Exploring the Potential of Non-Cellular Orthobiologic Products in Regenerative Therapies for Stifle Joint Diseases in Companion Animals
Simple Summary
Abstract
1. Introduction
2. Non-Cellular Orthobiologic Products
2.1. Hyaluronic Acid
Disease Model | Animal | Therapeutic Approach | Findings | Ref |
---|---|---|---|---|
MPL | Dog | Group 1 (n = 12) → 1 intra-articular injection of 0.5–1 mL of sodium hyaluronate (concentration and molecular weight not disclosed) Group 2 (n = 10) → 2 intra-articular injections of 0.5–1 mL of sodium hyaluronate (concentration and molecular weight not disclosed) Control group (n = 9) → No injection | Higher weight-bearing and lower pain on palpation score. Levels of CS-WF6 were lower in the injected group, and the level of serum HA was significantly higher in the non-injected group. No significant difference was shown between one and two injection protocols. | [86] |
CCLR and MPL | Dog | 0.5 mL of HA (5–7.3 × 105 Da) at a concentration of 10 mg/mL Group 1 (n = 21) → 1 intra-articular injection of HA for MPL Group 2 (n = 16) → 1 intra-articular injection of HA for CCLR Control group 1 (n = 10) → 1 intra-articular injection of saline for MPL Control group 2 (n = 7) → 1 intra-articular injection of saline for CCLR | A single intra-articular HA injection had a positive effect on the weight-bearing of dogs with MPL on post-operative days 1 and 7. The lameness score in dogs with MPL, treated with HA injection, was significantly lower than that of the control. In dogs with CCLR, no significant difference was observed between the HA injection group and the control group in terms of clinical outcomes. | [71] |
CCLR | Dog | 2 mL of HA (3 × 105 Da) at a concentration of 10 mg/mL Group HA (n = 21) → 1 intra-articular injection of HA Group PRP (n = 21) → 1 intra-articular injection of PRP Control group (n = 20) → no injection | No additive effect on accelerating recovery with the intra-articular injection of HA. | [87] |
Induced OA by CCL transection | Dog | Group HA (n = 7) → 1 intra-articular injection of 10 mg of HA (1.5 × 106 Da) in 0.67 mL of saline Control group (n = 7) → 1 intra-articular injection of 0.67 mL of saline | Intra-articular injection of HA did not alter the volume of SF, nor did it affect the molecular weight or concentration of HA in the stifle joints. | [88] |
Spontaneous OA | Dog | 1 mL of HA for dogs weighing less than 10 kg and 2 mL for dogs weighing more than 10 kg (concentration and molecular weight not disclosed) Group 1 (n = 17) → 1 intra-articular injection of HA Group 2 (n = 13) → 3 intra-articular injections of HA | Intra-articular HA improves clinical symptoms in dogs with spontaneous OA, and a single injection produced comparable results to three weekly injections. | [90] |
Spontaneous OA | Dog | Group 1 (n = 20) → 2 intra-articular injections of 3 to 18 mg of HA (4 × 106 Da) (concentration not disclosed) Group 2 (n = 16) → carprofen (NSAID) orally, twice a day | The effect of one to three HA injections on joint inflammation can last between 6 and 12 months, suggesting that periodic intra-articular treatments can have the potential to maintain the function of arthritic joints. | [89] |
Induced arthritis | Cat | n = 20 (no information regarding distribution) Group HA → 1 intra-articular injection of 0.8% elastoviscous hylan (0.5–3 × 106 Da) in physiological buffer solution Control group → 1 intra-articular injection of 0.8% non-elastoviscous hylan (0.5–3 × 106 Da) in physiological buffer solution | Injection of elastoviscous hylan in the inflamed knee joint significantly reduced the inflammation-evoked ongoing and movement-evoked nerve discharges. | [91] |
2.2. Hemoderivatives
2.2.1. Platelet Concentrates
Disease Model | Animals | Therapeutic Approach | Findings | Ref |
---|---|---|---|---|
