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Abstract: Occurrence of wind energy curtailments in non-interconnected island systems of consider-
able wind power capacity comes as a result of local grid limitations and significant load variation
across seasons. Facilitating increased wind energy generation requires flexibility means such as en-
ergy storage and/or demand response (DR), with the latter presenting the advantage of suggesting a
non-capital-intensive solution. To that end, in the present study we examine the problem of assessing
day-ahead demand response requirements for the recovery of wind energy curtailments and put
forward a stochastic approach, supported by the employment of artificial neural networks’ forecasting
models and the integration of prediction uncertainties. For the application of our methodology, we
use data from the non-interconnected island system of Kos and Kalymnos in the SE Aegean Sea
and investigate the dynamics of the proposed DR scheme on the island of Tilos, belonging to the
electricity complex of Kos and Kalymnos. At the same time, we perform a parametrical analysis so
as to study the impact of appreciating different levels of available DR capacity, with our findings
comparing favorably against the results of applying a deterministic approach.

Keywords: artificial neural networks; day-ahead forecasting; wind energy curtailments; demand
response; stochastic analysis

1. Introduction

Occurrence of wind energy curtailments in non-interconnected island systems of
considerable wind power capacity comes as a result of local grid limitations and significant
load variation across seasons [1]. The problem deteriorates during the winter months,
when load demand reduces substantially [2], but is also notable throughout the year over
late-night hours and off-peak periods. Facilitating increased wind energy generation
requires flexibility means such as energy storage and/or demand response (DR) [3], with
the latter presenting the advantage of a non-capital-intensive solution. On the other hand,
DR requires engagement of loads at the end-user side, which often introduces limitations
relating to the operational patterns of loads and the associated level of elasticity. This
becomes critical in non-interconnected island systems, where the largest part of electricity
consumption falls under the categories of residential customers and hotels, especially
during the summer period. At the same time, however, the potential of the DR extends
to community-level loads, such as water pumps and/or public e-mobility. This potential,
which still remains untapped, offers greater levels of elasticity, which is supported also
by the fact that the given pool of loads incorporates water (tanks/reservoirs) and energy
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(EV batteries) storage components, respectively. Meanwhile, progress encountered in the
field of artificial intelligence is nowadays allowing for the development of both effective
and reliable forecasting techniques, which may in turn enable the adoption of smart energy
management features for the operation of similar island systems [4,5].

Acknowledging the above, the current study focuses on addressing the issue of exces-
sive wind energy generation through the development of a stochastic analysis framework
that makes use of ANN-based signals and the assumption of different levels of DR poten-
tial, with the problem formulated in the context of day-ahead dispatch scheduling for the
operation of non-interconnected island systems. To that end, in the following Section 2
of the paper, we present the relevant input data and provide the problem definition and
methods. Accordingly, in Section 3, we provide a set of preliminary results of our research
and proceed further with their discussion under Section 4, while Section 5 provides the
main conclusions of our research.

2. Materials and Methods
2.1. Problem Definition and Methods

For the purpose of our analysis, we use the Aegean Archipelagos as the study area
and apply our methodology to the non-interconnected island system of Kos and Kalymnos,
focusing on the island of Tilos. The broader Kos and Kalymnos system, found in the SE
region of the Aegean Sea, comprises nine islands, including the island of Tilos. The overall
system features a peak demand of ~105 MW and an annual consumption of ~360 GWh and
hosts a total of four wind parks. These are determined by a total capacity of 15.2 MW and,
owing to the limited flexibility locally, face energy curtailments that even exceed 25% of the
respective theoretical energy yield on an annual basis [1]. At the same, Tilos presents an
annual electricity demand in the order of ~3 GWh, and a peak demand slightly lower than
1 MW, with a considerable part of the local electricity consumption attributed to public
loads, like water pumping and a small EV fleet. In this context, the Kos and Kalymnos
system is seen as the “market”, while Tilos is treated as a microgrid entity that interfaces
the market, offering aggregate DR services for the recovery of wind energy curtailments at
the market level.

