Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = non-animal hyaluronic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 1182 KB  
Review
Egg By-Products: Composition, Bioactive Potential, and Utilization in the Circular Economy
by Plamen Saraliev, Nikolay Kolev, Desislava Vlahova-Vangelova, Stefan Dragoev and Desislav Balev
Biomass 2025, 5(4), 80; https://doi.org/10.3390/biomass5040080 - 12 Dec 2025
Viewed by 1330
Abstract
Egg products are a convenient and safe form of eggs, possessing valuable nutritional and functional properties. The egg processing industry is responsible for the enormous amounts of biomass in the form of animal by-products (ABPs). According to EU legislation, the ABPs are under [...] Read more.
Egg products are a convenient and safe form of eggs, possessing valuable nutritional and functional properties. The egg processing industry is responsible for the enormous amounts of biomass in the form of animal by-products (ABPs). According to EU legislation, the ABPs are under strict control from the formation to the disposal of biomass, as they carry a risk to the ecosystem and public health. For this reason, restrictions have been introduced on their use after disposal, ranging from bioactive applications in medical, cosmetic, and pharmaceutical products, as well as feed. The shells are subject to special conditions for processing and use. The by-products of egg breaking are divided into solid (eggshells and eggshell membranes) and liquid (technical albumen) by-products. The biological value is determined by the composition, which varies significantly across the by-products. In the context of the circular economy, all egg by-products contain valuable substances that can be used in food and non-food industries. First, eggshells are the leading by-product, composing 95% of the inorganic substance calcium carbonate, which, after processing, can be used in agriculture, food and feed industries, and medicine. Second, there is a liquid by-product containing proteins from the egg white and a small part of fats from the yolk. Literature data on this by-product are scarce, but there is information about its use as a feed additive, while the extracted and purified proteins can be useful in pharmacy. Egg membranes constitute only 1% of the egg mass, but humanity has long known about the benefits of collagen, keratin, and glycosaminoglycans, including hyaluronic acid, which compose this material. The processed membranes can be used as a food additive, in cosmetics, medicine, or pharmacy, just like other egg by-products mentioned above. This literature review focuses on the possible methods and techniques for processing by-products and their potential application. The literature sources in this review have been selected according to their scientific and practical applicability. The utilization of these by-products not only reduces the impact on the environment but also facilitates the creation of value-added materials. Full article
Show Figures

Figure 1

24 pages, 1018 KB  
Review
Recent Advances in Regenerative Therapies in Periodontology
by Andrei-Mario Bădărău-Șuster, Edwin Sever Bechir, Zsuzsanna Bardocz-Veres, Ana Petra Lazăr, Alexandru Vlasa, Mircea Suciu, Tatiana-Maria Coman and Luminița Lazăr
Dent. J. 2025, 13(12), 564; https://doi.org/10.3390/dj13120564 - 1 Dec 2025
Viewed by 1974
Abstract
Background/Objectives: Periodontal regeneration remains a primary goal in contemporary periodontal therapy, aiming to restore both the structural and functional integrity of tissues lost due to periodontitis. Recent advancements in biomaterials, growth factors, and biologically active matrices have expanded the therapeutic possibilities in [...] Read more.
Background/Objectives: Periodontal regeneration remains a primary goal in contemporary periodontal therapy, aiming to restore both the structural and functional integrity of tissues lost due to periodontitis. Recent advancements in biomaterials, growth factors, and biologically active matrices have expanded the therapeutic possibilities in clinical practice. This narrative review aimed to summarize recent developments in regenerative approaches in periodontology, emphasizing their biological principles, clinical outcomes, and current limitations. Methods: A literature search was conducted in PubMed Central and Scopus for randomized controlled trials and clinical trials published between January 2015 and July 2025. Human studies in English, available in open access and evaluating periodontal regenerative approaches, were included, while animal, in vitro, and non-clinical studies were excluded. A total of 67 articles met the eligibility criteria. Data were synthesized in both tabular and narrative form. Results: Most trials reported clinically relevant improvements in probing depth reduction, clinical attachment gain, and defect fill when regenerative biomaterials were applied in appropriately selected intrabony defects, although outcomes varied according to defect morphology, surgical protocol, and patient-related factors. Conclusions: Although substantial progress has been made, true periodontal regeneration remains challenging. Regenerative techniques such as GTR/GBR, EMD, platelet concentrates, and hyaluronic acid show favorable outcomes in appropriately selected cases, although overall predictability remains limited by variability in study design and short follow-up periods. High-quality, standardized RCTs are needed to consolidate current evidence and support guideline-based clinical decision-making. Full article
(This article belongs to the Special Issue Feature Review Papers in Dentistry: 2nd Edition)
Show Figures

