Future Development of Raw Material Policy Based on Statistical Data Analysis
Abstract
:1. Introduction
2. Methodology
- Through regression analysis and a regression model, we defined the relationship between mining, consumption, imports, and exports of the analyzed raw materials. Regression analysis is used to be easily adapted to the area of mining [28].
- Pairwise correlation analysis of indexes: the method helped to evaluate linear dependence of all combinations of indicators according to the individual raw materials through measuring power and orientation of the relation between two indicators, defined by correlation coefficient r [29].
- 3.
- Comparative analysis. To compare the extraction and consumption of selected raw materials, as well as the exports and imports of selected raw materials, we used comparative analysis as a way to look at two or more objects to see how they differ and what they have in common [30].
3. Results
- Results of the comparison of mining and consumption of chosen raw materials;
- Results of multivariate and pairwise correlation of chosen raw materials.
3.1. Results of Comparison of Mining and Consumption of Chosen Raw Materials
3.2. Results of Multivariate and Pairwise Correlation of Chosen Raw Materials
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buijs, B.; Sievers, H.; Tercero, L.A. Limits to the critical raw materials approach. Waste Resour. Manag. 2012, 165, 201–207. [Google Scholar] [CrossRef]
- Bartekova, E.; Kemp, R. Critical raw material strategies in different world regions. In MERIT Working Papers United Nations University; Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT): Maastricht, The Netherlands, 2016; p. 005. [Google Scholar]
- Blengini, A.; Nuss, P.; Dewulf, J.; Nita, V.; Peiró, T.L.; Vidal-Legaz, B.; Latunussa, C.; Mancini, L.; Blagoeva, D.; Pennington, D.; et al. EU methodology for critical raw materials assessment: Policy needs and proposed solutions for incremental improvements. Resour. Policy 2017, 53, 12–19. [Google Scholar] [CrossRef]
- Reisch, V. The race for raw materials: Contributions to the debate on the EU’s raw materials policy following the publication of the Fourth Critical Raw Materials List and the 2020 Action Plan. Ser. SWP J. Rev. 2022, 1, 1–8. [Google Scholar] [CrossRef]
- Šolar, S.V.; Demicheli, L.; Wall, P. Raw Materials Initiative: A Contribution to the European Minerals Policy Framework; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Helbig, C.; Wietschel, L.; Thorenz, A.; Tuma, A. How to evaluate raw material vulnerability—An overview. Resour. Policy 2016, 48, 13–24. [Google Scholar] [CrossRef]
- Taleizadeh, A.A.; Noori-Darvan, M. Pricing, manufacturing and inventory policies for raw material in a three-level supply chain. Int. J. Syst. Sci. 2014, 47, 919–931. [Google Scholar] [CrossRef]
- Gao, X.; Chen, S.; Tang, H.; Zhang, H. Study of optimal order policy for a multi-period multi-raw material inventory management problem under carbon emission constraint. Comput. Ind. Eng. 2022, 148, 106693. [Google Scholar] [CrossRef]
- Schrijvers, D.; Hool, A.; Blengini, G.A.; Wei-Qiang, C.; Dewulf, J.; Eggert, R.; van Ellen, L.; Gauss, R.; Goddin, J.; Habib, K.; et al. A review of methods and data to determine raw material criticality. Resour. Conserv. Recycl. 2020, 155, 104617. [Google Scholar] [CrossRef]
- Correia, V.; Falck, W.E. The INTRAW International Raw Materials Observatory. Miner. Econ. 2023, 36, 367–368. [Google Scholar] [CrossRef]
- Schimpf, S.; Sturm, F.; Correa, V.; Bodo, B.; Keane, C. The world of raw materials 2050: Scoping future dynamics in raw materials through scenarios. Resour. Environ. ERE 2017, 125, 6–13. [Google Scholar] [CrossRef]
- European Commission. CORDIS EU Research Results. Innovative Solutions for Sustainable Raw Materials Extraction. 2023. Available online: https://cordis.europa.eu/article/id/447091-innovative-solutions-for-sustainable-raw-materials-extraction (accessed on 25 March 2024).