A schematic block of the proposed framework is provided in Figure 1, under which,
with the use of artificial neural networks and historical data of wind energy generation
(theoretical and actual) for the Kos–Kalymnos system, estimation of day-ahead wind energy
curtailments is first attempted, with relevant results currently adopted from a previous
study of the authors [6]. At the same time, using historical load demand data from the
island of Tilos [5], we develop a similar ANN model for the day-ahead prediction of load
demand locally. Based on these two components and assuming load pools of different DR
capacity, we next assess the day-ahead demand response requirements on the island of
Tilos, and we apply a stochastic approach, which allows for the incorporation of forecasting
uncertainties in our analysis.
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2.2. Input Data

As already mentioned, day-ahead predictions of the theoretical and actual wind
power generation on an hourly basis are currently adopted from a previous study of the
authors [6], where the first two ANN models of Table 1 were evaluated as optimal amongst
a broader set of models developed (see also Figure 2). The given models provide prediction
of the day-ahead, both actual and theoretical, hourly wind power capacity factor (CF) for
the electricity system of Kos and Kalymnos, which may in turn allow estimation of the
respective wind energy curtailments anticipated in the given system. Moreover, and in the
context of the present study, an additional day-ahead ANN model has been developed for
the prediction of hourly load demand, for the island of Tilos (Table 1).

Table 1. ANN models’ performance metrics.

Model Component R MBE RMSE IA

GFFNs Theoretical wind CF 0.516 −0.030 0.230 0.695

GFFNs Actual wind CF 0.239 −0.044 0.228 0.489

MLP Tilos load demand (kW) 0.952 2.388 44.453 0.975
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Figure 2. Exemplary ANN structure of the GFFN models, including an input layer of 38 neurons,
two hidden layers of 35 and 17 neurons, and an output layer of 1 neuron [6].

With regard to the development of the models, including also the one of load demand,
training input (historical data of wind power generation and load demand, respectively)
draws data from the previous five days (D-1, D-2, D-3, D-4, and D-5), with the aim to
provide a total of 24 distinct hourly predictions for the day-ahead (D+1). In that way, the
required input for the models’ execution becomes independent of day (D-0) data. As a
result, and in the context of a rolling day-ahead scheduling pattern, increased flexibility
is provided concerning the execution time of the models during the previous day (D-0).
This was considered to be one of the main development principles of the models, which
also allows for the incorporation of new rolling historical data of each (D-1) day, normally
cleared and published every other (D-0) day (i.e., one day after). A reasonable assumption to
that end is that the models are executed at 12:00 of day (D-0), allowing for the incorporation
of (D-1) data on the one hand and for the delivery of forecasting results in time for the
prompt release of the day-ahead dispatching schedule on the other.

Based on the results of the three models and associated uncertainties (forecasting
residuals), the problem is next formulated as a stochastic analysis problem, with the aim
to map DR requirements under different levels of probability and also available levels of
assumed DR capacity. To that end, the available DR capacity for the case of Tilos is set to
vary from a minimum of 25 kW to a max of 150 kW, which is below the minimum load
demand encountered during the year and which may reflect on the engagement of ~70 kW
of the community-level water pumping capacity, as well as on a prospective 80 kW of the
charging capacity for the local e-mobility sector.
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3. Results

The first set of results given in the following Figure 3 provide a two-week instance
of the theoretical and actual wind energy production expressed in terms of hourly CF for
the aggregate power of 15.2 MW for all four existing wind parks of the Kos–Kalymnos
system. Prediction curves included incorporate the maximum and minimum uncertainty
associated with different CF classes and day hours, providing, as it may be seen, a relatively
wide span of probability that is set to capture the entire range of residuals [6]. Based on
the day-ahead hourly forecasts, the respective estimated output concerning the hourly
day-ahead estimation of wind energy curtailments is given in Figure 4a for a set of different
percentile curves compared against the series of observed wind energy curtailments. As
one may note, for percentiles exceeding 20–30%, there is significant overestimation of wind
energy curtailments, which is mainly owed to the relatively limited performance of the
actual wind power CF forecasting model.
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Accordingly, by also integrating forecasting results of load demand (Figure 4b), and
by introducing a daily cycle DR scheme, we proceed with a stochastic analysis of daily DR
requirements, taking also into account a variable DR capacity. The stochastic application
of the daily cycle DR scheme is illustrated in the following Figure 5, for an instance of a
50 kW DR pool and the ~100th percentile of wind forecasting results addressed earlier,
against the minimum and maximum probability of load demand. As it can be seen from
both load curve instances, the dotted DR-adjusted curves, follow the pattern of the original
load demand curves, deviating however at a certain level, both downwards and upwards,
which is equivalent to a reduction and an increase in the load under the given DR potential.