Graphical abstract

15 pages, 967 KB  
Systematic Review
Topical Zinc Oxide Nanoparticle Formulations for Acne Vulgaris: A Systematic Review of Pre-Clinical and Early-Phase Clinical Evidence
by Daniela Crainic, Roxana Popescu, Cristina-Daliborca Vlad, Daniela-Vasilica Serban, Daniel Popa, Cristina Annemari Popa and Ana-Olivia Toma
Biomedicines 2025, 13(9), 2156; https://doi.org/10.3390/biomedicines13092156 - 4 Sep 2025
Cited by 2 | Viewed by 6695
Abstract
Background and objectives: Antibiotic resistance in Cutibacterium acnes is undermining topical macrolides and clindamycin, prompting renewed interest in zinc oxide nanoparticles (ZnO-NPs) as non-antibiotic alternatives. We aimed to (i) determine the antimicrobial and anti-inflammatory performance of topical ZnO-NP formulations across in vitro, animal [...] Read more.
Background and objectives: Antibiotic resistance in Cutibacterium acnes is undermining topical macrolides and clindamycin, prompting renewed interest in zinc oxide nanoparticles (ZnO-NPs) as non-antibiotic alternatives. We aimed to (i) determine the antimicrobial and anti-inflammatory performance of topical ZnO-NP formulations across in vitro, animal and early human models; (ii) identify physicochemical parameters that modulate potency and tolerance; and (iii) delineate translational gaps and priority design elements for randomised trials. Methods: We systematically searched PubMed, Scopus and Web of Science until 1 June 2025 for in vitro, animal and human studies that evaluated ≤100 nm ZnO-NPs applied topically to C. acnes cultures, extracting data on bacterial load, lesion counts, biophysical skin parameters and acute toxicity. Eight eligible investigations (five in vitro, two animal, one exploratory human) analysed particles 20–50 nm in diameter carrying mildly anionic zeta potentials. Results: Hyaluronic acid-coated ZnO-NPs achieved a sixteen-fold higher selective kill ratio over Staphylococcus epidermidis at 32 µg mL1, while centrifugally spun polyvinyl alcohol dressings reduced C. acnes burden by 3.1 log10 on porcine skin within 24 h, and plant-derived nanogels generated inhibition zones that were 11% wider than benzoyl-peroxide’s 5%. In human subjects, twice-daily 0.5% hyaluronic–ZnO nanogel cut inflammatory-lesion counts by 58% at week four and lowered transepidermal water loss without erythema. Preclinical safety was reassuring, zero mortality among animals at 100 µg mL1 and no irritation among patients, although high-dose sunscreen-grade ZnO (20 nm) delayed rat wound closure by 38%, highlighting dose-dependent differences. Conclusions: Collectively, the evidence indicates that nanoscale reformulation markedly augments zinc’s antibacterial and anti-inflammatory performance while maintaining favourable acute tolerance, supporting progression to rigorously designed, adequately powered randomised trials that will benchmark ZnO-NPs against benzoyl peroxide and retinoids, optimise dosing for efficacy versus phototoxicity, and establish long-term dermatological safety. Full article
(This article belongs to the Section Nanomedicine and Nanobiology)
Show Figures

