Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (207)

Search Parameters:
Keywords = non-linear wave mixing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1736 KB  
Article
Experimental Investigation of One-Way Lamb and SH Mixing Method in Composite Laminates
by Siyang Xie, Youxuan Zhao and Yuzi Liu
Sensors 2025, 25(24), 7631; https://doi.org/10.3390/s25247631 - 16 Dec 2025
Abstract
This paper experimentally investigates the resonant behavior of the one-way Lamb and SH (shear horizontal) mixing method in composite laminates with inherent quadratic nonlinearity, delamination damage and impact damage. When the fundamental S0-mode Lamb waves and SH0 waves mix in [...] Read more.
This paper experimentally investigates the resonant behavior of the one-way Lamb and SH (shear horizontal) mixing method in composite laminates with inherent quadratic nonlinearity, delamination damage and impact damage. When the fundamental S0-mode Lamb waves and SH0 waves mix in the damage regions of composite laminates, experimental results demonstrate the generation of the resonant SH0 waves with the resonance condition. Meanwhile, the damage localization method in composite laminates is experimentally verified by the time-domain signal of resonant waves. Furthermore, it is found that the one-way Lamb and SH mixing method is sensitive to inherent quadratic nonlinearity and impact damage but insensitive to delamination damage. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
39 pages, 504 KB  
Article
Geophysical Monge–Ampère-Type Equation: Symmetries and Exact Solutions
by Andrei D. Polyanin and Alexander V. Aksenov
Mathematics 2025, 13(21), 3522; https://doi.org/10.3390/math13213522 - 3 Nov 2025
Cited by 1 | Viewed by 388
Abstract
This paper studies a mixed PDE containing the second time derivative and a quadratic nonlinearity of the Monge–Ampère type in two spatial variables, which is encountered in geophysical fluid dynamics. The Lie group symmetry analysis of this highly nonlinear PDE is performed for [...] Read more.
This paper studies a mixed PDE containing the second time derivative and a quadratic nonlinearity of the Monge–Ampère type in two spatial variables, which is encountered in geophysical fluid dynamics. The Lie group symmetry analysis of this highly nonlinear PDE is performed for the first time. An invariant point transformation is found that depends on fourteen arbitrary constants and preserves the form of the equation under consideration. One-dimensional symmetry reductions leading to self-similar and some other invariant solutions that described by single ODEs are considered. Using the methods of generalized and functional separation of variables, as well as the principle of structural analogy of solutions, a large number of new non-invariant closed-form solutions are obtained. In general, the extensive list of all exact solutions found includes more than thirty solutions that are expressed in terms of elementary functions. Most of the obtained solutions contain a number of arbitrary constants, and several solutions additionally include two arbitrary functions. Two-dimensional reductions are considered that reduce the original PDE in three independent variables to a single simpler PDE in two independent variables (including linear wave equations, the Laplace equation, the Tricomi equation, and the Guderley equation) or to a system of such PDEs. A number of specific examples demonstrate that the type of the mixed, highly nonlinear PDE under consideration, depending on the choice of its specific solutions, can be either hyperbolic or elliptic. To analyze the equation and construct exact solutions and reductions, in addition to Cartesian coordinates, polar, generalized polar, and special Lorentz coordinates are also used. In conclusion, possible promising directions for further research of the highly nonlinear PDE under consideration and related PDEs are formulated. It should be noted that the described symmetries, transformations, reductions, and solutions can be utilized to determine the error and estimate the limits of applicability of numerical and approximate analytical methods for solving complex problems of mathematical physics with highly nonlinear PDEs. Full article
(This article belongs to the Special Issue Differential Equations Applied in Fluid Dynamics)
8 pages, 1179 KB  
Communication
Numerical Investigation of Idler Pulse Generation by Four-Wave Mixing in Nonlinear Optical Ring Resonator
by José L. S. Lima and Carlos H. A. Ferraz
Photonics 2025, 12(11), 1085; https://doi.org/10.3390/photonics12111085 - 3 Nov 2025
Viewed by 476
Abstract
Generation of idler pulses via the four-wave mixing (FWM) effect in a nonlinear optical ring resonator (NORR) was investigated numerically. It was found that the relative delay τ between input pump pulses significantly affects both the energy and temporal–spectral characteristics of generated idler [...] Read more.
Generation of idler pulses via the four-wave mixing (FWM) effect in a nonlinear optical ring resonator (NORR) was investigated numerically. It was found that the relative delay τ between input pump pulses significantly affects both the energy and temporal–spectral characteristics of generated idler pulses. Specifically, idler pulse energy decreases with increasing τ due to phase-matching conditions in FWM. Maximum energy transfer occurs for τ = 0, where optimal phase alignment among pump, signal, and idler waves is achieved. Temporal and spectral analysis at different relative delays reveals a change from a symmetric, multi-subpulse structure with a comb-like spectrum (for τ = 0) to a near-single-pulse form with a single-comb-line spectrum (for τ = 9 ps). These findings demonstrate the critical dependence of FWM efficiency on pump pulse synchronization. Therefore, precise control of the relative delay is essential for optimizing idler pulse generation in NORRs. Full article
(This article belongs to the Special Issue Nonlinear Optics and Hyperspectral Polarization Imaging)
Show Figures

