Cold Ironing and the Study of RES Utilization for Maritime Electrification on Lesvos Island Port
Abstract
1. Introduction
2. Materials and Methods
2.1. Available Data from Shipping Routes
2.2. Methodology and Software for the In-Port Energy Demand Analysis
- Uanem: wind speed at anemometer height,
- Zhub: height of the wind turbine,
- Zanem: height of the anemometer,
- Z0: surface roughness length.
- ρ: actual air density,
- ρo: air density at standard air density,
- PSTP: wind power output at standard air density.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Maritime Organization. IMO: Fuel Oil Consumption Data Collection System Enters into Force. 2022. Available online: https://www.imo.org/en/MediaCentre/PressBriefings/Pages/33-GHG-data-collection.aspx (accessed on 14 November 2023).
- European Maritime Safety Agency. Cold Ironing—Alternative Maritime Power (AMP). 2022. Available online: https://www.emsa.europa.eu/operations/maritime-security/cold-ironing-alternative-maritime-power.html (accessed on 14 November 2023).
- European Maritime Safety Agency. Use of Cold Ironing and Electrical Connection for Ships at Berth. 2022. Available online: https://www.emsa.europa.eu/operations/maritime-safety/use-of-cold-ironing.html (accessed on 14 November 2023).
- Kotrikla, A.M.; Lilas, T.; Nikitakos, N. Abatement of air pollution at an Aegean island port utilizing shore side electricity and renewable energy. Mar. Policy 2017, 75, 238–248. [Google Scholar] [CrossRef]
- Martínez-López, A.; Romero, A.; Orosa, J.A. Assessment of Cold Ironing and LNG as Mitigation Tools of Short Sea Shipping Emissions in Port: A Spanish Case Study. Appl. Sci. 2021, 11, 2050. [Google Scholar] [CrossRef]
- Ballini, F.; Bozzo, R. Air pollution from ships in ports: The socio-economic benefit of cold-ironing technology. Res. Transp. Bus. Manag. 2015, 17, 92–98. [Google Scholar] [CrossRef]
- The European Environment Agency. Cleaner Fuels and Energy Sources for Ships Can Lower Environmental Risks. 2022. Available online: https://www.eea.europa.eu/signals/signals-2017-content-list/cleaner-fuels-and-energy-sources (accessed on 14 November 2023).
- Katsaprakakis, D.A.; Proka, A.; Zafirakis, D.; Damasiotis, M.; Kotsampopoulos, P.; Hatziargyriou, N.; Dakanali, E.; Arnaoutakis, G.; Xevgenos, D. Greek Islands’ Energy Transition: From Lighthouse Projects to the Emergence of Energy Communities. Energies 2022, 15, 5996. [Google Scholar] [CrossRef]
- Colarossi, D.; Principi, P. Optimal sizing of a photovoltaic/energy storage/cold ironing system: Life Cycle cost approach and environmental analysis. Energy Convers. Manag. 2023, 291, 117255. [Google Scholar] [CrossRef]
- Genave, A.; Blancard, S.; Garabedian, S. An Assessment of Energy Vulnerability in Small Island Developing States. Ecol. Econ. 2020, 171, 106595. [Google Scholar] [CrossRef]
- Dimou, A.; Vakalis, S. Technoeconomic Analysis of Green Energy Transitions in Isolated Grids: The Case of Ai Stratis—Green Island. Renew. Energy 2022, 195, 66–75. [Google Scholar] [CrossRef]
- Carrasco, J.M.; Franquelo, L.G.; Bialasiewicz, J.T.; Galvan, E.; PortilloGuisado, R.C.; Prats, M.A.M.; Leon, J.I.; Moreno-Alfonso, N. Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey. IEEE Trans. Ind. Electron. 2006, 53, 1002–1016. [Google Scholar] [CrossRef]