Figure 1

18 pages, 4774 KB  
Article
Analysis of Implant Osseointegration, Bone Repair, and Sinus Mucosa Integrity Using Bio-Oss® and Hyaluronic Acid-Polynucleotide Gel (Regenfast®) in Maxillary Sinus Augmentation in Rabbits
by Hiroyuki Omori, Daniele Botticelli, Erick Ricardo Silva, Samuel Porfirio Xavier, Sérgio Luis Scombatti de Souza, Kaoru Kusano and Shunsuke Baba
Dent. J. 2025, 13(7), 293; https://doi.org/10.3390/dj13070293 - 28 Jun 2025
Cited by 1 | Viewed by 1770
Abstract
Background: The combination of polynucleotides and hyaluronic acid with bovine bone grafts in maxillary sinus lift procedures appears to be a promising strategy to enhance bone regeneration. This study aimed to analyze implant osseointegration, bone repair and sinus mucosa integrity using Bio-Oss® [...] Read more.
Background: The combination of polynucleotides and hyaluronic acid with bovine bone grafts in maxillary sinus lift procedures appears to be a promising strategy to enhance bone regeneration. This study aimed to analyze implant osseointegration, bone repair and sinus mucosa integrity using Bio-Oss® and Hyaluronic Acid-Polynucleotide Gel (Regenfast®) in maxillary sinus augmentation in rabbits. Methods: Sinus floor elevation was performed in 12 rabbits, with one implant placed per sinus simultaneously. In the control group, sinuses were grafted with deproteinized bovine bone mineral (Bio-Oss®) alone; in the test group, Bio-Oss® was combined with Regenfast®. Two histological slides were obtained per sinus after 2 weeks (six animals) and 10 weeks (six animals): one from the grafted area alone (non-implant sites), and one from the implant site. Primary outcome variables included the percentage of newly formed bone, the extent of implant osseointegration, and the number of sinus mucosa perforations caused by contact with graft granules. Results: After 10 weeks of healing, the test group showed a significantly higher percentage of new bone formation (37.2 ± 6.7%) compared to the control group (26.8 ± 10.0%; p = 0.031); osseointegration extended to the implant apex in both groups; fewer sinus mucosa perforations were observed in the test group (n = 5) than in the control group (n = 14). Conclusions: The addition of Regenfast® to Bio-Oss® granules promoted enhanced bone regeneration within the elevated sinus area and was associated with a lower incidence of sinus membrane perforations compared to the use of Bio-Oss® alone. Full article
Show Figures

Figure 1

22 pages, 2328 KB  
Article
Non-Animal Hyaluronic Acid from Tremella fuciformis: A New Source with a Structure and Chemical Profile Comparable to Hyaluronic Acid
by Rebecca Galla, Simone Mulè, Sara Ferrari, Francesca Parini, Annalisa Givonetti, Maria Cavaletto, Ivana Miletto, Geo Paul, Giovanni Battista Giovenzana, Leonardo Marchese, Claudio Molinari and Francesca Uberti
Foods 2025, 14(8), 1362; https://doi.org/10.3390/foods14081362 - 15 Apr 2025
Viewed by 5349
Abstract
Tremella fuciformis is high in polysaccharides, which have a structure made up of a straight chain of (1→3) α-D-mannan and side chains of glucuronic acid, xylose, and fucose. This study aimed to evaluate whether the non-animal hyaluronic acid extracted from Tremella fuciformis can [...] Read more.
Tremella fuciformis is high in polysaccharides, which have a structure made up of a straight chain of (1→3) α-D-mannan and side chains of glucuronic acid, xylose, and fucose. This study aimed to evaluate whether the non-animal hyaluronic acid extracted from Tremella fuciformis can maintain the chemical and physical characteristics of hyaluronic acid that ensure its biological functionality. Chemical and physical analyses such as hyaluronic content, screening of metals, purity, pH, nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (ATR/FTIR), and MALDI-TOF were performed. Chemical characterisation revealed that the most abundant polysaccharide in the extract was hyaluronic acid, accounting for ca. 87.76%, with a molecular weight above 2000 kDa. In addition, ATR/FTIR and NMR spectroscopy and MALDI-TOF analysis confirmed that Tremella fuciformis extract is a source of non-animal hyaluronic acid. In summary, every molecular attribute examined played a significant role in determining the functional qualities of the extract, indicating that a thoughtful choice of extraction technique can enhance its advantages. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

