Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = non-interconnected islands

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3166 KiB  
Article
Examining Food Sources and Their Interconnections over Time in Small Island Developing States: A Systematic Scoping Review
by Anna Brugulat-Panés, Cornelia Guell, Nigel Unwin, Clara Martin-Pintado, Viliamu Iese, Eden Augustus and Louise Foley
Nutrients 2025, 17(14), 2353; https://doi.org/10.3390/nu17142353 - 18 Jul 2025
Viewed by 423
Abstract
Background: Small Island Developing States (SIDS) face high rates of non-communicable diseases (NCDs), and a key structural driver includes SIDS’ heavy reliance on imported food. Yet, our knowledge about food sources in SIDS is limited. Methods: We systematically searched 14 peer-reviewed databases and [...] Read more.
Background: Small Island Developing States (SIDS) face high rates of non-communicable diseases (NCDs), and a key structural driver includes SIDS’ heavy reliance on imported food. Yet, our knowledge about food sources in SIDS is limited. Methods: We systematically searched 14 peer-reviewed databases and 17 grey literature repositories, identifying 56 articles and 96 documents concerning food sources in SIDS. Our study aimed to map these sources while considering broader societal, cultural, and environmental aspects. Results: We found high heterogeneity of food sources beyond store-bought foods, highlighting the complexity of food landscapes in this context. To explore these food sources and their interconnections, we developed a classification including Aid, Buy, Grow, Share, State and Wild food sources, and offered contextually-sensitive insights into their variety (types), extent (relevance), nature (characteristics) and changes over time. We developed an interactive open-access evidence map that outlined the identified interconnections between food sources following our proposed classification. There are numerous interrelations between food sources, showing that pathways from food sourcing to consumption can be unexpected and complex. Conclusions: In 2014, SIDS governments collectively committed to ending malnutrition by 2030. A deeper understanding of food sourcing is essential to achieve this goal. Full article
(This article belongs to the Special Issue Future Prospects for Sustaining a Healthier Food System)
Show Figures

Figure 1

24 pages, 3220 KiB  
Article
Optimizing Rural MG’s Performance: A Scenario-Based Approach Using an Improved Multi-Objective Crow Search Algorithm Considering Uncertainty
by Mohammad Hossein Taabodi, Taher Niknam, Seyed Mohammad Sharifhosseini, Habib Asadi Aghajari, Seyyed Mohammad Bornapour, Ehsan Sheybani and Giti Javidi
Energies 2025, 18(2), 294; https://doi.org/10.3390/en18020294 - 10 Jan 2025
Cited by 1 | Viewed by 1132
Abstract
In recent years, the growth of utilizing rural microgrids (RMGs) has been accompanied by various challenges. These necessitate the development of appropriate models for optimal generation in RMGs and RMGs’ coordination. In this paper, two distinct models for RMGs are presented. The first [...] Read more.
In recent years, the growth of utilizing rural microgrids (RMGs) has been accompanied by various challenges. These necessitate the development of appropriate models for optimal generation in RMGs and RMGs’ coordination. In this paper, two distinct models for RMGs are presented. The first model includes an islanded rural microgrid (IRMG) and the second model consists of three RMGs that are interconnected with one another and linked to the distribution network. The proposed models take into account the uncertainty in load, photovoltaics (PVs), and wind turbines (WTs) with consideration of their correlation by using a scenario-based technique. Three objective functions are defined for optimization: minimizing operational costs including maintenance and fuel expenses, reducing voltage deviation to maintain power quality, and decreasing pollution emissions from fuel cells and microturbines. A new optimization method, namely the Improved Multi-Objective Crow Search Algorithm (IMOCSA), is proposed to solve the problem models. IMOCSA enhances the standard Crow Search Algorithm through three key improvements: an adaptive chaotic awareness probability to better balance exploration and exploitation, a mutation mechanism applied to the solution repository to prevent premature convergence, and a K-means clustering method to control repository size and increase algorithmic efficiency. Since the proposed problem is a multi-objective non-linear optimization problem with conflicting objectives, the idea of the Pareto front is used to find a group of optimal solutions. To assess the effectiveness and efficiency of the proposed models, they are implemented in two different case studies and the analysis and results are illustrated. Full article
Show Figures

