 | 322 | 338 | 306 | 321 | |
Ti | 600 | 839 | 839 | 480 | 779 | 719 | 899 | 480 | 600 | |
K | 37,937 | 41,590 | 39,265 | 38,518 | 34,948 | 37,688 | 41,340 | 38,767 | 35,696 | |
P | 44 | 44 | 44 | 131 | 87 | 87 | 87 | 131 | 44 | |
AI | 0.94 | 0.95 | 0.94 | 0.89 | 0.88 | 0.89 | 0.88 | 0.92 | 0.90 | |
ASI | 1.01 | 1.00 | 1.02 | 1.07 | 1.07 | 1.05 | 1.06 | 1.03 | 1.05 | |
CIA | 0.50 | 0.50 | 0.50 | 0.52 | 0.52 | 0.51 | 0.51 | 0.51 | 0.51 | |
Fe2O3/MgO | 14.25 | 12.14 | 15.50 | 16.33 | 21.56 | 21.50 | 12.00 | 14.86 | 15.43 | |
Na2O + K2O | 9.32 | 9.76 | 9.48 | 8.70 | 9.23 | 9.06 | 9.32 | 9.13 | 9.09 | |
Color Index | 2.04 | 2.22 | 2.44 | 2.03 | 3.45 | 3.07 | 2.75 | 1.95 | 2.23 | |
Diff. Index | 95.98 | 95.81 | 95.55 | 95.58 | 93.39 | 93.97 | 93.88 | 95.81 | 94.97 | |
ANOR | 5.83 | 5.78 | 5.48 | 4.33 | 7.09 | 6.94 | 7.25 | 5.45 | 7.20 | |
Q/ | 27.03 | 24.19 | 25.12 | 32.42 | 24.66 | 27.72 | 26.14 | 29.23 | 27.92 |
Rock Type | Pegmatite | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample No. | PG 1 | PG 3 | PG 5 | PG 6 | PG 7 | PG 9 | PG 10 | PG 11 | PG 12 | PG 14 | ||||||||
F | 2926.8 | 2539.1 | 2904.9 | 2823.8 | 2753.2 | 2608.8 | 2949.4 | 2803.8 | 2794.3 | 2961.3 | ||||||||
Li | 1221.7 | 1658.3 | 1298.3 | 989.13 | 1082.1 | 1254.2 | 1791.2 | 1088.5 | 987.58 | 899.87 | ||||||||
Be | 36.74 | 23.29 | 37 | 31.09 | 26.63 | 43.24 | 31.81 | 43.96 | 38.71 | 40.11 | ||||||||
Sn | 556.34 | 767.95 | 488.8 | 532.71 | 420.42 | 305.4 | 311.88 | 493.42 | 375.54 | 489.77 | ||||||||
Cs | 6.67 | 7.38 | 8.6 | 7.42 | 8.37 | 6.55 | 5.58 | 7.32 | 7.52 | 6.38 | ||||||||
Rb | 715.84 | 732.88 | 692.09 | 764.1 | 654.97 | 885.12 | 681.35 | 526.27 | 852.79 | 672.49 | ||||||||
Ba | 26.24 | 38.76 | 31.22 | 37.13 | 42.67 | 48.43 | 36.68 | 33.33 | 25.89 | 42 | ||||||||
Sr | 16.98 | 18.09 | 15.59 | 17.21 | 19.11 | 16.04 | 21.08 | 15.76 | 18.43 | 14.12 | ||||||||
Nb | 1218.6 | 1647.2 | 1181.3 | 1200.7 | 1363.9 | 1701.1 | 1388.1 | 1216.3 | 1383.7 | 1771.4 | ||||||||
Zr | 4106.5 | 4366.7 | 3864.8 | 2591.6 | 4069.7 | 3057.5 | 2987.1 | 3226.1 | 4428.7 | 3475.5 | ||||||||
Y | 845.69 | 965.24 | 998.49 | 798.59 | 658.41 | 867.91 | 945.65 | 884.97 | 798.69 | 625.98 | ||||||||
Zn | 309.05 | 1059.9 | 766.84 | 693.29 | 1098.9 | 1120.2 | 1569.1 | 168.54 | 228.15 | 342.58 | ||||||||