21 pages, 1498 KB  
Article
NAMICA Encapsulation Technology in an Animal Model: MICROscale vs. NANOscale Hyaluronic Acid Particles in Skin Remodeling (Part 2)
by Pavel Burko, George Sulamanidze and Dmitriy Nikishin
Cosmetics 2025, 12(2), 55; https://doi.org/10.3390/cosmetics12020055 - 21 Mar 2025
Cited by 2 | Viewed by 1498
Abstract
Hyaluronic acid (HA), an integral non-sulfated glycosaminoglycan, plays a pivotal role in numerous biological functions within the extracellular matrix, crucially influencing tissue hydration and cellular activities. These findings position it as a key substance in both aesthetic interventions and regenerative medicine. This study [...] Read more.
Hyaluronic acid (HA), an integral non-sulfated glycosaminoglycan, plays a pivotal role in numerous biological functions within the extracellular matrix, crucially influencing tissue hydration and cellular activities. These findings position it as a key substance in both aesthetic interventions and regenerative medicine. This study evaluated the skin remodeling efficacy of poly(L-lactide-co-ε-caprolactone) (P(LA/CL)) threads embedded with HA particles at both the microscale (P(LA/CL)-HA-micro) and nanoscale (P(LA/CL)-HA-nano) utilizing NAMICA encapsulation technology. This investigation was conducted over a six-month period in an animal model. These threads were engineered to administer HA gradually, thereby potentially augmenting the therapeutic impacts on the skin, enhancing the bioavailability of HA, and prolonging the benefits. Methodologically, the research conformed to the ARRIVE guidelines, incorporating specific inclusion and exclusion criteria for the animal model. The threads were surgically implanted, and a series of histological indicators were evaluated at scheduled intervals to determine their influence on the structural properties of the skin. The findings indicated that both P(LA/CL)-HA-micro and P(LA/CL)-HA-nano threads demonstrated potential in skin remodeling. Notably, the P(LA/CL)-HA-nano threads may have provided some advantages in enhancing certain structural aspects of the skin. The integration of micro- and nano-HA formulations through NAMICA technology might address individual limitations and synergistically promote biorevitalization in skin remodeling. Nevertheless, the intricate interactions between the biomaterials and hosted tissue underscored in this analysis suggest that additional investigations, especially using human models, are essential to fully discern the clinical implications and refine therapeutic approaches for skin remodeling via these new technologies. Full article
(This article belongs to the Special Issue 10th Anniversary of Cosmetics—Recent Advances and Perspectives)
Show Figures

Figure 1

25 pages, 363 KB  
Review
Exploring the Potential of Non-Cellular Orthobiologic Products in Regenerative Therapies for Stifle Joint Diseases in Companion Animals
by Maria Guerra-Gomes, Carla Ferreira-Baptista, Joana Barros, Sofia Alves-Pimenta, Pedro Gomes and Bruno Colaço
Animals 2025, 15(4), 589; https://doi.org/10.3390/ani15040589 - 18 Feb 2025
Cited by 2 | Viewed by 2512
Abstract
Stifle joint diseases present a significant challenge in companion animals that often lead to hind limb lameness, with osteoarthritis being a prevalent degenerative condition causing pain and reduced mobility. Regenerative medicine offers a promising avenue for improving treatment outcomes, with a range of [...] Read more.
Stifle joint diseases present a significant challenge in companion animals that often lead to hind limb lameness, with osteoarthritis being a prevalent degenerative condition causing pain and reduced mobility. Regenerative medicine offers a promising avenue for improving treatment outcomes, with a range of emerging therapies showing potential to alleviate symptoms and promote joint health. Among these, hyaluronic acid and platelet-rich plasma have been widely used as intra-articular treatments to enhance joint lubrication, reduce inflammation, and provide symptomatic relief. Interleukin-1 receptor antagonist protein, autologous conditioned serum, and autologous protein solution represent the next generation of regenerative therapies, offering more disease-modifying effects by inhibiting key mediators of joint inflammation. More recently, the MSC-derived secretome has emerged as an innovative, cell-free approach that leverages the diverse bioactive factors secreted by MSCs to support tissue repair and modulate inflammation. This review highlights the evidence base behind these non-cellular orthobiologic treatments for stifle joint disease, aiming to inform veterinary practitioners and owners about available options and their efficacy in supporting conventional treatments. Full article
(This article belongs to the Section Companion Animals)
26 pages, 4515 KB  
Article
Non-Animal Hyaluronic Acid and Probiotics Enhance Skin Health via the Gut–Skin Axis: An In Vitro Study on Bioavailability and Cellular Impact
by Rebecca Galla, Simone Mulè, Sara Ferrari, Claudio Molinari and Francesca Uberti
Int. J. Mol. Sci. 2025, 26(3), 897; https://doi.org/10.3390/ijms26030897 - 22 Jan 2025
Cited by 3 | Viewed by 7124
Abstract
Hyaluronic acid (HA) represents a pivotal component of the extracellular matrix, particularly within the context of the skin. The absorption and metabolism of orally ingested HA have been extensively investigated due to the prevalence of HA-based supplements. The objective of this study was [...] Read more.
Hyaluronic acid (HA) represents a pivotal component of the extracellular matrix, particularly within the context of the skin. The absorption and metabolism of orally ingested HA have been extensively investigated due to the prevalence of HA-based supplements. The objective of this study was to evaluate the impact of a combination of non-animal HA and Bifidobacterium longum novaBLG1 on dermal health following intestinal transit. The bioavailability of the compound was evaluated using a model that reproduced the human intestinal barrier in vitro, and its biological effects were investigated on skin cells via the gut–skin axis. The results demonstrated that probiotics augmented the absorption of non-animal HA by approximately 30% in comparison to non-animal HA alone and by 82% in comparison to sodium hyaluronate. Furthermore, the combination demonstrated a notable enhancement in skin cell proliferation, with increases of 16%, 8%, and 29.7% over 144 h in comparison to non-animal hyaluronan, Bifidobacterium longum novaBLG1, and sodium hyaluronate, respectively. The combination was observed to positively affect all markers of skin health and well-being, achieving its goals without any adverse effects on the gut. This approach offers a novel method for enhancing skin health. Full article
Show Figures