Downward and upward DR is triggered by the respective changes in the normalized
wind energy curtailment profile within each day of examination, which could, under certain
conditions, reflect also on a proportional variation in the corresponding offered price.

Moreover, and following the integration of the DR capacity variable, in Figure 6,
we present the percentiles (p0–p100) of downward and upward DR requirements for an
entire year period, each time limited by the respective DR capacity (25 kW–150 kW). The
values provided in the relevant heatmaps are normalized over the maximum DR capacity
available and are presented against the variation in the probability for the component of
wind energy predictions, with the two sets of heatmaps corresponding to the minimum
and the maximum predicted values of load demand.
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In addition, and for a more explanatory view of results presented in Figure 6, Figure 7
compares the instances of 25 kW and 150 kW of DR capacity, with the corresponding
deterministic (ex-post) approach, considering the actual (observed) values of wind energy
curtailments and load demand. To that end, the boxplots provided indicate that for the
majority of cases, the difference between the stochastic and deterministic approach fall in
the range of +/−20% over the respective DR capacity value, with the exception of upward
DR requirements under the scenario of 150 kW of DR capacity and the maximum load
demand predicted.
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4. Discussion

Following the analysis of the results of the previous section, it can be argued that
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the actual wind energy prediction component, seem to cause a limited impact in terms of
anticipated DR requirements when stochastic results are compared against the respective
values derived from the application of a deterministic approach. At the same time, and
given the daily pattern of wind energy curtailments under the examined instances, broader
distribution of DR signals over the daily cycle may encourage the deployment of a diverse
pool of loads for a longer period, contrary to the case of a PV-driven DR scheme. On the
other hand, it might also pose limitations for certain types of DR assets, such as with the
exploitation of water pumps, for example, where successive starts and stops should ideally
be avoided.

5. Conclusions

In the present study, we examined the problem of stochastic assessment for day-
ahead DR requirements in non-interconnected islands that display increased wind energy
penetration and present substantial wind energy curtailments that still remain untapped.
We employed ANNs in order to develop forecasting models for the components of wind
energy and load demand and integrated the resulting uncertainties of the latter so as
to enable the application of a stochastic approach. Our analysis was performed on the
non-interconnected island system of Kos and Kalymnos, in the SE Aegean Sea, and focused
further on the island of Tilos for the exploitation of local DR assets in order to recover wind
energy curtailments at the higher, Kos–Kalymnos system level. In addition to the above, the
dimension of available DR capacity was also investigated, with the results of our research
eventually indicating that the stochastic approach currently adopted presents a moderate
difference in terms of DR requirements against the application of deterministic signals.
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3. Groppi, D.; Pfeifer, A.; Garcia, D.A.; Krajačić, G.; Duić, N. A review on energy storage and demand side management solutions in
smart energy islands. Renew. Sustain. Energy Rev. 2021, 135, 110183. [CrossRef]

https://www.renewables.ninja/
https://doi.org/10.1016/j.enpol.2023.113515
https://doi.org/10.1016/j.egypro.2017.12.127
https://doi.org/10.1016/j.rser.2020.110183


Environ. Sci. Proc. 2023, 26, 176 7 of 7

4. Katsaprakakis, D.A.; Proka, A.; Zafirakis, D.; Damasiotis, M.; Kotsampopoulos, P.; Hatziargyriou, N.; Dakanali, E.; Arnaoutakis, G.;
Xevgenos, D. Greek Islands’ Energy Transition: From Lighthouse Projects to the Emergence of Energy Communities. Energies
2022, 15, 5996. [CrossRef]

5. Kaldellis, J.K.; Zafirakis, D. Prospects and challenges for clean energy in European Islands. The TILOS paradigm. Renew. Energy
2020, 145, 2489–2502. [CrossRef]

6. Moustris, K.; Zafirakis, D. Day-Ahead Forecasting of the Theoretical and Actual Wind Power Generation in Energy-Constrained
Island Systems. Energies 2023, 16, 4562. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/en15165996
https://doi.org/10.1016/j.renene.2019.08.014
https://doi.org/10.3390/en16124562

	Introduction 
	Materials and Methods 
	Problem Definition and Methods 
	Input Data 

	Results 
	Discussion 
	Conclusions 
	References