Figure 1

34 pages, 38009 KB  
Article
Shock Mach Number Effect on Instability Evolution at a Light–Heavy Fluid Interface: A Numerical Investigation
by Salman Saud Alsaeed, Satyvir Singh and Nahar F. Alshammari
Axioms 2025, 14(11), 813; https://doi.org/10.3390/axioms14110813 - 31 Oct 2025
Viewed by 319
Abstract
Shock–accelerated interfaces between fluids of different densities are prone to Richtmyer–Meshkov-type instabilities, whose evolution is strongly influenced by the incident shock Mach number. In this study, we present a systematic numerical investigation of the Mach number effect on the instability growth at a [...] Read more.
Shock–accelerated interfaces between fluids of different densities are prone to Richtmyer–Meshkov-type instabilities, whose evolution is strongly influenced by the incident shock Mach number. In this study, we present a systematic numerical investigation of the Mach number effect on the instability growth at a light–heavy fluid layer. The governing dynamics are modeled using the compressible multi-species Euler equations, and the simulations are performed with a high-order modal discontinuous Galerkin method. This approach provides accurate resolution of sharp interfaces, shock waves, and small-scale vortical structures. A series of two-dimensional simulations is carried out for a range of shock Mach numbers impinging on a sinusoidally perturbed light–heavy fluid interface. The results highlight the distinct stages of instability evolution, from shock–interface interaction and baroclinic vorticity deposition to nonlinear roll-up and interface deformation. Quantitative diagnostics—including circulation, enstrophy, vorticity extrema, and mixing width—are employed to characterize the instability dynamics and to isolate the role of Mach number in enhancing or suppressing growth. Particular attention is given to the mechanisms of vorticity generation through baroclinic torque and compressibility effects. Moreover, the analysis of controlling parameters, including Atwood number, layer thickness, and initial perturbation amplitude, broadens the parametric understanding of shock-driven instabilities. The results reveal that increasing shock Mach number markedly enhances vorticity generation and accelerates interface growth, while the resulting nonlinear morphology remains strongly sensitive to variations in Atwood number and perturbation amplitude. Full article
(This article belongs to the Special Issue Applied Mathematics and Mathematical Modeling)
Show Figures

Figure 1

18 pages, 9691 KB  
Article
Solitons in a One-Dimensional Rhombic Waveguide Array
by Dmitry V. Shaykin and Nikita V. Bykov
Photonics 2025, 12(11), 1054; https://doi.org/10.3390/photonics12111054 - 24 Oct 2025
Viewed by 432
Abstract
We present an analytical and numerical study of nonlinear wave localization in a one-dimensional rhombic (diamond) waveguide array that combines forward- and backward-propagating channels. This mixed-index configuration, realizable through Bragg-type couplers or corrugated waveguides, produces a tunable spectral gap and supports nonlinear self-localized [...] Read more.
We present an analytical and numerical study of nonlinear wave localization in a one-dimensional rhombic (diamond) waveguide array that combines forward- and backward-propagating channels. This mixed-index configuration, realizable through Bragg-type couplers or corrugated waveguides, produces a tunable spectral gap and supports nonlinear self-localized states in both transmission and forbidden-band regimes. Starting from the full set of coupled-mode equations, we derive the effective evolution model, identify the role of coupling asymmetry and nonlinear coefficients, and obtain explicit soliton solutions using the method of multiple scales. The resulting envelopes satisfy a nonlinear Schrödinger equation with an effective nonlinear parameter θ, which determines the conditions for soliton existence (θ>0) for various combinations of focusing and defocusing nonlinearities. We distinguish solitons formed outside and inside the bandgap and analyze their dependence on the dispersion curvature and nonlinear response. Direct numerical simulations confirm the analytical predictions and reveal robust propagation and interactions of counter-propagating soliton modes. Order-of-magnitude estimates show that the predicted effects are accessible in realistic integrated photonic platforms. These results provide a unified theoretical framework for soliton formation in mixed-index lattices and suggest feasible routes for realizing controllable nonlinear localization in Bragg-type photonic structures. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