- Katsoulakos, N. An Overview of the Greek Islands’ Autonomous Electrical Systems: Proposals for a Sustainable Energy Future. Smart Grid Renew. Energy 2019, 10, 55–82. [Google Scholar] [CrossRef]
- Barney, A.; Polatidis, H.; Jelić, M.; Tomašević, N.; Pillai, G.; Haralambopoulos, D. Transition towards decarbonisation for islands: Development of an integrated energy planning platform and application. Sustain. Energy Technol. Assess. 2021, 47, 101501. [Google Scholar] [CrossRef]
- Altiparmaki, G.; Vasileiadou, M.A.; Vakalis, S. The effect of excess water on the hydrothermal carbonization of anise waste from ouzo production on Lesvos island. Sustain. Chem. Pharm. 2022, 29, 100831. [Google Scholar] [CrossRef]
- Vasileiadou, M.A.; Altiparmaki, G.; Moustakas, K.; Vakalis, S. Quality of Hydrochar from Wine Sludge under Variable Conditions of Hydrothermal Carbonization: The Case of Lesvos Island. Energies 2022, 15, 3574. [Google Scholar] [CrossRef]
- Barney, A.; Polatidis, H.; Vakalis, S.; Grondin, D.; Benne, M.; Salces, F.S.; Haralambopoulos, D. Energy transition awareness: Can it guide local transition planning on islands? Heliyon 2023, 9, e19960. [Google Scholar] [CrossRef] [PubMed]
- Dimou, A.; Moustakas, K.; Vakalis, S. The Role of Hydrogen and H2 Mobility on the Green Transition of Islands: The Case of Anafi (Greece). Energies 2023, 16, 3542. [Google Scholar] [CrossRef]
- EMEP/EEA. Air Pollutant Emission Inventory Guidebook; Technical report No 21/2016; EEA: Copenhagen, Denmark, 2016. [Google Scholar]
- Tzannatos, E. Ship emissions and their externalities for the port of Piraeus—Greece. Atmos. Environ. 2010, 44, 400–407. [Google Scholar] [CrossRef]
- Kelmalis, A.; Lekkas, D.F.; Moustakas, K.; Vakalis, S. Assessing the Emissions of Short Sea International Shipping: A Case Study of the Mytilini–Ayvalik Route. Environ. Sci. Pollut. Res. 2023, 30, 115496–115505. [Google Scholar] [CrossRef] [PubMed]
- Moya, D.; Paredes, J.; Kaparaju, P. Technical, financial, economic and environmental pre-feasibility study of geothermal power plants by RETScreen—Ecuador’s case study. Renew. Sustain. Energy Rev. 2018, 92, 628–637. [Google Scholar] [CrossRef]
- HEDNO. Report: Issuance of Power Generation Informative Report for the Non-Interconnected Islands. 2023. Available online: https://deddie.gr/en/kentro-enhmerwsis/nea-anakoinwseis/miniaia-deltia-ape-december-2022/ (accessed on 25 October 2023).
- Orfanou, A.; Vakalis, S. Wind Based Hybrid Systems for Increased RES Penetration in Isolated Grids: The Case Study of Anafi (Greece). AIMS Energy 2022, 10, 1046–1058. [Google Scholar] [CrossRef]
- Bakar, N.N.A.; Guerrero, J.M.; Vasquez, J.C.; Bazmohammadi, N.; Othman, M.; Rasmussen, B.D.; Al-Turki, Y.A. Optimal Configuration and Sizing of Seaport Microgrids including Renewable Energy and Cold Ironing—The Port of Aalborg Case Study. Energies 2022, 15, 431. [Google Scholar] [CrossRef]
- Karapidakis, E.; Nikolaidis, E.; Moraitakis, G.; Georgakis, F.; Papadakis, M. Cold ironing feasibility study at the Heraklion Port. J. Phys. Conf. Ser. 2022, 2339, 012016. [Google Scholar] [CrossRef]
- Piccoli, T.; Fermeglia, M.; Bosich, D.; Bevilacqua, P.; Sulligoi, G. Environmental Assessment and Regulatory Aspects of Cold Ironing Planning for a Maritime Route in the Adriatic Sea. Energies 2021, 14, 5836. [Google Scholar] [CrossRef]