Figure 1

18 pages, 5928 KB  
Article
Enhancing Bone Regeneration Using Blended Poly(L-lactide-co-D, L-lactide) and β-Tricalcium Phosphate Nanofibrous Periodontal Biodegradable Membranes
by Princess Joy Naig, Zih-Yin Kuo, Min-Fan Chung, Chih-Hao Chen, Chi-Yun Wang and Kuo-Yung Hung
Polymers 2025, 17(3), 256; https://doi.org/10.3390/polym17030256 - 21 Jan 2025
Cited by 3 | Viewed by 1934
Abstract
In regenerative periodontal treatment, barrier membranes restore periodontal support and aid tissue healing, but slow hard tissue regeneration can disrupt healing and cause tooth instability. This study aimed to fabricate a periodontal membrane through electrospinning poly(L-lactide-co-D, L-lactide) with varying β-tricalcium phosphate (β-TCP) percentages [...] Read more.
In regenerative periodontal treatment, barrier membranes restore periodontal support and aid tissue healing, but slow hard tissue regeneration can disrupt healing and cause tooth instability. This study aimed to fabricate a periodontal membrane through electrospinning poly(L-lactide-co-D, L-lactide) with varying β-tricalcium phosphate (β-TCP) percentages (0%, 10%, 30%, and 40%) treated with hyaluronic acid to enhance bone regeneration in alveolar bone defects. Their ability to promote biomimetic mineralization was characterized using field emission scanning electron microscopy (FESEM) analysis, wettability, and mechanical properties. Biocompatibility and osteogenic differentiation were evaluated by examining BMSCs’ behavior. In vivo, the PLA/β-TCP membrane’s potential to promote bone regeneration was assessed through CT imaging and histological examination. FESEM analysis revealed β-TCP agglomerations within PLA fibers, increasing tensile strength. Water contact angle measurements showed better wettability and higher cell viability after hyaluronic acid treatment, indicating non-cytotoxicity. Membranes with 10% and 30% (w/w) β-TCP significantly enhanced cellular activities, including proliferation and osteogenic differentiation. Animal tests showed a significant bone growth rate increase to 28.9% in the experimental group compared to 24.9% with the commercial product Epi-Guide after three months. Overall, PLA with 30% β-TCP optimally promoted periodontal hard tissue repair and potentially enhanced bone regeneration. Full article
Show Figures