Figure 1

18 pages, 6069 KiB  
Article
Techno-Economic Feasibility of Fuel Cell Vehicle-to-Grid Fast Frequency Control in Non-Interconnected Islands
by Tziotas Christos, Evangelos E. Pompodakis and Georgios I. Orfanoudakis
Hydrogen 2025, 6(1), 1; https://doi.org/10.3390/hydrogen6010001 - 24 Dec 2024
Cited by 3 | Viewed by 1830
Abstract
This paper presents an innovative approach to fast frequency control in electric grids by leveraging parked fuel cell electric vehicles (FCEVs), especially heavy-duty vehicles such as trucks. Equipped with hydrogen storage tanks and fuel cells, these vehicles can be repurposed as dynamic grid-support [...] Read more.
This paper presents an innovative approach to fast frequency control in electric grids by leveraging parked fuel cell electric vehicles (FCEVs), especially heavy-duty vehicles such as trucks. Equipped with hydrogen storage tanks and fuel cells, these vehicles can be repurposed as dynamic grid-support assets while parked in designated areas. Using an external cable and inverter system, FCEVs inject power into the grid by converting DC from fuel cells into AC, to be compatible with grid requirements. This functionality addresses sudden power imbalances, providing a rapid and efficient solution for frequency stabilization. The system’s external inverter serves as a central control hub, monitoring real-time grid frequency and directing FCEVs to supply virtual inertia and primary reserves through droop control, as required. Simulation results validate that FCEVs could effectively complement thermal generators, preventing unacceptable frequency drops, load shedding, and network blackouts. A techno-economic analysis demonstrates the economic feasibility of the concept, concluding that each FCEV consumes approximately 0.3 kg of hydrogen per day, incurring a daily cost of around EUR 1.5. For an island grid with a nominal power of 100 MW, maintaining frequency stability requires a fleet of 100 FCEVs, resulting in a total daily cost of EUR 150. Compared to a grid-scale battery system offering equivalent frequency response services, the proposed solution is up to three times more cost-effective, highlighting its economic and technical potential for grid stabilization in renewable-rich, non-interconnected power systems. Full article
Show Figures

Figure 1

12 pages, 1834 KiB  
Article
Cold Ironing and the Study of RES Utilization for Maritime Electrification on Lesvos Island Port
by Alexandros Kelmalis, Andreas Dimou, Demetris Francis Lekkas and Stergios Vakalis
Environments 2024, 11(4), 84; https://doi.org/10.3390/environments11040084 - 19 Apr 2024
Cited by 8 | Viewed by 3394
Abstract
The maritime industry is addressing environmental issues, and “cold ironing” offers a promising solution. This method involves supplying ships at port with energy, reducing fossil fuel dependence and emissions, and aiding in global climate change efforts. It is especially important for islands like [...] Read more.
The maritime industry is addressing environmental issues, and “cold ironing” offers a promising solution. This method involves supplying ships at port with energy, reducing fossil fuel dependence and emissions, and aiding in global climate change efforts. It is especially important for islands like Lesvos, which suffer from high energy costs and environmental issues due to imported fossil fuel reliance. However, research gaps exist in using renewable energy sources (RES) for cold ironing, mainly due to insufficient data on power needs and lack of monitoring for precise calculations and the very limited applications for the case of non-interconnected islands. This study uses real data from the port of Lesvos to evaluate power requirements for cold ironing and assesses the viability of a wind power park for an electrified port with the novelty and uniqueness of developing the application on a non-interconnected island. It also examines potential CO2 emission reductions. Data from Marine Traffic S.A. were used, considering factors like ship arrivals, hoteling duration, and engine types. This study also includes a simulation using RETScreen software for a 20 MW wind park intended for port operations. The findings show that the monthly energy demand at Mytilene port is around 6118 MWh, with an average power demand of 8.2 MW. The simulated wind park could supply about 72,080 MWh yearly, with a significant surplus (14,956 MWh annually) exportable to the grid. However, demand fluctuations mean the port might need an extra 924 MWh from the main grid. This underscores the need for additional strategies like energy storage and demand–response practices to fully transition to 100% RES-powered operations. Full article
Show Figures