24 pages, 1831 KB  
Article
Polygenic Predisposition, Multifaceted Family Protection, and Mental Health Development from Middle to Late Adulthood: A National Life Course Gene–Environment Study
by Ping Chen and Yi Li
Populations 2025, 1(4), 22; https://doi.org/10.3390/populations1040022 - 21 Oct 2025
Viewed by 763
Abstract
Depression is one of the most prevalent mental health conditions in middle and late adulthood, contributing substantially to morbidity, mortality, and reduced quality of life. However, limited research has examined the mechanisms linking genetic predisposition and early protective environments to long-term mental health [...] Read more.
Depression is one of the most prevalent mental health conditions in middle and late adulthood, contributing substantially to morbidity, mortality, and reduced quality of life. However, limited research has examined the mechanisms linking genetic predisposition and early protective environments to long-term mental health trajectories. Guided by a life course health development perspective, this study investigated how depression polygenic scores (G) and protective childhood family environments (E) interplay to shape depressive symptom trajectories from mid- to late adulthood. We analyzed longitudinal data of 14 waves from the Health and Retirement Study (1994–2020; N = 4817), estimating linear mixed-effects models of depressive symptoms using the validated CES-D scale. Early protective environments were measured by indicators of family structure stability, non-abusive and substance-free parenting, positive parent–child relationships, and parental support. Results showed that genetic predisposition and protective family environments jointly influence depression trajectories across the life course. Specifically, individuals with both low genetic risk and high environmental protection had the lowest depressive symptoms over time. Importantly, when only one favorable factor was present, protective family environments offered a stronger lifelong benefit than low genetic risk. These findings extend prior research by demonstrating that supportive childhood environments can mitigate genetic vulnerability, shaping healthier long-term mental health trajectories. This work underscores the need for early family-based interventions to reduce depression risk, enhance resilience, and promote longevity. Full article
Show Figures

Figure 1

14 pages, 2183 KB  
Article
Self-Calibration Method for the Four Buckets Phase Demodulation Algorithm in Triangular Wave Hybrid Modulation
by Qi Liu, Shanyong Chen, Tao Lai, Guiqing Li, Jiajun Lin and Junfeng Liu
Appl. Sci. 2025, 15(20), 10956; https://doi.org/10.3390/app152010956 - 12 Oct 2025
Viewed by 397
Abstract
The four buckets phase demodulation method is a widely used sinusoidal modulation and demodulation technique in interferometry. Strict calibration is essential to minimize nonlinear errors in subsequent measurements. The core of the algorithm calibration lies in determining the initial phase value of the [...] Read more.
The four buckets phase demodulation method is a widely used sinusoidal modulation and demodulation technique in interferometry. Strict calibration is essential to minimize nonlinear errors in subsequent measurements. The core of the algorithm calibration lies in determining the initial phase value of the modulation signal that matches the modulation depth while overcoming the influence of system phase delay. Currently, there are few systematic calibration methods specifically designed for optical fiber interferometry. This paper proposes a self-calibration method based on triangular wave mixing for four buckets phase demodulation in fiber optic interferometric probes, which efficiently achieves self-calibration of the phase demodulation while the measured object remains stationary. Simulations and experimental validations were conducted, demonstrating that the optimal initial phase value of 0.62 rad during phase demodulation can be accurately identified under static conditions. The calibrated phase value was then applied to the displacement measurement, where the target displacement was effectively detected, resulting in a root mean square (RMS) error of 3.0337 nm and an average error of 2.4479 nm. Full article
Show Figures