Graphical abstract

18 pages, 4647 KB  
Article
Hematological Response to Particle Debris Generated During Wear–Corrosion Processes of CoCr Surfaces Modified with Graphene Oxide and Hyaluronic Acid for Joint Prostheses
by María L. Escudero, Maria C. García-Alonso, Belén Chico, Rosa M. Lozano, Luna Sánchez-López, Manuel Flores-Sáenz, Soledad Cristóbal-Aguado, Rafael Moreno-Gómez-Toledano and Soledad Aguado-Henche
Nanomaterials 2024, 14(22), 1815; https://doi.org/10.3390/nano14221815 - 13 Nov 2024
Cited by 3 | Viewed by 1550
Abstract
Various surface modifications to increase the lifespan of cobalt–chromium (CoCr) joint prostheses are being studied to reduce the wear rate in bone joint applications. One recently proposed modification involves depositing graphene oxide functionalized with hyaluronic acid (a compound present in joints) on CoCr [...] Read more.
Various surface modifications to increase the lifespan of cobalt–chromium (CoCr) joint prostheses are being studied to reduce the wear rate in bone joint applications. One recently proposed modification involves depositing graphene oxide functionalized with hyaluronic acid (a compound present in joints) on CoCr surfaces, which can act as a solid lubricant. This paper analyzes the biological alterations caused by wear–corrosion phenomena that occur in joints, both from the perspective of the worn surface (in vitro model) and the particles generated during the wear processes (in vivo model). The analysis of the inflammatory response of macrophage was performed on CoCr surfaces modified with graphene oxide and functionalized with hyaluronic acid (CoCr-GO-HA), before and after wear–corrosion processes. The wear particles released during the wear–corrosion tests of the CoCr-GO-HA/CoCr ball pair immersed in 3 g/L hyaluronic acid were intra-articularly injected into the experimental animals. The hematological analysis in vivo was made considering a murine model of intra-articular injection into the left knee in male adult Wistar rats, at increasing concentrations of the collected wear particles dispersed in 0.9% NaCl. Non-significant differences in the inflammatory response to unworn CoCr-GO-HA surfaces and control (polystyrene) were obtained. The wear–corrosion of the CoCr-GO-HA disk increased the inflammatory response at both 72 and 96 h of material exposure compared to the unworn CoCr-GO-HA surfaces, although the differences were not statistically significant. The pro-inflammatory response of the macrophages was reduced on the worn surfaces of the CoCr modified and functionalized with graphene oxide (GO) and hyaluronic acid (HA), compared to the worn surfaces of the unmodified CoCr. The hematological analysis and tissue reactions after intra-articular injection did not reveal pathological damage, with average hematological values recorded, although slight reductions in creatinine and protein within non-pathological ranges were found. Some traces of biomaterial particles in the knee at the highest concentration of injected particles were only found but without inflammatory signs. The results show the potential benefits of using graphene in intra-articular prostheses, which could improve the quality of life for numerous patients. Full article
(This article belongs to the Special Issue Advanced Studies in Bionanomaterials)
Show Figures

Figure 1

18 pages, 4678 KB  
Article
Enhancing In Vivo Electroporation Efficiency through Hyaluronidase: Insights into Plasmid Distribution and Optimization Strategies
by Debnath Maji, Verónica Miguela, Andrew D. Cameron, Delcora A. Campbell, Linda Sasset, Xin Yao, Andy T. Thompson, Carleigh Sussman, David Yang, Robert Miller, Marek M. Drozdz and Rachel A. Liberatore
Pharmaceutics 2024, 16(4), 547; https://doi.org/10.3390/pharmaceutics16040547 - 17 Apr 2024
Cited by 2 | Viewed by 4009
Abstract
Electroporation (EP) stands out as a promising non-viral plasmid delivery strategy, although achieving optimal transfection efficiency in vivo remains a challenge. A noteworthy advancement in the field of in vivo EP is the application of hyaluronidase, an enzyme with the capacity to degrade [...] Read more.
Electroporation (EP) stands out as a promising non-viral plasmid delivery strategy, although achieving optimal transfection efficiency in vivo remains a challenge. A noteworthy advancement in the field of in vivo EP is the application of hyaluronidase, an enzyme with the capacity to degrade hyaluronic acid in the extracellular matrix, which thereby enhances DNA transfer efficiency by 2- to 3-fold. This paper focuses on elucidating the mechanism of hyaluronidase’s impact on transfection efficiency. We demonstrate that hyaluronidase promotes a more uniform distribution of plasmid DNA (pDNA) within skeletal muscle. Additionally, our study investigates the effect of the timing of hyaluronidase pretreatment on EP efficiency by including time intervals of 0, 5, and 30 min between hyaluronidase treatment and the application of pulses. Serum levels of the pDNA-encoded transgene reveal a minimal influence of the hyaluronidase pretreatment time on the final serum protein levels following delivery in both mice and rabbit models. Leveraging bioimpedance measurements, we capture morphological changes in muscle induced by hyaluronidase treatment, which result in a varied pDNA distribution. Subsequently, these findings are employed to optimize EP electrical parameters following hyaluronidase treatment in animal models. This paper offers novel insights into the potential of hyaluronidase in enhancing the effectiveness of in vivo EP, as well as guides optimized electroporation strategies following hyaluronidase use. Full article
Show Figures