Figure 1

20 pages, 4343 KiB  
Article
Multi-Scale Coral Reef and Seascape Habitat Variables Combine to Influence Reef Fish Assemblages
by Katie T. Sievers, Eva C. McClure, Rene A. Abesamis and Garry R. Russ
Fishes 2024, 9(4), 137; https://doi.org/10.3390/fishes9040137 - 15 Apr 2024
Cited by 1 | Viewed by 2616
Abstract
While benthic characteristics of coral reef habitats are a major driver of the structure of coral reef fish assemblages, non-reef habitats adjacent to coral reefs (e.g., mangroves, seagrass beds, and macroalgal beds) can affect reef fish assemblages. Here, we investigate how reef fish [...] Read more.
While benthic characteristics of coral reef habitats are a major driver of the structure of coral reef fish assemblages, non-reef habitats adjacent to coral reefs (e.g., mangroves, seagrass beds, and macroalgal beds) can affect reef fish assemblages. Here, we investigate how reef fish assemblages respond to local-scale benthic habitats within a coral reef and larger-scale adjacent seascape features (habitats within 500 m of coral reefs) on Siquijor Island in the Philippines. We examined an abundance of species for the entire reef fish assemblage and within the assemblages of parrotfishes (subfamily Scarinae) and wrasses (family Labridae). Five distinct habitat types were identified in a cluster analysis, which incorporated benthic characteristics within coral reefs and habitats adjacent to coral reefs. We found that the diversity and structure of coral reef fish assemblages were affected by benthic characteristics within coral reefs and also by benthic habitat types adjacent to coral reefs. Individual species responses and juveniles of certain species demonstrated uniquely high abundances in habitat clusters characterized by the non-reef habitats surrounding coral reefs. Considering coral reef habitats and adjacent non-reef habitats as a holistic, interconnected seascape will provide better estimations of the drivers of the structures of coral reef fish assemblages. Full article
Show Figures

Figure 1

24 pages, 2208 KiB  
Review
A Review of the Energy Storage Systems of Non-Interconnected European Islands
by Maria Fotopoulou, Panagiotis Pediaditis, Niki Skopetou, Dimitrios Rakopoulos, Sotirios Christopoulos and Avraam Kartalidis
Sustainability 2024, 16(4), 1572; https://doi.org/10.3390/su16041572 - 13 Feb 2024
Cited by 32 | Viewed by 3258
Abstract
The ongoing energy transition has caused a paradigm shift in the architecture of power systems, increasing their sustainability with the installation of renewable energy sources (RES). In most cases, the efficient utilization of renewable energy requires the employment of energy storage systems (ESSs), [...] Read more.
The ongoing energy transition has caused a paradigm shift in the architecture of power systems, increasing their sustainability with the installation of renewable energy sources (RES). In most cases, the efficient utilization of renewable energy requires the employment of energy storage systems (ESSs), such as batteries and hydro-pumped storage systems. The need for ESS becomes more apparent when it comes to non-interconnected power systems, where the incorporation of stochastic renewables, such as photovoltaics (PV) systems, may more frequently reduce certain power quality indicators or lead to curtailments. The purpose of this review paper is to present the predominant core technologies related to ESSs, along with their technical and life cycle analysis and the range of ancillary services that they can provide to non-interconnected power systems. Also, it aims to provide a detailed description of existing installations, or combinations of installations, in non-interconnected European islands. Therefore, it provides an overview and maps the current status of storage solutions that enhance the sustainable environmentally friendly operation of autonomous systems. Full article
(This article belongs to the Special Issue Advances in Renewable Energy Production and Storage)
Show Figures