Cu | 124.78 | 542.67 | 297.98 | 193.69 | 450.68 | 479.27 | 432.69 | 174.45 | 111.59 | 132.93 | ||||||||
Cr | 3.76 | 25.25 | 12.57 | 6.63 | 13.25 | 10.26 | 11.25 | 13.55 | 5.88 | 12.5 | ||||||||
Co | 4.41 | 25.19 | 15.32 | 12.9 | 15.3 | 21.35 | 22.44 | 10.58 | 13.63 | 11.81 | ||||||||
V | 6.49 | 5.6 | 6.92 | 3.66 | 3.97 | 4.05 | 5.61 | 5.45 | 12.66 | 8.85 | ||||||||
Ni | 2.71 | 44.7 | 26.69 | 7.84 | 26.17 | 43.65 | 33.7 | 7.24 | 4.47 | 2.51 | ||||||||
Sc | 6.16 | 19.98 | 11.77 | 8.4 | 14.25 | 14.38 | 8.81 | 10.32 | 6.38 | 9.38 | ||||||||
Ga | 36.92 | 43.44 | 37.45 | 40.25 | 47.03 | 41 | 36.97 | 41.07 | 36.48 | 27.71 | ||||||||
Mo | 77.96 | 79.27 | 85.54 | 72.7 | 135.69 | 102.77 | 114.44 | 101.83 | 85.96 | 92.77 | ||||||||
Hf | 214.55 | 303.19 | 240.55 | 214.54 | 242.33 | 204 | 201.35 | 232.55 | 243.97 | 244.73 | ||||||||
Ta | 143.83 | 191.47 | 146.02 | 138.18 | 140.76 | 151.39 | 169.82 | 176.77 | 170.36 | 163.95 | ||||||||
Pb | 879.52 | 2030.3 | 1187.5 | 738.92 | 1064.3 | 1363.7 | 1644.1 | 747.44 | 997.44 | 829.8 | ||||||||
Th | 480.89 | 578.96 | 627.49 | 444 | 412.65 | 537.04 | 420.47 | 685.19 | 564.11 | 644.12 | ||||||||
U | 338.68 | 594.67 | 415.59 | 452.07 | 603.93 | 501.21 | 699.46 | 223.65 | 300.22 | 267.67 | ||||||||
Geochemical parameters | ||||||||||||||||||
Ba/Rb | 0.04 | 0.05 | 0.05 | 0.05 | 0.07 | 0.05 | 0.05 | 0.06 | 0.03 | 0.06 | ||||||||
K/Rb | 56.60 | 55.84 | 58.87 | 46.39 | 58.35 | 45.89 | 68.63 | 84.94 | 52.92 | 62.63 | ||||||||
Rb/Sr | 42.16 | 40.51 | 44.39 | 44.40 | 34.27 | 55.18 | 32.32 | 33.39 | 46.27 | 47.63 | ||||||||
Ga/Al | 5.57 | 6.80 | 5.55 | 5.77 | 6.95 | 6.51 | 5.51 | 6.56 | 5.51 | 4.26 | ||||||||
Zr/Hf | 19.14 | 14.40 | 16.07 | 12.08 | 16.79 | 14.99 | 14.84 | 13.87 | 18.15 | 14.20 | ||||||||
Y/Ho | 19.59 | 19.50 | 18.54 | 24.44 | 18.29 | 22.70 | 22.17 | 23.18 | 27.09 | 23.33 | ||||||||
Nb/Ta | 8.47 | 8.60 | 8.09 | 8.69 | 9.69 | 11.24 | 8.17 | 6.88 | 8.12 | 10.80 | ||||||||
Rb/Ba | 27.28 | 18.91 | 22.17 | 20.58 | 15.35 | 18.28 | 18.58 | 15.79 | 32.94 | 16.01 | ||||||||
Rock Type | Sheared Granite | |||||||||||||||||
Sample No. | SG 2 | SG 5 | SG 7 | SG 8 | SG 9 | SG 11 | SG 13 | SG 18 | SG 22 | |||||||||