Figure 1

13 pages, 5281 KB  
Article
In Vitro Antibacterial Activity of Ozonated Olive Oil against Bacteria of Various Antimicrobial Resistance Profiles Isolated from Wounds of Companion Animals
by Anna Lenart-Boroń, Klaudia Stankiewicz, Klaudia Bulanda, Natalia Czernecka, Miłosz Heliasz, Walter Hunter, Anna Ratajewicz, Karen Khachatryan and Gohar Khachatryan
Int. J. Mol. Sci. 2024, 25(6), 3557; https://doi.org/10.3390/ijms25063557 - 21 Mar 2024
Cited by 5 | Viewed by 3836
Abstract
Frequent colonization and bacterial infection of skin wounds in small animals prevent or impair their healing. However, the broadly applied antimicrobial therapy of wounds is not always necessary and promotes the spread of bacterial resistance. Thus, alternatives to antimicrobial therapy, including preventive measures [...] Read more.
Frequent colonization and bacterial infection of skin wounds in small animals prevent or impair their healing. However, the broadly applied antimicrobial therapy of wounds is not always necessary and promotes the spread of bacterial resistance. Thus, alternatives to antimicrobial therapy, including preventive measures in the form of wound dressings with antibiotic properties, should be searched for. The aim of this study was to develop a new, efficient, cost-effective and non-toxic formulation with antimicrobial properties to serve as an alternative to antibiotic administration in wound-healing stimulation in companion animals. Nano/microencapsulated ozonated olive oil in a hyaluronan matrix was developed, with ozone concentration high enough to prevent bacterial growth. The presence and size of nano- and microcapsules were determined with scanning electron microscopy (SEM). Antibacterial activity of developed formulations was examined in vitro on 101 Gram-positive and Gram-negative bacteria isolated from the wounds of companion animals. The highest ozone concentration in the developed formulations inhibited the growth of 40.59% bacteria. Species and genus-specific differences in reactions were observed. Enterococcus spp. proved the least susceptible while non-pathogenic Gram-positive bacteria were the most susceptible to the examined formulations. Changes in the bacterial morphology and cell structure of Psychrobacter sanguinis suspension mixed with Ca-stabilized formulations with nano/microencapsulated ozonized olive oil were revealed during SEM observations. The combination of compounds that promote wound healing (hyaluronic acid, olive oil, ozone and calcium) with the antibacterial activity of the developed formula makes it a promising bionanocomposite for use as a topical dressing. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Inflammatory Skin Diseases)
Show Figures

Figure 1

14 pages, 2116 KB  
Review
Filler Migration after Facial Injection—A Narrative Review
by Uwe Wollina and Alberto Goldman
Cosmetics 2023, 10(4), 115; https://doi.org/10.3390/cosmetics10040115 - 17 Aug 2023
Cited by 12 | Viewed by 41554
Abstract
Background: The injection of dermal fillers for facial esthetics has become a very popular procedure. Although usually safe in the hands of the experienced user, filler injections may bear a risk of unwanted side effects. Material and Methods: This is a narrative review [...] Read more.
Background: The injection of dermal fillers for facial esthetics has become a very popular procedure. Although usually safe in the hands of the experienced user, filler injections may bear a risk of unwanted side effects. Material and Methods: This is a narrative review of dermal filler migration after facial injections. We performed research on the literature on Pubmed and Google Scholar. Inclusion criteria were observational studies, case reports, and clinical trials which investigated the association of facial filler injections to filler migration. Animal studies have not been considered. Intravascular injections were excluded. Results: We identified 28 reports that met the inclusion criteria. The age range of affected patients was 21 to 86 years (mean ± standard deviation: 47 ± 14.8 years). Women were 25 times more reported than males. Hyaluronic acid and polyalkylimide were the most commonly encountered filler substances. Injections into the nose, lips, nasolabial folds, and forehead (including glabella) are more often reported for filler migration than injections into the cheeks. Tear-trough correction bears a risk for orbital migration. The delay from injection to presentation of filler migration was highly variable. Very late filler migration was more commonly seen with permanent fillers than non-permanent products. Conclusions: Filler migration distant from the injection site can occur even several years after the primary treatment. All filler types can be involved. Permanent fillers bear a higher risk of very late filler migration. Migration of permanent fillers needs surgical treatment, while HA fillers respond to hyaluronidase injections. Detailed knowledge of facial anatomy, safer injection techniques, and filler qualities are preventive measures. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2023)
Show Figures