Graphical abstract

9 pages, 2226 KiB  
Proceeding Paper
The Clean-Green Decarbonization of Remote Islands: The GReco-Islands Concept
by John K. Kaldellis and Panagiotis Ktenidis
Environ. Sci. Proc. 2023, 26(1), 208; https://doi.org/10.3390/environsciproc2023026208 - 16 Oct 2023
Cited by 1 | Viewed by 1437
Abstract
Climate change due to extended fossil fuel utilization strongly affects islands all over the world. Greece has a large number of islands of various sizes. As far as the electrification status and the climate surcharge of Greek islands is concerned, the current work [...] Read more.
Climate change due to extended fossil fuel utilization strongly affects islands all over the world. Greece has a large number of islands of various sizes. As far as the electrification status and the climate surcharge of Greek islands is concerned, the current work is concentrated on the non-interconnected group of islands that cover their electricity demand on the basis of local oil-based thermal power stations. In this context, the EU-originated effort to drastically change the local electricity generation fuel mix was examined. More specifically, under the recent Territorial Just Transition Plan for the islands, a variety of actions is proposed in view of the “GReco-islands” initiative. Applying the proposed clean-green solution on a representative island (e.g., Patmos island), one may estimate the expected carbon dioxide emissions reduction. Finally, the necessary investments cost may be estimated due to the clean-green decarbonization actions implemented. Full article
Show Figures

Figure 1

7 pages, 3479 KiB  
Proceeding Paper
Stochastic Assessment of Day-Ahead, Wind Energy Curtailment-Driven Demand Response Requirements in Non-Interconnected Island Systems
by Dimitrios Zafirakis, Konstantinos Christopoulos, Konstantinos Moustris and John K. Kaldellis
Environ. Sci. Proc. 2023, 26(1), 176; https://doi.org/10.3390/environsciproc2023026176 - 6 Sep 2023
Viewed by 876
Abstract
Occurrence of wind energy curtailments in non-interconnected island systems of considerable wind power capacity comes as a result of local grid limitations and significant load variation across seasons. Facilitating increased wind energy generation requires flexibility means such as energy storage and/or demand response [...] Read more.
Occurrence of wind energy curtailments in non-interconnected island systems of considerable wind power capacity comes as a result of local grid limitations and significant load variation across seasons. Facilitating increased wind energy generation requires flexibility means such as energy storage and/or demand response (DR), with the latter presenting the advantage of suggesting a non-capital-intensive solution. To that end, in the present study we examine the problem of assessing day-ahead demand response requirements for the recovery of wind energy curtailments and put forward a stochastic approach, supported by the employment of artificial neural networks’ forecasting models and the integration of prediction uncertainties. For the application of our methodology, we use data from the non-interconnected island system of Kos and Kalymnos in the SE Aegean Sea and investigate the dynamics of the proposed DR scheme on the island of Tilos, belonging to the electricity complex of Kos and Kalymnos. At the same time, we perform a parametrical analysis so as to study the impact of appreciating different levels of available DR capacity, with our findings comparing favorably against the results of applying a deterministic approach. Full article
Show Figures

Figure 1

18 pages, 9403 KiB  
Article
Day-Ahead Forecasting of the Theoretical and Actual Wind Power Generation in Energy-Constrained Island Systems
by Konstantinos Moustris and Dimitrios Zafirakis
Energies 2023, 16(12), 4562; https://doi.org/10.3390/en16124562 - 7 Jun 2023
Cited by 6 | Viewed by 1477
Abstract
Grid operators of islands with limited system tolerance are often challenged by the need to curtail wind energy in order to maintain system stability and security of supply. At the same time, and in the absence of storage facilities and/or other means of [...] Read more.
Grid operators of islands with limited system tolerance are often challenged by the need to curtail wind energy in order to maintain system stability and security of supply. At the same time, and in the absence of storage facilities and/or other means of flexibility such as demand-side management, wind park owners face the problem of rejected wind energy production that varies considerably within the year. In the prospect of a more dynamic market operation in island grids, estimation of the anticipated wind energy curtailments may allow the evaluation of different options for wind park owners, such as short-term leasing of energy storage and/or direct, bilateral power purchase agreements with flexible demand entities. To enable such options, effective wind energy forecasting is necessary not only in terms of theoretical production, but also in terms of actual production being absorbed by the system. In this direction, the current research works on the prediction of day-ahead wind energy production in island grids, aiming to generate both theoretical (expected) and actual wind power forecasts. To that end, we use artificial neural networks for the development of different day-ahead forecasting models of hourly granularity, and we then test their performance in a large-scale non-interconnected island system, where annual wind energy curtailments for local wind parks may exceed 25% of the respective theoretical yield. Our results indicate that models developed provide a fair accuracy of day-ahead wind energy predictions, which is further elaborated by initiating a discussion on the emergence of alternative actor schemes in similar systems. Full article
(This article belongs to the Section F5: Artificial Intelligence and Smart Energy)
Show Figures