Stifle degenerative disease secondary to CCLR | Dog | (1013 ± 431 × 103 platelets/μL—3 fold increase) Group 1 (n = 12) → 4 intra-articular injections of 2 mL of PRP Control group (n = 10) → No injection | The dogs demonstrated improved locomotion, associated with reduced lameness and gait disability remaining effective over a period of 3–6 months. | [122] |
Spontaneous CCLR | Dog | (433.5 × 103 platelets/μL and 362 × 103 platelets/μL) Group 1 (n = 4) → 1 intra-articular injection of 2 mL of PRP Control group (n = 4) → 1 intra-articular injection of 2 mL of saline | PRP reduced inflammation by decreasing TNF-α levels. | [120] |
CCLR | Dog | (Plaletet concentration not disclosed) Group 1 (n = 21) → 1 intra-articular injection of HA Group 2 (n = 21) → 1 intra-articular injection of 2 mL of PRP Control group (n = 20) → no injection | No additive effect on recovery speed was demonstrated with the intra-articular injection of PRP. | [87] |
CCLR | Dog | (Platelet concentration factor was 6.4 ± 0.82) intra-articular application of PRP-collagen hydrogel (n = 29) | A single application of PRP-collagen did not significantly alter the progression of the disease. | [127] |
CCLR and MPL | Dog | (Plaletet concentration not disclosed) Group 1 (n = 6) → 1 intra-articular injection of 2 mL of PRP for CCLR Control group 1 (n = 6) → 2 mg/kg of NSAID orally daily for CCLR Group 2 (n = 5) → 1 intra-articular injection of 2 mL of PRP for MPL Control group 2 (n = 5) → 2 mg/kg of NSAIDs orally daily for MPL | Groups treated with PRP demonstrated significantly decreased levels of TNF-α, while the NSAID group had increased levels. | [119] |
CCL transection and meniscal release | Dog | (Plaletet concentration not disclosed) Group 1 (n = 6) → 5 intra-articular injections of 2 mL of PRP Control group (n = 6) → 5 intra-articular injections of 2 mL of saline | PRP group had significantly less pain, significantly improved lameness and significantly higher function in affected hindlimbs. PRP-treated stifles also showed evidence of CCL repair and less severe synovitis. | [124] |
Meniscal white-white zone injury | Dog | (1368.67 ±52.51 × 109 platelets/L) Group 1 (n = 6) → 1 intra-articular injection of 2 mL of PRP Group 2 (n = 6) → 1 intra-articular injection of 2 mL of MSCs Group 3 (n = 6) → 1 intra-articular injection of 2 mL of PRP plus MSCs Control group (n = 6) → 1 intra-articular injection of 2 mL of saline | The application of PRP alone or in combination with MSCs promoted the clinical healing of meniscal white-white zone injury, increased the proliferation of MSCs, upregulated collagens’ expressions, and downregulated osteopontin in SF. | [121] |
OA due to ruptured, non-stabilized CCL | Dog | (Plaletet concentration not disclosed) Group 1 → 1 intra-articular injection of 2.5 mL of PRP Control group → No injection | A single injection of PRP improved kinetics for a minimum of 4 weeks with some data suggesting an effect of up to 12 weeks. | [116] |
Spontaneous OA | Dog | (739,000 ± 365,000 platelets/µL—3 fold increase) Group 1 (n = 10) → 1 intra-articular injection of platelets Control group (n = 9) → 1 intra-articular injection of saline | Platelet-injected dogs had significantly improved lameness scores, pain scores, and peak vertical force after 12 weeks, compared with pretreatment values. | [117] |
Surgically induced OA | Dog | (Plaletet concentration not disclosed) Group 1 (n = 6) → 4 intra-articular injections of 1 mL of PRP Group 2 (n = 6) → 4 intra-articular injections of 1.0 × 107 MSCs in 1 mL of PBS Group 3 (n = 6) → 4 intra-articular injections of 1.0 × 107 MSCs in 1 mL of PRP Control group (n = 6) → 4 intra-articular injections of 1 mL of PBS | The lameness score was significantly decreased at 2 months after treatment in the PRP group, with the study suggesting PRP might have a beneficial effect on OA via the stimulation of ECM synthesis, chondrocyte proliferation, and inhibition of inflammatory reaction. | [123] |