Figure 1

19 pages, 3211 KB  
Article
Internal Wave Responses to Interannual Climate Variability Across Aquatic Layers
by Jinichi Koue
Water 2025, 17(19), 2905; https://doi.org/10.3390/w17192905 - 8 Oct 2025
Viewed by 530
Abstract
Internal waves play a critical role in material transport, vertical mixing, and energy dissipation within stratified aquatic systems. Their dynamics are strongly modulated by thermal stratification and surface meteorological forcing. This study examines the influence of interannual meteorological variability from 1980 to 2010 [...] Read more.
Internal waves play a critical role in material transport, vertical mixing, and energy dissipation within stratified aquatic systems. Their dynamics are strongly modulated by thermal stratification and surface meteorological forcing. This study examines the influence of interannual meteorological variability from 1980 to 2010 on internal wave behavior using a series of numerical simulations in Lake Biwa in Japan. In each simulation, air temperature, wind speed, or precipitation was perturbed by ±2 standard deviations relative to the climatological mean. Power spectral analysis of simulated velocity fields was conducted for the surface, thermocline, and bottom layers, focusing on super-inertial (6–16 h), near-inertial (~16–30 h), and sub-inertial (>30 h) frequency bands. The results show that higher air temperatures intensify stratification and enhance near-inertial internal waves, particularly within the thermocline, whereas cooler conditions favor sub-inertial wave dominance. Increased wind speeds amplify internal wave energy across all layers, with the strongest effect occurring in the high-frequency band due to intensified wind stress and vertical shear, while weaker winds suppress wave activity. Precipitation variability primarily affects surface stratification, exerting more localized and weaker impacts. These findings highlight the non-linear, depth-dependent responses of internal waves to atmospheric drivers and improve understanding of the coupling between climate variability and internal wave energetics. The insights gained provide a basis for more accurate predictions and sustainable management of stratified aquatic ecosystems under future climate scenarios. Full article
(This article belongs to the Special Issue Advances in Surface Water and Groundwater Simulation in River Basin)
Show Figures

Figure 1

58 pages, 4362 KB  
Review
Non-Perturbative Approaches to Linear and Nonlinear Responses of Atoms, Molecules, and Molecular Aggregates: A Theoretical Approach to Molecular Quantum Information and Quantum Biology
by Satoru Yamada, Takao Kobayashi, Masahiro Takahata, Hiroya Nitta, Hiroshi Isobe, Takashi Kawakami, Shusuke Yamanaka, Mitsutaka Okumura and Kizashi Yamaguchi
Chemistry 2025, 7(5), 164; https://doi.org/10.3390/chemistry7050164 - 7 Oct 2025
Viewed by 1392
Abstract
Non-perturbative approaches to linear and nonlinear responses (NLR) of atoms, molecules, and molecular aggregates are reviewed in relation to low and high harmonic generations (HG) by laser fields. These response properties are effective for the generation of entangled light pairs for quantum information [...] Read more.
Non-perturbative approaches to linear and nonlinear responses (NLR) of atoms, molecules, and molecular aggregates are reviewed in relation to low and high harmonic generations (HG) by laser fields. These response properties are effective for the generation of entangled light pairs for quantum information processing by spontaneous parametric downconversion (SPDC) and stimulated four-wave mixing (SFWM). Quasi-energy derivative (QED) methods, such as QED Møller–Plesset (MP) perturbation, are reviewed as time-dependent variational methods (TDVP), providing analytical expressions of time-dependent linear and nonlinear responses of open-shell atoms, molecules, and molecular aggregates. Numerical Liouville methods for the low HG (LHG) and high HG (HHG) regimes are reviewed to elucidate the NLR of molecules in both LHG and HHG regimes. Three-step models for the generation of HHG in the latter regime are reviewed in relation to developments of attosecond science and spectroscopy. Orbital tomography is also reviewed in relation to the theoretical and experimental studies of the amplitudes and phases of wave functions of open-shell atoms and molecules, such as molecular oxygen, providing the Dyson orbital explanation. Interactions between quantum lights and molecules are theoretically examined in relation to derivations of several distribution functions for quantum information processing, quantum dynamics of molecular aggregates, and future developments of quantum molecular devices such as measurement-based quantum computation (MBQC). Quantum dynamics for energy transfer in dendrimer and related light-harvesting antenna systems are reviewed to examine the classical and quantum dynamics behaviors of photosynthesis. It is shown that quantum coherence plays an important role in the well-organized arrays of chromophores. Finally, applications of quantum optics to molecular quantum information and quantum biology are examined in relation to emerging interdisciplinary frontiers. Full article
Show Figures