Figure 1

14 pages, 3503 KiB  
Article
The Role of Hydrogen and H2 Mobility on the Green Transition of Islands: The Case of Anafi (Greece)
by Andreas Dimou, Konstantinos Moustakas and Stergios Vakalis
Energies 2023, 16(8), 3542; https://doi.org/10.3390/en16083542 - 19 Apr 2023
Cited by 10 | Viewed by 2555
Abstract
The holistic green energy transition of non-interconnected islands faces several challenges if all the energy sectors are included, i.e., electricity, heating/cooling, and mobility. On the one hand, the penetration of renewable energy systems (RES) is limited due to design restrictions with respect to [...] Read more.
The holistic green energy transition of non-interconnected islands faces several challenges if all the energy sectors are included, i.e., electricity, heating/cooling, and mobility. On the one hand, the penetration of renewable energy systems (RES) is limited due to design restrictions with respect to the peak demand. On the other hand, energy-intensive heating and mobility sectors pose significant challenges and may be difficult to electrify. The focus of this study is on implementing a hybrid Wind–PV system on the non-interconnected island of Anafi (Greece) that utilizes surplus renewable energy production for both building heating through heat pumps and hydrogen generation. This comprehensive study aims to achieve a holistic green transition by addressing all three main sectors—electricity, heating, and transportation. The produced hydrogen is utilized to address the energy needs of the mobility sector (H2 mobility), focusing primarily on public transportation vehicles (buses) and secondarily on private vehicles. The overall RES production was modeled to be 91,724 MWh with a RES penetration of 84.68%. More than 40% of the produced electricity from RES was in the form of excess electricity that could be utilized for hydrogen generation. The modeled generated hydrogen was simulated to be more than 40 kg H2/day, which could cover all four bus routes of the island and approximately 200 cars for moderate use, i.e., traveled distances of less than 25 km/day for each vehicle. Full article
Show Figures

Figure 1

26 pages, 5323 KiB  
Article
Decarbonizing the Energy System of Non-Interconnected Islands: The Case of Mayotte
by Anna Flessa, Dimitris Fragkiadakis, Eleftheria Zisarou and Panagiotis Fragkos
Energies 2023, 16(6), 2931; https://doi.org/10.3390/en16062931 - 22 Mar 2023
Cited by 5 | Viewed by 2988
Abstract
Islands face unique challenges on their journey towards achieving carbon neutrality by the mid-century, due to the lack of energy interconnections, limited domestic energy resources, extensive fossil fuel dependence, and high load variance requiring new technologies to balance demand and supply. At the [...] Read more.
Islands face unique challenges on their journey towards achieving carbon neutrality by the mid-century, due to the lack of energy interconnections, limited domestic energy resources, extensive fossil fuel dependence, and high load variance requiring new technologies to balance demand and supply. At the same time, these challenges can be turned into a great opportunity for economic growth and the creation of jobs with non-interconnected islands having the potential to become transition frontrunners by adopting sustainable technologies and implementing innovative solutions. This paper uses an advanced energy–economy system modeling tool (IntE3-ISL) accompanied by plausible decarbonization scenarios to assess the medium- and long-term impacts of energy transition on the energy system, emissions, economy, and society of the island of Mayotte. The model-based analysis adequately captures the specificities of Mayotte and examines the complexity, challenges, and opportunities to decarbonize the island’s non-interconnected energy system. The energy transition necessitates the adoption of ambitious climate policy measures and the extensive deployment of low- and zero-carbon technologies both in the demand and supply sides of the energy system, accounting for the unique characteristics of each individual sector, while sectoral integration is also important. To reduce emissions from hard-to-abate sectors, such as transportation and industry, the measures and technologies can include the installation and use of highly efficient equipment, the electrification of end uses (such as the widespread adoption of electric vehicles), the large roll-out of renewable energy sources, as well as the production and use of green hydrogen and synthetic fuels. Full article
(This article belongs to the Special Issue Flexibility Integration and Decarbonisation Pathways)
Show Figures