F | 3130.6 | 3064.1 | 2753.7 | 3185.8 | 2953.1 | 1501.9 | 2090.4 | 3618.5 | 2749.2 | |||||||||
Li | 608.65 | 523.47 | 455.08 | 570.73 | 547.18 | 399.07 | 444.95 | 459.36 | 565.47 | |||||||||
Be | 13.76 | 16.87 | 13.73 | 21.55 | 13.16 | 18.72 | 2.57 | 16.47 | 25.75 | |||||||||
Sn | 227.73 | 222.16 | 320.03 | 437.44 | 245.13 | 157.89 | 387.85 | 254.46 | 313.43 | |||||||||
Cs | 3.05 | 5.9 | 3.9 | 5.7 | 2.93 | 4.63 | 2.61 | 5.04 | 4.23 | |||||||||
Rb | 676.39 | 936.19 | 883.38 | 1079.2 | 843.91 | 884.87 | 702.95 | 1503.5 | 820.03 | |||||||||
Ba | 91.14 | 118.46 | 124.53 | 91.84 | 142.5 | 106.74 | 180.77 | 141 | 88.59 | |||||||||
Sr | 30.9 | 40.34 | 38.8 | 37.01 | 33.39 | 32.3 | 45.37 | 54.9 | 37.72 | |||||||||
Nb | 1014.4 | 1068.8 | 1023.8 | 1085.8 | 1024.4 | 1003.4 | 1085.1 | 807.64 | 1194.8 | |||||||||
Zr | 3875.5 | 3615.6 | 3319.6 | 1985 | 3828.7 | 2726 | 3991.6 | 1300.3 | 3112.9 | |||||||||
Y | 498.24 | 515.03 | 451.82 | 574.1 | 358.07 | 529.61 | 389.77 | 689.79 | 558.51 | |||||||||
Zn | 417.8 | 3447.2 | 1797.4 | 500.79 | 2051.2 | 678.27 | 3573.5 | 302.63 | 1084.5 | |||||||||
Cu | 101.85 | 269.65 | 242.01 | 257.45 | 177.47 | 173.06 | 323.52 | 164.23 | 264.56 | |||||||||
Cr | 8.37 | 26.83 | 19.35 | 13.91 | 16.76 | 15.91 | 30.28 | 14.58 | 15.59 | |||||||||
Co | 2.99 | 6.09 | 18.85 | 15.66 | 7.8 | 9.83 | 13.59 | 16.02 | 21.51 | |||||||||
V | 8.03 | 8.16 | 9.07 | 3.29 | 6.06 | 16.29 | 11.65 | 2.61 | 6.91 | |||||||||
Ni | 5.11 | 16.6 | 13.08 | 13.6 | 14.83 | 8.61 | 20.05 | 11.02 | 23.11 | |||||||||
Sc | 8.32 | 8.59 | 7.7 | 10.89 | 5.03 | 8.76 | 6.64 | 7.54 | 10.73 | |||||||||
Ga | 33.9 | 42.78 | 47.76 | 53.03 | 46.4 | 23.84 | 42.28 | 59.02 | 43.98 | |||||||||
Mo | 54.95 | 86.05 | 63.69 | 63.96 | 58.13 | 66.83 | 56.32 | 72.23 | 68.16 | |||||||||
Hf | 257.93 | 238.2 | 217.74 | 180.64 | 249.04 | 194.82 | 247.52 | 118.95 | 216.68 | |||||||||
Ta | 122.52 | 165.16 | 168.75 | 122.35 | 173.55 | 152.69 | 134.99 | 103.93 | 133.91 | |||||||||
Pb | 589.45 | 722.87 | 381.27 | 515.99 | 604.22 | 350.75 | 662.69 | 767.65 | 605.75 | |||||||||
Th | 554.45 | 361.62 | 416.35 | 329.52 | 562.99 | 541.81 | 430.82 | 246.39 | 411.58 | |||||||||
U | 148.75 | 150.59 | 139.99 | 347.81 | 129.98 | 171.59 | 95.85 | 91.68 | 167.99 | |||||||||