Figure 1

25 pages, 4931 KB  
Article
Optical Multi-Peakon Dynamics in the Fractional Cubic–Quintic Nonlinear Pulse Propagation Model Using a Novel Integral Approach
by Ejaz Hussain, Aljethi Reem Abdullah, Khizar Farooq and Usman Younas
Fractal Fract. 2025, 9(10), 631; https://doi.org/10.3390/fractalfract9100631 - 28 Sep 2025
Cited by 3 | Viewed by 667
Abstract
This study examines the soliton dynamics in the time-fractional cubic–quintic nonlinear non-paraxial propagation model, applicable to optical signal processing, nonlinear optics, fiber-optic communication, and biomedical laser–tissue interactions. The fractional framework exhibits a wide range of nonlinear effects, such as self-phase modulation, wave mixing, [...] Read more.
This study examines the soliton dynamics in the time-fractional cubic–quintic nonlinear non-paraxial propagation model, applicable to optical signal processing, nonlinear optics, fiber-optic communication, and biomedical laser–tissue interactions. The fractional framework exhibits a wide range of nonlinear effects, such as self-phase modulation, wave mixing, and self-focusing, arising from the balance between cubic and quintic nonlinearities. By employing the Multivariate Generalized Exponential Rational Integral Function (MGERIF) method, we derive an extensive catalog of analytic solutions, multi-peakon structures, lump solitons, kinks, and bright and dark solitary waves, while periodic and singular solutions emerge as special cases. These outcomes are systematically constructed within a single framework and visualized through 2D, 3D, and contour plots under both anomalous and normal dispersion regimes. The analysis also addresses modulation instability (MI), interpreted as a sideband amplification of continuous-wave backgrounds that generates pulse trains and breather-type structures. Our results demonstrate that cubic–quintic contributions substantially affect MI gain spectrum, broadening instability bands and permitting MI beyond the anomalous-dispersion regime. These findings directly connect the obtained solution classes to experimentally observed routes for solitary wave shaping, pulse propagation, and instability and instability-driven waveform formation in optical communication devices, photonic platforms, and laser technologies. Full article
Show Figures

Figure 1

13 pages, 487 KB  
Article
Ambient and Bedroom Heat in Relation to Sleep Health in a Marginalized Community That Is One of the Hottest in Los Angeles
by Hasibe Caballero-Gomez, Jill Johnston, Chandra L. Jackson, Lizette Romano and Lara J. Cushing
Int. J. Environ. Res. Public Health 2025, 22(9), 1391; https://doi.org/10.3390/ijerph22091391 - 6 Sep 2025
Cited by 1 | Viewed by 1837
Abstract
The majority of Americans do not regularly get the recommended amount of sleep and sleep deficiencies disproportionately burden marginalized communities. We conducted a longitudinal cohort study measuring bedroom air temperature and humidity over three non-consecutive weeks (N = 19 participants; 409 observation [...] Read more.
The majority of Americans do not regularly get the recommended amount of sleep and sleep deficiencies disproportionately burden marginalized communities. We conducted a longitudinal cohort study measuring bedroom air temperature and humidity over three non-consecutive weeks (N = 19 participants; 409 observation nights) using HOBO loggers and sleep health using wrist-actigraphy and sleep diaries. Outdoor temperature and humidity were obtained from a nearby weather station. Linear mixed-effects regression models assessed relationships between temperature and sleep health metrics. Nighttime indoor apparent temperature ranged from 26 to 35 °C and averaged 5 °C higher than outdoors. On average, participants slept 6.7 h per night with 83% sleep efficiency. After adjustment, a 5 °C increase in indoor nighttime dry bulb temperature was associated with a 23 min reduction in mean total sleep time (β = −23.30 [−43.30, −3.45]) and mean onset latency increase of approximately 2 min (β = 1.85 [0.50, 6.65]). Nighttime heat waves were associated with a 4% reduction in mean sleep efficiency (β = −3.71 [−6.83, −0.66]) and an 11 min increase in onset latency (β = 11.32 [2.60, 20.75]). We found evidence that rising summertime temperatures reduced sleep health in a disproportionately impacted community, suggesting that climate change will worsen existing sleep health disparities. Full article
Show Figures