Figure 1

12 pages, 276 KiB  
Article
Clinical and Social Features of Patients with Eye Injuries Admitted to a Tertiary Hospital: A Five-Year Retrospective Study from Crete, Greece
by Elli D. O. Kyriakaki, Efstathios T. Detorakis, Antonios K. Bertsias, Nikolaos G. Tsakalis, Ioannis Karageorgiou, Gregory Chlouverakis and Emmanouil K. Symvoulakis
Healthcare 2023, 11(6), 885; https://doi.org/10.3390/healthcare11060885 - 18 Mar 2023
Cited by 4 | Viewed by 1916
Abstract
Eye injuries are a major cause of visual disability worldwide and may present a burden to both quality of life of the sufferers and healthcare services. The aim of this study was to extract and triangulate information on the demographic, clinical, and social [...] Read more.
Eye injuries are a major cause of visual disability worldwide and may present a burden to both quality of life of the sufferers and healthcare services. The aim of this study was to extract and triangulate information on the demographic, clinical, and social features of eye-injured adult patients admitted to a tertiary hospital in Greece. The design was a five-year retrospective study of eye-injured adult patients, admitted to the General University Hospital of Heraklion, Crete (GUHH), the single tertiary referral hospital on the island. Drawing the profile of eye-injured patients may add to future health planning. Data collected from 1 January 2015 to 31 December 2019, such as sociodemographic features and clinical information, were extracted. One hundred twenty-eight patients were included. Of those, there was no available information on activity during injury for 6 patients, 78 (60.9%) had work-related ocular injuries, and 44 (34.4%) had non-work-related ocular injuries. Patients with no current formal employment, those who were retired, and formally unemployed and manual force workers had the higher rates of work-related injuries. The most common work-related injuries were closed globe injuries, specifically contusions, while ruptures and penetrating wounds were the most frequent of the open globe injuries. Within the univariate analyses, work-related eye injuries were significantly associated with male gender, middle age, and the place related to daily work activity. Determinants of poor final visual acuity (VA) were the initial VA, the type of injury (p < 0.0001), the distance of the place of residence from the hospital, and the time to hospital admission (p < 0.013). In a multivariate analysis, referred patients and those with open globe injuries arrived at hospital after a two-hour interval compared with those who were not referred and those with closed globe injuries (p ≤ 0.05). A reduction in the time to hospital admission deserves further attention. The interconnection of community and health system services through a capacity increase and networking needs further research in order to obtain targeted and viable access for eye-injured patients. Full article
(This article belongs to the Special Issue Health and Social Care Policy)
27 pages, 1800 KiB  
Article
A Comprehensive Evaluation of Off-Grid Photovoltaic Experiences in Non-Interconnected Zones of Colombia: Integrating a Sustainable Perspective
by Andrea A. Eras-Almeida, Tatiana Vásquez-Hernández, Merlyn Johanna Hurtado-Moncada and Miguel A. Egido-Aguilera
Energies 2023, 16(5), 2292; https://doi.org/10.3390/en16052292 - 27 Feb 2023
Cited by 5 | Viewed by 2935
Abstract
This research presents the findings of an evaluation of off-grid photovoltaic (PV) systems and their sustainability models in Colombia within the “Evaluation of Isolated Photovoltaic Systems and Their Sustainability Models” project supported by the Global Environment Fund (GEF). It involves the analysis of [...] Read more.
This research presents the findings of an evaluation of off-grid photovoltaic (PV) systems and their sustainability models in Colombia within the “Evaluation of Isolated Photovoltaic Systems and Their Sustainability Models” project supported by the Global Environment Fund (GEF). It involves the analysis of primary and secondary information on the photovoltaic energy projects for rural electrification in this country. Part of the information was obtained through interviews with different stakeholders who work in solar electrification in non-interconnected zones (NIZ), covering rural and island contexts. It was complemented by a comparative analysis of international projects implemented in Latin America. The results are shown as lessons learned, with a SWOT (strengths, weaknesses, opportunities, and threats) study representing the current situation of rural electrification with PV technology as perceived and describing the opportunities for the improvement of rural electrification strategies based on the successful experiences in the region. This research offers a comprehensive overview of how Colombian electrification could be led to address the last mile gap, integrating a solid sustainable perspective for the long-term view and ensuring community involvement towards a just energy transition. Therefore, this study proposes a series of guidelines to support those public policies that foster access to energy in the rural non-interconnected zones of Colombia. Full article
(This article belongs to the Special Issue Advanced Energy Generation Systems for Sustainable Development)
Show Figures