Geochemical parameters | ||||||||||||||||||
Ba/Rb | 0.13 | 0.13 | 0.14 | 0.09 | 0.17 | 0.12 | 0.26 | 0.09 | 0.11 | |||||||||
K/Rb | 56.06 | 44.43 | 44.46 | 35.69 | 41.37 | 42.59 | 58.84 | 25.78 | 43.53 | |||||||||
Rb/Sr | 21.89 | 23.21 | 22.77 | 29.16 | 25.27 | 27.40 | 15.49 | 27.39 | 21.74 | |||||||||
Ga/Al | 4.72 | 5.79 | 6.54 | 7.63 | 6.01 | 3.25 | 5.60 | 8.28 | 5.95 | |||||||||
Zr/Hf | 15.03 | 15.18 | 15.25 | 10.99 | 15.37 | 13.99 | 16.13 | 10.93 | 14.37 | |||||||||
Y/Ho | 43.36 | 40.02 | 45.87 | 35.99 | 52.05 | 40.40 | 46.79 | 40.13 | 33.77 | |||||||||
Nb/Ta | 8.28 | 6.47 | 6.07 | 8.87 | 5.90 | 6.57 | 8.04 | 7.77 | 8.92 | |||||||||
Rb/Ba | 7.42 | 7.90 | 7.09 | 11.75 | 5.92 | 8.29 | 3.89 | 10.66 | 9.26 |
Rock Type | Pegmatite | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample No. | PG 1 | PG 3 | PG 5 | PG 6 | PG 7 | PG 9 | PG 10 | PG 11 | PG 12 | PG 14 | |||||||||
La | 55.81 | 62.79 | 77.59 | 38.15 | 44.38 | 50.16 | 49.02 | 56 | 49.08 | 41.69 | |||||||||
Ce | 250.7 | 253.93 | 287.52 | 170.46 | 235.02 | 235.24 | 216.4 | 254.16 | 189.3 | 156.36 | |||||||||
Pr | 25.96 | 27.36 | 35.73 | 19.48 | 23.01 | 27.66 | 23.21 | 32.04 | 22.74 | 17.96 | |||||||||
Nd | 70.67 | 65.74 | 106.91 | 51.74 | 58.91 | 70.12 | 55.76 | 79.96 | 57.59 | 48.68 | |||||||||
Sm | 33.61 | 27.18 | 51.08 | 24.26 | 27.16 | 30.01 | 23.06 | 35.92 | 23.25 | 18.52 | |||||||||
Eu | 0.82 | 0.55 | 0.82 | 0.52 | 0.55 | 0.57 | 0.86 | 0.55 | 0.29 | 0.26 | |||||||||
Gd | 44.54 | 39.37 | 49.6 | 31.25 | 33.88 | 33.41 | 36.18 | 31.76 | 23.54 | 16.98 | |||||||||
Tb | 16.5 | 18.32 | 21.6 | 12.17 | 14.52 | 14.88 | 16.33 | 14.29 | 11.31 | 8.19 | |||||||||
Dy | 156.78 | 184.9 | 215.04 | 117.4 | 139.69 | 148.05 | 160.82 | 145.29 | 114.48 | 87.83 | |||||||||
Ho | 43.17 | 49.51 | 53.85 | 32.67 | 36 | 38.24 | 42.66 | 38.17 | 29.48 | 26.83 | |||||||||
Er | 178.56 | 220.85 | 237.41 | 133.68 | 154.15 | 168.43 | 189.46 | 169.67 | 133.12 | 107.33 | |||||||||
Tm | 37.72 | 50 | 55.01 | 29.13 | 33.96 | 38.79 | 44.9 | 38.68 | 32.19 | 27.8 | |||||||||
Yb | 319.02 | 398.95 | 453.48 | 248.01 | 272.18 | 321.87 | 390.2 | 315.62 | 274.71 | 235.99 | |||||||||
Lu | 47.3 | 57.12 | 64.96 | 36.97 | 40.84 | 47.47 | 55.79 | 48.47 | 42.06 | 35.72 | |||||||||