Spontaneous OA | Dog | (1.42 × 106/µL concentration of platelets—3 to 4-fold increase) Group 1 (n = 14) → 1 intra-articular injection of 3–5 mL of PRP Control group (n = 6) → 1 intra-articular injection of 3–5 mL of saline | No significant changes were observed in IL-1β, IL-6, IL-10, TNF-α, and PG-E2 levels in SF from the PRP-treated group, although clinical improvement was observed. | [126] |
Surgically created osteochondral defect | Dog | (2 × 106/µL concentration of platelets—5.3 fold increase) Group 1 (n = 4) → 1 intra-articular injection of 1.5 mL of PRP and a contralateral intra-articular injection of 1.5 mL of saline Group 2 (n = 4) → 1 intra-articular injection of 1.5 mL of SVF and a contralateral intra-articular injection of 1.5 mL of saline Group 3 (n = 4) → 1 intra-articular injection of 1.5 mL (2 mg/mL) of SVF plus PLGA scaffolding and a contralateral intra-articular injection of 1.5 mL of saline | PRP treatment resulted in improvements in the lameness scores and objective kinetic assessments of function. | [118] |
Osteochondritis Dissecans and OA | Horse (n = 7) | (Plaletet concentration not disclosed) Group 1 → 4 intra-articular injections of autologous PC Control group → None | There were significant improvements in lameness scores and joint effusion, leading to an eight-month-long sustained improvement in joint function. | [125] |
2.2.2. Non-Platelet Hemoderivatives—Interleukin-1 Receptor Antagonist Protein (IRAP or IL-1-Ra), Autologous Conditioned Serum (ACS), and Autologous Protein Solution (APS)
Disease Model | Animals | Mode of Application | Findings | Ref |
---|---|---|---|---|
Surgically-induced OA | Dog | Group 1 (n = 6) → 8 intra-articular injections of 2 mg of IRAP Group 2 (n = 5) → 8 intra-articular injections of 4 mg of IRAP Control group (n = 5) → 8 intra-articular injections of saline | IRAP exerted a dose-dependent protective effect on the development of osteophytes and cartilage lesions. | [141] |
Spontaneous OA | Horse | Group 1 (n = 6) → 3 intra-articular injections of ACS at weekly intervals Group 2 (n = 6) → 3 intra-articular injections of ACS at two-day intervals | Intra-articular injection of ACS lead to a reduction in joint inflammation and cartilage degrading processes. | [148] |
Spontaneous OA | Dog | Group 1 (n = 10) → 1 intra-articular injection of APS Control group (n = 10) → 1 intra-articular injection of saline | APS reduced pain and lameness scores and increased weight-bearing associated with the OA-affected joint at 12 weeks. | [152] |
Spontaneous OA | Horse | Group 1 (n = 20) → 1 intra-articular injection of APS Control group (n = 20) → 1 intra-articular injection of saline | The APS group had significant improvements in lameness score, asymmetry indices of vertical peak force, and range of joint motion by 14 days compared with baseline or control group values. | [153] |
Spontaneous articular lameness | Horse | Group 1 (n = 6) → 3 intra-articular injections of ACS at approximately 2-week intervals | Higher levels of IL-1Ra and IGF-1 | [150] |
2.3. Secretome
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Engdahl, K.; Hanson, J.; Bergström, A.; Bonnett, B.; Höglund, O.; Emanuelson, U. The Epidemiology of Stifle Joint Disease in an Insured Swedish Dog Population. Vet. Rec. 2021, 189, e197. [Google Scholar] [CrossRef] [PubMed]
- Sharun, K.; Muthu, S.; Mankuzhy, P.D.; Pawde, A.M.; Chandra, V.; Lorenzo, J.M.; Dhama, K.; Amarpal; Sharma, G.T. Cell-Free Therapy for Canine Osteoarthritis: Current Evidence and Prospects. Vet. Q. 2022, 42, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Henrotin, Y.; Sanchez, C.; Balligand, M. Pharmaceutical and Nutraceutical Management of Canine Osteoarthritis: Present and Future Perspectives. Vet. J. 2005, 170, 113–123. [Google Scholar] [CrossRef]