Figure 1

32 pages, 3540 KiB  
Article
Developing an Integrated Energy–Economy Model Framework for Islands
by Anna Flessa, Dimitris Fragkiadakis, Eleftheria Zisarou and Panagiotis Fragkos
Energies 2023, 16(3), 1275; https://doi.org/10.3390/en16031275 - 25 Jan 2023
Cited by 9 | Viewed by 2990
Abstract
This paper presents a new energy–economy system modelling approach, developed specifically for energy system planning in non-interconnected islands, aiming for decarbonization. Energy system planning is an essential tool to shape the energy transition to reach carbon neutrality in the medium- and long-term horizon. [...] Read more.
This paper presents a new energy–economy system modelling approach, developed specifically for energy system planning in non-interconnected islands, aiming for decarbonization. Energy system planning is an essential tool to shape the energy transition to reach carbon neutrality in the medium- and long-term horizon. Islands, as small-scale energy systems, have a limited contribution to the global climate targets, but due to their geographical and natural limitations, they present the potential to become frontrunners in the clean energy transition, especially regarding the efficient use of resources. The specificities and complexities of geographical islands cannot be adequately covered by the available energy modelling tools and new advanced approaches need to be developed to provide the appropriate support in designing the future decarbonized energy systems at insular level. Our methodological approach follows the adaptation and customization of well-established energy–economy modelling tools towards the development of an integrated island-scale energy–economy system model, capturing energy demand and supply by sector, heating/cooling and mobility requirements, energy efficiency potentials and their complex interactions through energy prices, storage, flexibility services and sectoral integration. By soft-linking the energy and economy system modelling tools through the consistent exchange of model parameters and variables, we developed a fully fledged modelling framework called IntE3-ISL, designed for islands with a horizon up to 2050. Full article
(This article belongs to the Special Issue Sustainable Development, Energy Economics and Economic Analysis)
Show Figures

Figure 1

17 pages, 5754 KiB  
Article
How Can EVs Support High RES Penetration in Islands
by Ioannis Karakitsios, Dimitrios Lagos, Aris Dimeas and Nikos Hatziargyriou
Energies 2023, 16(1), 558; https://doi.org/10.3390/en16010558 - 3 Jan 2023
Cited by 4 | Viewed by 2373
Abstract
The electrification of the transportation sector contributes to a cleaner environment in non-interconnected island (NII) systems or standalone islands. Moreover, e-mobility can significantly contribute to achieving very high renewable energy source (RES) penetration levels in islands, allowing a reduction both in the emissions [...] Read more.
The electrification of the transportation sector contributes to a cleaner environment in non-interconnected island (NII) systems or standalone islands. Moreover, e-mobility can significantly contribute to achieving very high renewable energy source (RES) penetration levels in islands, allowing a reduction both in the emissions due to the conventional generation and the system’s cost. Ιncreased RES penetration, however, can pose technical challenges for an island’s system. In order to overcome these challenges, new technologies like grid-forming converters are important. Moreover, the provision of new ancillary services in relation to battery storage systems might be considered, while novel control and protection schemes are needed to ensure secure operation. E-mobility can also contribute to solving technical problems that arise from very high RES penetration by providing frequency containment reserves or reactive power compensation. Since EV charging demand introduces modifications in the system’s load curve, e-mobility may affect the power grid for long-term planning and short-term operation, i.e., line loading and voltages. The application of specifically developed smart charging methodologies can mitigate the relevant grid impact, while effective exploitation of EV–RES synergies can achieve higher RES penetration levels. This paper examines how e-mobility can contribute to increasing RES penetration in islands while considering the technical issues caused. In particular, this paper takes into account the distinct characteristics of NIIs towards the identification of solutions that will achieve very high RES penetration while also addressing the relevant technical challenges (voltage control, frequency control, short circuit protection, etc.). The effect of e-mobility in the power grid of NII systems is evaluated, while smart charging methodologies to mitigate the relevant impact and further increase RES penetration are identified. Full article
Show Figures

Figure 1

Back to TopTop