ƩREE | 1281.2 | 1456.6 | 1710.6 | 945.88 | 1114.3 | 1224.9 | 1304.7 | 1260.6 | 1003.1 | 830.14 | |||||||||
Geochemical parameters | |||||||||||||||||||
Eu/Eu* | 0.06 | 0.05 | 0.05 | 0.06 | 0.06 | 0.05 | 0.09 | 0.05 | 0.04 | 0.04 | |||||||||
(La/Yb)n | 0.12 | 0.11 | 0.12 | 0.10 | 0.11 | 0.11 | 0.08 | 0.12 | 0.12 | 0.12 | |||||||||
(La/Sm)n | 1.05 | 1.46 | 0.96 | 0.99 | 1.03 | 1.06 | 1.34 | 0.98 | 1.33 | 1.42 | |||||||||
(Gd/Lu)n | 0.12 | 0.08 | 0.09 | 0.10 | 0.10 | 0.09 | 0.08 | 0.08 | 0.07 | 0.06 | |||||||||
(La/Lu)n | 0.12 | 0.11 | 0.12 | 0.11 | 0.11 | 0.11 | 0.09 | 0.12 | 0.12 | 0.12 | |||||||||
T1 | 1.81 | 1.83 | 1.57 | 1.83 | 2.03 | 1.92 | 1.91 | 1.90 | 1.74 | 1.66 | |||||||||
T3 | 1.26 | 1.43 | 1.43 | 1.29 | 1.40 | 1.43 | 1.42 | 1.42 | 1.49 | 1.37 | |||||||||
TE1,3 | 1.51 | 1.62 | 1.50 | 1.53 | 1.69 | 1.66 | 1.65 | 1.65 | 1.61 | 1.51 | |||||||||
Rock Type | Sheared Granite | ||||||||||||||||||
Sample No. | SG 2 | SG 5 | SG 7 | SG 8 | SG 9 | SG 11 | SG 13 | SG 18 | SG 22 | ||||||||||
La | 10.78 | 8.86 | 6.11 | 13.37 | 3.2 | 10.05 | 4.33 | 15.07 | 13.9 | ||||||||||
Ce | 58.06 | 51.39 | 32.56 | 60.58 | 20.1 | 39.78 | 27.16 | 69.78 | 60.78 | ||||||||||
Pr | 7.67 | 6.39 | 4.72 | 7.47 | 2.85 | 5.16 | 3.48 | 10.17 | 9.63 | ||||||||||
Nd | 20.96 | 17.72 | 13.25 | 19.24 | 6.68 | 14.16 | 9.03 | 26.61 | 23.88 | ||||||||||
Sm | 9.14 | 9.28 | 7.66 | 8.72 | 4.57 | 8.03 | 5.87 | 11.57 | 10.72 | ||||||||||
Eu | 0.08 | 0.17 | 0.19 | 0.23 | 0.13 | 0.26 | 0.18 | 0.23 | 0.12 | ||||||||||
Gd | 8.6 | 9.48 | 7.52 | 14.27 | 4.48 | 11 | 5.69 | 13.68 | 12.57 | ||||||||||
Tb | 4.14 | 4.69 | 3.74 | 5.66 | 2.43 | 5.04 | 3.03 | 6.44 | 5.75 | ||||||||||
Dy | 43.73 | 48.7 | 38.25 | 55.53 | 26.38 | 49.41 | 33.06 | 65.98 | 57.76 | ||||||||||
Ho | 11.49 | 12.87 | 9.85 | 15.95 | 6.88 | 13.11 | 8.33 | 17.19 | 16.54 | ||||||||||
Er | 49.12 | 57.14 | 45.51 | 69.29 | 29.61 | 58.75 | 36.7 | 76.81 | 65.72 | ||||||||||
Tm | 10.83 | 13.1 | 10.85 | 15.57 | 6.63 | 13.96 | 8.85 | 17.94 | 15.51 | ||||||||||
Yb | 98.76 | 111.09 | 94.79 | 126.93 | 53.61 | 121.59 | 72.12 | 150.92 | 134.16 | ||||||||||
Lu | 15.02 | 15.84 | 14.13 | 18.82 | 7.25 | 17.98 | 10.39 | 21.88 | 20.25 | ||||||||||
ƩREE | 348.39 | 366.74 | 289.13 | 431.63 | 174.82 | 368.28 | 228.22 | 504.27 | 447.3 | ||||||||||