- Taylor-Brown, F.E.; Meeson, R.L.; Brodbelt, D.C.; Church, D.B.; McGreevy, P.D.; Thomson, P.C.; O’Neill, D.G. Epidemiology of Cranial Cruciate Ligament Disease Diagnosis in Dogs Attending Primary-Care Veterinary Practices in England. Vet. Surg. 2015, 44, 777–783. [Google Scholar] [CrossRef]
- Harasen, G. Feline Cruciate Rupture. Can. Vet. J. 2007, 48, 639–640. [Google Scholar]
- Boge, G.S.; Engdahl, K.; Moldal, E.R.; Bergström, A. Cranial Cruciate Ligament Disease in Cats: An Epidemiological Retrospective Study of 50 Cats (2011–2016). J. Feline Med. Surg. 2020, 22, 277–284. [Google Scholar] [CrossRef]
- Niebauer, G.W.; Restucci, B. Etiopathogenesis of Canine Cruciate Ligament Disease: A Scoping Review. Animals 2023, 13, 187. [Google Scholar] [CrossRef]
- Cook, J.L. Cranial Cruciate Ligament Disease in Dogs: Biology versus Biomechanics. Vet. Surg. 2010, 39, 270–277. [Google Scholar] [CrossRef]
- Reardon, R.; Lischer, C. Diagnosis and Management of Acute Stifle Injury in Adult Horses. Practice 2008, 30, 426–433. [Google Scholar] [CrossRef]
- Lascelles, B.D.X. Feline Degenerative Joint Disease. Vet. Surg. 2010, 39, 2–13. [Google Scholar] [CrossRef]
- Tashman, S.; Anderst, W.; Kolowich, P.; Havstad, S.; Arnoczky, S. Kinematics of the ACL-deficient Canine Knee during Gait: Serial Changes over Two Years. J. Orthop. Res. 2004, 22, 931–941. [Google Scholar] [CrossRef] [PubMed]
- Ruthrauff, C.M.; Glerum, L.E.; Gottfried, S.D. Incidence of Meniscal Injury in Cats with Cranial Cruciate Ligament Ruptures. Can. Vet. J. 2011, 52, 1106–1110. [Google Scholar] [PubMed]
- Hayes, G.M.; Langley-Hobbs, S.J.; Jeffery, N.D. Risk Factors for Medial Meniscal Injury in Association with Cranial Cruciate Ligament Rupture. J. Small Anim. Pract. 2010, 51, 630–634. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, L.; Østergaard, E.; Jensen, J.J.; Miles, J.E.; Buelund, L.E. Diagnosis of Medial Meniscal Lesions in the Canine Stifle Using Multidetector Computed Tomographic Positive-contrast Arthrography. Vet. Surg. 2024, 53, 75–83. [Google Scholar] [CrossRef]
- Beale, B. Feline Arthroscopy. In Feline Orthopedic Surgery and Musculoskeletal Disease; Elsevier: Amsterdam, The Netherlands, 2009; pp. 283–307. [Google Scholar] [CrossRef]
- Walmsley, J.P. Diagnosis and Treatment of Ligamentous and Meniscal Injuries in the Equine Stifle. Vet. Clin. N. Am. Equine Pract. 2005, 21, 651–672. [Google Scholar] [CrossRef]
- Flo, G.L. Meniscal Injuries. Vet. Clin. N. Am. Small Anim. Pract. 1993, 23, 831–843. [Google Scholar] [CrossRef]
- Freire, M.; Brown, J.; Robertson, I.D.; Pease, A.P.; Hash, J.; Hunter, S.; Simpson, W.; Thomson Sumrell, A.; Lascelles, B.D.X. Meniscal Mineralization in Domestic Cats. Vet. Surg. 2010, 39, 545–552. [Google Scholar] [CrossRef]
- Rutherford, L.; Langley-Hobbs, S.J.; Whitelock, R.J.; Arthurs, G.I. Complications Associated with Corrective Surgery for Patellar Luxation in 85 Feline Surgical Cases. J. Feline Med. Surg. 2015, 17, 312–317. [Google Scholar] [CrossRef]
- Loughin, C.A.; Kerwin, S.C.; Hosgood, G.; Ringwood, P.B.; Williams, J.; Stefanacci, J.D.; McCarthy, R.J. Clinical Signs and Results of Treatment in Cats with Patellar Luxation: 42 Cases (1992–2002). J. Am. Vet. Med. Assoc. 2006, 228, 1370–1375. [Google Scholar] [CrossRef]
- Roy, R.G.; Wallace, L.J.; Johnston, G.R.; Wickstrom, S.L. A Retrospective Evaluation of Stifle Osteoarthritis in Dogs with Bilateral Medial Patellar Luxation and Unilateral Surgical Repair. Vet. Surg. 1992, 21, 475–479. [Google Scholar] [CrossRef]
- Alam, M.R.; Ji, J.R.; Kim, M.S.; Kim, N.S. Biomarkers for Identifying the Early Phases of Osteoarthritis Secondary to Medial Patellar Luxation in Dogs. J. Vet. Sci. 2011, 12, 273. [Google Scholar] [CrossRef] [PubMed]