- Glavinović, R.; Krčum, M.; Vukić, L.; Karin, I. Cold Ironing Implementation Overview in European Ports—Case Study—Croatian Ports. Sustainability 2023, 15, 8472. [Google Scholar] [CrossRef]
- Zis, T.P.V. Prospects of Cold Ironing as an Emissions Reduction Option. Transp. Res. Part A Policy Pract. 2019, 119, 82–95. [Google Scholar] [CrossRef]
- Arduino, G.; Murillo, D.; Ferrari, C. Key Factors and Barriers to the Adoption of Cold Ironing in Europe. In Proceedings of the Società Italiana di Economia dei Trasporti e della Logistica—XIII Riunione Scientifica, Messina, Italy, 16–17 June 2011. [Google Scholar]
- Martínez-López, A.; Romero-Filgueira, A.; Chica, M. Specific Environmental Charges to Boost Cold Ironing Use in the European Short Sea Shipping. Transp. Res. Part D Transp. Environ. 2021, 94, 102775. [Google Scholar] [CrossRef]
- Iris, Ç.; Lam, J.S.L. Optimal Energy Management and Operations Planning in Seaports with Smart Grid While Harnessing Renewable Energy Under Uncertainty. Omega 2021, 103, 102445. [Google Scholar] [CrossRef]
% Load ME | % Time ME | % Load AE | |
---|---|---|---|
Cruise | 80 | 100 | 30 |
Maneuvering | 20 | 100 | 50 |
Hoteling | 20 | 5 | 40 |
Ship Type | Cruise (km/h) | Maneuvering (h) | Hoteling (h) |
---|---|---|---|
Ro-ro cargo | 27 | 1 | 6 |
Passenger | 39 | 0.8 | 6 |
Passenger (short sea) | 25 | 0.6 | 2 |
Model | ENERCON—48–76 m | |
---|---|---|
Parameter | Unit | Value |
Power capacity per turbine | kW | 800 |
Number of turbines | 25 | |
Total power capacity | kW | 20,000 |
Hub height | m | 76 |
Rotor diameter per turbine | m | 48 |
Swept area per turbine | m2 | 1809.6 |
Air temperature—annual | °C | 17.1 |
Atmospheric pressure—annual | kPa | 99.6 |
Wind shear exponent | 0.14 | |
Shape factor | 2 |
Wind Speed (m/s) | Power Curve Data (kW) | Energy Curve Data (MWh) |
---|---|---|
0 | 0 | - |
1 | 0 | - |
2 | 2 | - |
3 | 12 | 234.07 |
4 | 32 | 575.20 |
5 | 66 | 1084.68 |
6 | 120 | 1697.24 |
7 | 191 | 2330.31 |
8 | 284 | 2926.60 |
9 | 405 | 3458.51 |
10 | 555 | 3916.83 |
11 | 671 | 4299.86 |
12 | 750 | 4608.18 |
13 | 790 | 4843.49 |
14 | 810 | 5009.13 |
15 | 810 | 5110.46 |
15 | 0 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelmalis, A.; Dimou, A.; Lekkas, D.F.; Vakalis, S. Cold Ironing and the Study of RES Utilization for Maritime Electrification on Lesvos Island Port. Environments 2024, 11, 84. https://doi.org/10.3390/environments11040084
Kelmalis A, Dimou A, Lekkas DF, Vakalis S. Cold Ironing and the Study of RES Utilization for Maritime Electrification on Lesvos Island Port. Environments. 2024; 11(4):84. https://doi.org/10.3390/environments11040084
Chicago/Turabian StyleKelmalis, Alexandros, Andreas Dimou, Demetris Francis Lekkas, and Stergios Vakalis. 2024. "Cold Ironing and the Study of RES Utilization for Maritime Electrification on Lesvos Island Port" Environments 11, no. 4: 84. https://doi.org/10.3390/environments11040084
APA StyleKelmalis, A., Dimou, A., Lekkas, D. F., & Vakalis, S. (2024). Cold Ironing and the Study of RES Utilization for Maritime Electrification on Lesvos Island Port. Environments, 11(4), 84. https://doi.org/10.3390/environments11040084