- Teplicka, K.; Khouri, S.; Beer, M.; Rybarova, J. Evaluation of the Performance of Mining Processes after the Strategic Innovation for Sustainable Development. Processes 2021, 9, 1374. [Google Scholar] [CrossRef]
- Sevastyanova, A.E. Approach to justification of innovation policy for raw material regions. J. Sib. Fed. Univ. 2015, 8, 98–107. [Google Scholar]
- Simkova, Z.; Ocenasova, M.; Tudos, D.; Roth, B. The political frame of the European Union for mining of non-energetic raw materials. Acta Montan. Slovaca 2019, 24, 35–43. [Google Scholar]
- Bednarova, L.; Dzukova, J.; Grosos, R.; Gomory, M.; Petras, M. Legislative instruments and their use in the management of raw materials in the Slovak Republic. Acta Montan. Slovaca 2020, 25, 105–115. [Google Scholar] [CrossRef]
- Charlier, C.; Guillou, S. Distortion effects of export quota policy: An analysis of the China Raw materials dispute. China Econ. Rev. 2014, 31, 320–338. [Google Scholar] [CrossRef]
- Kovanda, J.; Weinzettle, J. The importance of raw material equivalents in economy-wide material flow accounting and its policy dimension. Environ. Sci. Policy 2013, 29, 71–80. [Google Scholar] [CrossRef]
- Meunier, S.; Nocilaidis, K. The Geopoliticization of European Trade and Investment Policy. J. Common Mark. Stud. 2019, 57, 103–113. [Google Scholar] [CrossRef]
- Tröster, B.; Küblböck, K.; Grumiller, J. EU’s and Chinese raw materials policies in Africa: Converging trends? Kurswechsel 2017, 3, 69–78. Available online: www.kurswechsel.at (accessed on 25 March 2024).
- Wisniewski, T.P. Investigating Divergent Energy Policy Fundamentals: Warfare Assessment of Past Dependence on Russian Energy Raw Materials in Europe. Energies 2023, 16, 2019. [Google Scholar] [CrossRef]
- Ouedraogo, N.S.; Kilolo, J.M.M. Africa’s critical minerals can power the global low-carbon transition. Prog. Energy 2024, 6, 033004. [Google Scholar] [CrossRef]
- Di Noi, C.; Ciroth, A.; Mancini, L. Can S-LCA methodology support responsible sourcing of raw materials in EU policy context? Int. J. Life Cycle Assess 2020, 25, 332–349. [Google Scholar] [CrossRef]
- Hool, A.; Helbig, C.; Wierink, G. Challenges and opportunities of the European Critical Raw Materials Act. Miner. Econ. 2023, 37, 661–668. [Google Scholar] [CrossRef]
- Gstohl, S.; Schnock, J. Towards a Coherent Trade-Environment Nexus? The EU’s Critical Raw Materials Policy. J. World Trade 2024, 58, 35–60. [Google Scholar] [CrossRef]
- Hofmann, M.; Hofmann, H.; Hageluken, C.; Hool, A. Critical raw materials: A perspective from the materials science community. Sustain. Mater. Technol. 2018, 17, e00074. [Google Scholar] [CrossRef]
- Jump Statistical Discovery. Available online: https://www.jmp.com/en_us/home.html (accessed on 1 January 2024).