Figure 1

17 pages, 1140 KB  
Article
Qualitative Study of Solitary Wave Profiles in a Dissipative Nonlinear Model
by Beenish and Fehaid Salem Alshammari
Mathematics 2025, 13(17), 2822; https://doi.org/10.3390/math13172822 - 2 Sep 2025
Cited by 1 | Viewed by 618
Abstract
The convective Cahn–Hilliard–Oono equation is analyzed under the conditions μ10 and μ3+μ40. The Lie invariance criteria are examined through symmetry generators, leading to the identification of Lie algebra, where translation symmetries exist in [...] Read more.
The convective Cahn–Hilliard–Oono equation is analyzed under the conditions μ10 and μ3+μ40. The Lie invariance criteria are examined through symmetry generators, leading to the identification of Lie algebra, where translation symmetries exist in both space and time variables. By employing Lie group methods, the equation is transformed into a system of highly nonlinear ordinary differential equations using appropriate similarity transformations. The extended direct algebraic method are utilized to derive various soliton solutions, including kink, anti-kink, singular soliton, bright, dark, periodic, mixed periodic, mixed trigonometric, trigonometric, peakon soliton, anti-peaked with decay, shock, mixed shock-singular, mixed singular, complex solitary shock, singular, and shock wave solutions. The characteristics of selected solutions are illustrated in 3D, 2D, and contour plots for specific wave number effects. Additionally, the model’s stability is examined. These results contribute to advancing research by deepening the understanding of nonlinear wave structures and broadening the scope of knowledge in the field. Full article
(This article belongs to the Special Issue Numerical Analysis of Differential Equations with Applications)
Show Figures

Figure 1

45 pages, 5794 KB  
Review
Nanophotonic Materials and Devices: Recent Advances and Emerging Applications
by Yuan-Fong Chou Chau
Micromachines 2025, 16(8), 933; https://doi.org/10.3390/mi16080933 - 13 Aug 2025
Cited by 4 | Viewed by 4424
Abstract
Nanophotonics, the study of light–matter interactions at the nanometer scale, has emerged as a transformative field that bridges photonics and nanotechnology. Using engineered nanomaterials—including plasmonic metals, high-index dielectrics, two-dimensional (2D) materials, and hybrid systems—nanophotonics enables light manipulation beyond the diffraction limit, unlocking novel [...] Read more.
Nanophotonics, the study of light–matter interactions at the nanometer scale, has emerged as a transformative field that bridges photonics and nanotechnology. Using engineered nanomaterials—including plasmonic metals, high-index dielectrics, two-dimensional (2D) materials, and hybrid systems—nanophotonics enables light manipulation beyond the diffraction limit, unlocking novel applications in sensing, imaging, and quantum technologies. This review provides a comprehensive overview of recent advances (post-2020) in nanophotonic materials, fabrication methods, and their cutting-edge applications. We first discuss the fundamental principles governing nanophotonic phenomena, such as localized surface plasmon resonances (LSPRs), Mie resonances, and exciton–polariton coupling, highlighting their roles in enhancing light–matter interactions. Next, we examine state-of-the-art fabrication techniques, including top-down (e.g., electron beam lithography and nanoimprinting) and bottom-up (e.g., chemical vapor deposition and colloidal synthesis) approaches, as well as hybrid strategies that combine scalability with nanoscale precision. We then explore emerging applications across diverse domains: quantum photonics (single-photon sources, entangled light generation), biosensing (ultrasensitive detection of viruses and biomarkers), nonlinear optics (high-harmonic generation and wave mixing), and integrated photonic circuits. Special attention is given to active and tunable nanophotonic systems, such as reconfigurable metasurfaces and hybrid graphene–dielectric devices. Despite rapid progress, challenges remain, including optical losses, thermal management, and scalable integration. We conclude by outlining future directions, such as machine learning-assisted design, programmable photonics, and quantum-enhanced sensing, and offering insights into the next generation of nanophotonic technologies. This review serves as a timely resource for researchers in photonics, materials science, and nanotechnology. Full article
Show Figures