Geochemical parameters | |||||||||||||||||||
Eu/Eu* | 0.03 | 0.06 | 0.07 | 0.06 | 0.09 | 0.08 | 0.10 | 0.06 | 0.03 | ||||||||||
(La/Yb)n | 0.07 | 0.05 | 0.04 | 0.07 | 0.04 | 0.06 | 0.04 | 0.07 | 0.07 | ||||||||||
(La/Sm)n | 0.74 | 0.60 | 0.50 | 0.97 | 0.44 | 0.79 | 0.47 | 0.82 | 0.82 | ||||||||||
(Gd/Lu)n | 0.07 | 0.07 | 0.07 | 0.09 | 0.08 | 0.07 | 0.07 | 0.08 | 0.08 | ||||||||||
(La/Lu)n | 0.07 | 0.06 | 0.04 | 0.07 | 0.05 | 0.06 | 0.04 | 0.07 | 0.07 | ||||||||||
T1 | 1.98 | 2.04 | 1.94 | 1.87 | 2.31 | 1.69 | 2.19 | 1.88 | 1.87 | ||||||||||
T3 | 1.47 | 1.49 | 1.51 | 1.28 | 1.57 | 1.43 | 1.58 | 1.46 | 1.37 | ||||||||||
TE1,3 | 1.71 | 1.74 | 1.71 | 1.55 | 1.90 | 1.56 | 1.86 | 1.66 | 1.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsagheer, M.A.; Azer, M.K.; Moussa, H.E.; Maurice, A.E.; Sami, M.; El Maaty, M.A.A.; Akarish, A.I.M.; Heikal, M.T.S.; Khedr, M.Z.; Elnazer, A.A.; et al. Late Neoproterozoic Rare-Metal Pegmatites with Mixed NYF-LCT Features: A Case Study from the Egyptian Nubian Shield. Minerals 2025, 15, 495. https://doi.org/10.3390/min15050495
Elsagheer MA, Azer MK, Moussa HE, Maurice AE, Sami M, El Maaty MAA, Akarish AIM, Heikal MTS, Khedr MZ, Elnazer AA, et al. Late Neoproterozoic Rare-Metal Pegmatites with Mixed NYF-LCT Features: A Case Study from the Egyptian Nubian Shield. Minerals. 2025; 15(5):495. https://doi.org/10.3390/min15050495
Chicago/Turabian StyleElsagheer, Mustafa A., Mokhles K. Azer, Hilmy E. Moussa, Ayman E. Maurice, Mabrouk Sami, Moustafa A. Abou El Maaty, Adel I. M. Akarish, Mohamed Th. S. Heikal, Mohamed Z. Khedr, Ahmed A. Elnazer, and et al. 2025. "Late Neoproterozoic Rare-Metal Pegmatites with Mixed NYF-LCT Features: A Case Study from the Egyptian Nubian Shield" Minerals 15, no. 5: 495. https://doi.org/10.3390/min15050495
APA StyleElsagheer, M. A., Azer, M. K., Moussa, H. E., Maurice, A. E., Sami, M., El Maaty, M. A. A., Akarish, A. I. M., Heikal, M. T. S., Khedr, M. Z., Elnazer, A. A., Mubarak, H. S., Seddik, A. M. A., Ibrahim, M. O., & Sobhy, H. (2025). Late Neoproterozoic Rare-Metal Pegmatites with Mixed NYF-LCT Features: A Case Study from the Egyptian Nubian Shield. Minerals, 15(5), 495. https://doi.org/10.3390/min15050495