- Nguyen, T.C.; Do, A.N.; Pham, V.V.; Gospodarikov, A. Multiple linear regression analysis model and artificial neural network model to calculate and estimate the blast induced area of the tunnel face. A case study Deo Ca tunnel. J. Min. Earth Sci. 2022, 63, 43–52. [Google Scholar] [CrossRef]
- Backhaus, K.; Erichson, B.; Gensler, S.; Weiber, R.; Weiber, T. Multivariate Analysis: An Application-Oriented Introduction; Springer Gabler: Wiesbaden, Germany, 2021. [Google Scholar]
- Kutner, M.H.; Nachstheim, C.J.; Neter, J. Applied Linear Statistical Models; McGraw-Hill/Irwin: Boston, MA, USA, 2005. [Google Scholar]
- McLellan, B.C.; Corder, G.D.; Giurco, D.P.; Ishihara, K.N. Renewable energy in the minerals industry: A review of global potential. J. Clean. Prod. 2012, 32, 32–44. [Google Scholar] [CrossRef]
- Malico, I.; Pereira, R.N.; Goncalves, A.C.; Sousa, A.M.O. Current status and future perspectives for energy production from solid biomass in the European industry. Renew. Sustain. Energy Rev. 2019, 112, 960–977. [Google Scholar] [CrossRef]
- Koyamparambath, A.; Santillán-Saldivar, J.; McLellan, B.; Sonnemann, G. Supply risk evolution of raw materials for batteries and fossil fuels for selected OECD countries (2000–2018). Resour. Policy 2022, 75, 102465. [Google Scholar] [CrossRef]
- Berdysheva, S.; Ikonnikova, S. The energy transition and shifts in fossil fuel use: The study of international energy trade and energy security Dynamics. Energies 2021, 14, 5396. [Google Scholar] [CrossRef]
- Kowalski, P.; Legendre, C. Raw Materials Critical for the Green Transition: Production, International Trade and Export Restrictions. OECD TRADE POLICY PAPER 2023, No. 269. Available online: https://www.oecd-ilibrary.org/docserver/c6bb598b-en.pdf?expires=1718003389&id=id&accname=guest&checksum=2A11DD864F77360681A1EBBD64A4A830 (accessed on 1 December 2024).
- European Union. Import, Export, and Trade in the European Union. 2023. Available online: https://european-union.europa.eu/live-work-study/import-and-export_sk (accessed on 25 March 2024).
- Shopova, M.; Petrova, M.; Todorov, L. Trade in Recyclable Raw Materials in EU: Structural Dynamics Study. In International Conference on Sustainable, Circular Management and Environmental Engineering; Springer Nature: Cham, Switzerland, 2022; pp. 43–64. [Google Scholar]
- CRM Alliance. What Are Critical Raw Materials? 2024. Available online: https://www.crmalliance.eu/critical-raw-materials (accessed on 1 January 2024).
- Asif, M.S.; Lau, H.; Nakandala, D.; Hurriyet, H. Paving the way to net-zero: Identifying environmental sustainability factors for business model innovation through carbon disclosure project data. Front. Sustain. Food Syst. 2023, 7, 1214490. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domaracká, L.; Šaffová, D.; Čulková, K.; Taušová, M.; Kowal, B.; Matušková, S. Future Development of Raw Material Policy Based on Statistical Data Analysis. Resources 2025, 14, 90. https://doi.org/10.3390/resources14060090
Domaracká L, Šaffová D, Čulková K, Taušová M, Kowal B, Matušková S. Future Development of Raw Material Policy Based on Statistical Data Analysis. Resources. 2025; 14(6):90. https://doi.org/10.3390/resources14060090
Chicago/Turabian StyleDomaracká, Lucia, Damiana Šaffová, Katarína Čulková, Marcela Taušová, Barbara Kowal, and Simona Matušková. 2025. "Future Development of Raw Material Policy Based on Statistical Data Analysis" Resources 14, no. 6: 90. https://doi.org/10.3390/resources14060090
APA StyleDomaracká, L., Šaffová, D., Čulková, K., Taušová, M., Kowal, B., & Matušková, S. (2025). Future Development of Raw Material Policy Based on Statistical Data Analysis. Resources, 14(6), 90. https://doi.org/10.3390/resources14060090