Figure 1

34 pages, 13488 KB  
Review
Numeric Modeling of Sea Surface Wave Using WAVEWATCH-III and SWAN During Tropical Cyclones: An Overview
by Ru Yao, Weizeng Shao, Yuyi Hu, Hao Xu and Qingping Zou
J. Mar. Sci. Eng. 2025, 13(8), 1450; https://doi.org/10.3390/jmse13081450 - 29 Jul 2025
Viewed by 1468
Abstract
Extreme surface winds and wave heights of tropical cyclones (TCs)—pose serious threats to coastal community, infrastructure and environments. In recent decades, progress in numerical wave modeling has significantly enhanced the ability to reconstruct and predict wave behavior. This review offers an in-depth overview [...] Read more.
Extreme surface winds and wave heights of tropical cyclones (TCs)—pose serious threats to coastal community, infrastructure and environments. In recent decades, progress in numerical wave modeling has significantly enhanced the ability to reconstruct and predict wave behavior. This review offers an in-depth overview of TC-related wave modeling utilizing different computational schemes, with a special attention to WAVEWATCH III (WW3) and Simulating Waves Nearshore (SWAN). Due to the complex air–sea interactions during TCs, it is challenging to obtain accurate wind input data and optimize the parameterizations. Substantial spatial and temporal variations in water levels and current patterns occurs when coastal circulation is modulated by varying underwater topography. To explore their influence on waves, this study employs a coupled SWAN and Finite-Volume Community Ocean Model (FVCOM) modeling approach. Additionally, the interplay between wave and sea surface temperature (SST) is investigated by incorporating four key wave-induced forcing through breaking and non-breaking waves, radiation stress, and Stokes drift from WW3 into the Stony Brook Parallel Ocean Model (sbPOM). 20 TC events were analyzed to evaluate the performance of the selected parameterizations of external forcings in WW3 and SWAN. Among different nonlinear wave interaction schemes, Generalized Multiple Discrete Interaction Approximation (GMD) Discrete Interaction Approximation (DIA) and the computationally expensive Wave-Ray Tracing (WRT) A refined drag coefficient (Cd) equation, applied within an upgraded ST6 configuration, reduce significant wave height (SWH) prediction errors and the root mean square error (RMSE) for both SWAN and WW3 wave models. Surface currents and sea level variations notably altered the wave energy and wave height distributions, especially in the area with strong TC-induced oceanic current. Finally, coupling four wave-induced forcings into sbPOM enhanced SST simulation by refining heat flux estimates and promoting vertical mixing. Validation against Argo data showed that the updated sbPOM model achieved an RMSE as low as 1.39 m, with correlation coefficients nearing 0.9881. Full article
(This article belongs to the Section Ocean and Global Climate)
Show Figures

Figure 1

20 pages, 2399 KB  
Article
Exploring Novel Optical Soliton Molecule for the Time Fractional Cubic–Quintic Nonlinear Pulse Propagation Model
by Syed T. R. Rizvi, Atef F. Hashem, Azrar Ul Hassan, Sana Shabbir, A. S. Al-Moisheer and Aly R. Seadawy
Fractal Fract. 2025, 9(8), 497; https://doi.org/10.3390/fractalfract9080497 - 29 Jul 2025
Cited by 5 | Viewed by 1015
Abstract
This study focuses on the analysis of soliton solutions within the framework of the time-fractional cubic–quintic nonlinear Schrödinger equation (TFCQ-NLSE), a powerful model with broad applications in complex physical phenomena such as fiber optic communications, nonlinear optics, optical signal processing, and laser–tissue interactions [...] Read more.
This study focuses on the analysis of soliton solutions within the framework of the time-fractional cubic–quintic nonlinear Schrödinger equation (TFCQ-NLSE), a powerful model with broad applications in complex physical phenomena such as fiber optic communications, nonlinear optics, optical signal processing, and laser–tissue interactions in medical science. The nonlinear effects exhibited by the model—such as self-focusing, self-phase modulation, and wave mixing—are influenced by the combined impact of the cubic and quintic nonlinear terms. To explore the dynamics of this model, we apply a robust analytical technique known as the sub-ODE method, which reveals a diverse range of soliton structures and offers deep insight into laser pulse interactions. The investigation yields a rich set of explicit soliton solutions, including hyperbolic, rational, singular, bright, Jacobian elliptic, Weierstrass elliptic, and periodic solutions. These waveforms have significant real-world relevance: bright solitons are employed in fiber optic communications for distortion-free long-distance data transmission, while both bright and dark solitons are used in nonlinear optics to study light behavior in media with intensity-dependent refractive indices. Solitons also contribute to advancements in quantum technologies, precision measurement, and fiber laser systems, where hyperbolic and periodic solitons facilitate stable, high-intensity pulse generation. Additionally, in nonlinear acoustics, solitons describe wave propagation in media where amplitude influences wave speed. Overall, this work highlights the theoretical depth and practical utility of soliton dynamics in fractional nonlinear systems. Full article
Show Figures

Figure 1

Back to TopTop