Figure 1

13 pages, 21121 KB  
Article
Cisplatin-Loaded Thermosensitive Liposomes Functionalized with Hyaluronic Acid: Cytotoxicity and In Vivo Acute Toxicity Evaluation
by Isabela Pereira Gomes, Juliana de Oliveira Silva, Geovanni Dantas Cassali, André Luís Branco De Barros and Elaine Amaral Leite
Pharmaceutics 2023, 15(2), 583; https://doi.org/10.3390/pharmaceutics15020583 - 9 Feb 2023
Cited by 9 | Viewed by 3069
Abstract
Cisplatin (CDDP) is a potent antitumor drug used in first-line chemotherapy against several solid tumors, including breast cancer. However, toxicities and drug resistance limit its clinical application. Thermosensitive liposome (TSL) functionalized with hyaluronic acid (HA) containing cisplatin (TSL-CDDP-HA) was developed by our research [...] Read more.
Cisplatin (CDDP) is a potent antitumor drug used in first-line chemotherapy against several solid tumors, including breast cancer. However, toxicities and drug resistance limit its clinical application. Thermosensitive liposome (TSL) functionalized with hyaluronic acid (HA) containing cisplatin (TSL-CDDP-HA) was developed by our research group aiming to promote the release of CDDP in the tumor region under hyperthermia conditions, as well as to decrease toxicity. Thus, this study aimed to evaluate this new formulation (HA-coated TSL-CDDP) concerning in vitro behavior and in vivo toxicity compared to non-coated TSL-CDDP and free CDDP. Cytotoxicity assays and nuclear morphology were carried out against triple-negative breast cancer cells (MDA-MB-231), while an in vivo toxicity study was performed using healthy Swiss mice. The results showed an increase (around 3-fold) in cytotoxicity of the cationic formulation (non-coated TSL-CDDP) compared to free CDDP. On the other hand, TSL-CDDP treatment induced the appearance of 2.5-fold more senescent cells with alteration of nuclear morphology than the free drug after hyperthermia condition. Furthermore, the association of liposomal formulations treatment with hyperthermia increased the percentage of apoptotic cells compared to those without heating. The percentage of apoptotic cells was 1.7-fold higher for TSL-CDDP-HA than for TSL-CDDP. For the in vivo toxicity data, the TSL-CDDP treatment was also toxic to healthy cells, inducing nephrotoxicity with a significant increase in urea levels compared to the saline control group (73.1 ± 2.4 vs. 49.2 ± 2.8 mg/mL). On the other hand, the HA-coated TSL-CDDP eliminated the damages related to the use of CDDP since the animals did not show changes in hematological and biochemical examinations and histological analyses. Thus, data suggest that this new formulation is a potential candidate for the intravenous therapy of solid tumors. Full article
(This article belongs to the Special Issue Advanced Liposomes for Drug Delivery)
Show Figures

Figure 1

26 pages, 5060 KB  
Review
Recent Progress on Hyaluronan-Based Products for Wound Healing Applications
by Kuncham Sudhakar, Seong min Ji, Madhusudhana Rao Kummara and Sung Soo Han
Pharmaceutics 2022, 14(10), 2235; https://doi.org/10.3390/pharmaceutics14102235 - 19 Oct 2022
Cited by 33 | Viewed by 4959
Abstract
Hyaluronic acid (HA) based nanocomposites are considered excellent for improving wound healing. HA is biocompatible, biodegradable, non-toxic, biologically active, has hemostatic ability, and resists bacterial adhesion. HA-based nanocomposites promote wound healing in four different sequential phases hemostasis, inflammation, proliferation, and maturation. The unique [...] Read more.
Hyaluronic acid (HA) based nanocomposites are considered excellent for improving wound healing. HA is biocompatible, biodegradable, non-toxic, biologically active, has hemostatic ability, and resists bacterial adhesion. HA-based nanocomposites promote wound healing in four different sequential phases hemostasis, inflammation, proliferation, and maturation. The unique biological characteristics of HA enable it to serve as a drug, an antibacterial agent, and a growth factor, which combine to accelerate the healing process. In this review, we focus on the use of HA-based nanocomposites for wound healing applications and we describe the importance of HA for the wound healing process in each sequential phase, such as hemostasis, inflammation, proliferation, and maturation. Metal nanoparticles (MNPs) or metal oxide nanoparticles (MO-NPs) loaded with HA nanocomposite are used for wound healing applications. Insights into important antibacterial mechanisms are described in HA nanocomposites. Furthermore, we explain antibiotics loaded with HA nanocomposite and its combination with the MNPs/MO-NPs used for wound healing applications. In addition, HA derivatives are discussed and used in combination with the other polymers of the composite for the wound healing process, as is the role of the polymer in wound healing applications. Finally, HA-based nanocomposites used for clinical trials in animal models are presented for wound healing applications. Full article
Show Figures

Figure 1

Back to TopTop