- Pentecost, R.; Niehaus, A. Stifle Disorders. Vet. Clin. North Am. Food Anim. Pract. 2014, 30, 265–281. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.L.; O’Neill, D.G.; Brodbelt, D.C.; Church, D.B.; Meeson, R.L.; Sargan, D.; Summers, J.F.; Zulch, H.; Collins, L.M. Prevalence, Duration and Risk Factors for Appendicular Osteoarthritis in a UK Dog Population under Primary Veterinary Care. Sci. Rep. 2018, 8, 5641. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Flores, G.I.; Del Angel-Caraza, J.; Quijano-Hernández, I.A.; Hulse, D.A.; Beale, B.S.; Victoria-Mora, J.M. Correlation between Osteoarthritic Changes in the Stifle Joint in Dogs and the Results of Orthopedic, Radiographic, Ultrasonographic and Arthroscopic Examinations. Vet. Res. Commun. 2017, 41, 129–137. [Google Scholar] [CrossRef]
- Thoene, M.; Bejer-Olenska, E.; Wojtkiewicz, J. The Current State of Osteoarthritis Treatment Options Using Stem Cells for Regenerative Therapy: A Review. Int. J. Mol. Sci. 2023, 24, 8925. [Google Scholar] [CrossRef]
- Menarim, B.C.; Gillis, K.H.; Oliver, A.; Ngo, Y.; Werre, S.R.; Barrett, S.H.; Rodgerson, D.H.; Dahlgren, L.A. Macrophage Activation in the Synovium of Healthy and Osteoarthritic Equine Joints. Front. Vet. Sci. 2020, 7, 568756. [Google Scholar] [CrossRef]
- Mathiessen, A.; Conaghan, P.G. Synovitis in Osteoarthritis: Current Understanding with Therapeutic Implications. Arthritis Res. Ther. 2017, 19, 18. [Google Scholar] [CrossRef]
- Hügle, T.; Geurts, J. What Drives Osteoarthritis?—Synovial versus Subchondral Bone Pathology. Rheumatology 2016, 56, kew389. [Google Scholar] [CrossRef]
- Szponder, T.; Latalski, M.; Danielewicz, A.; Krać, K.; Kozera, A.; Drzewiecka, B.; Nguyen Ngoc, D.; Dobko, D.; Wessely-Szponder, J. Osteoarthritis: Pathogenesis, Animal Models, and New Regenerative Therapies. J. Clin. Med. 2022, 12, 5. [Google Scholar] [CrossRef]
- van der Kraan, P.M.; van den Berg, W.B. Osteophytes: Relevance and Biology. Osteoarthr. Cartil. 2007, 15, 237–244. [Google Scholar] [CrossRef]
- Rychel, J.K. Diagnosis and Treatment of Osteoarthritis. Top. Companion Anim. Med. 2010, 25, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Epstein, M.E.; Rodanm, I.; Griffenhagen, G.; Kadrlik, J.; Petty, M.C.; Robertson, S.A.; Simpson, W. 2015 AAHA/AAFP Pain Management Guidelines for Dogs and Cats. J. Feline Med. Surg. 2015, 17, 251–272. [Google Scholar] [CrossRef] [PubMed]
- Bennett, D.; Zainal Ariffin, S.M.B.; Johnston, P. Osteoarthritis in the Cat: 1. How Common Is It and How Easy to Recognise? J. Feline Med. Surg. 2012, 14, 65–75. [Google Scholar] [CrossRef]
- Jones, G.M.C.; Pitsillides, A.A.; Meeson, R.L. Moving Beyond the Limits of Detection: The Past, the Present, and the Future of Diagnostic Imaging in Canine Osteoarthritis. Front. Vet. Sci. 2022, 9, 789898. [Google Scholar] [CrossRef]
- Kuroki, K.; Cook, J.L.; Kreeger, J.M. Mechanisms of Action and Potential Uses of Hyaluronan in Dogs with Osteoarthritis. J. Am. Vet. Med. Assoc. 2002, 221, 944–950. [Google Scholar] [CrossRef]
- Hardie, E.M.; Roe, S.C.; Martin, F.R. Radiographic Evidence of Degenerative Joint Disease in Geriatric Cats: 100 Cases (1994–1997). J. Am. Vet. Med. Assoc. 2002, 220, 628–632. [Google Scholar] [CrossRef]
- Lascelles, B.D.X.; Henry, J.B., III; Brown, J.; Robertson, I.; Sumrell, A.T.; Simpson, W.; Wheeler, S.; Hansen, B.D.; Zamprogno, H.; Freire, M.; et al. Cross-Sectional Study of the Prevalence of Radiographic Degenerative Joint Disease in Domesticated Cats. Vet. Surg. 2010, 39, 535–544. [Google Scholar] [CrossRef]
- Mayet, A.; Zablotski, Y.; Roth, S.P.; Brehm, W.; Troillet, A. Systematic Review and Meta-Analysis of Positive Long-Term Effects after Intra-Articular Administration of Orthobiologic Therapeutics in Horses with Naturally Occurring Osteoarthritis. Front. Vet. Sci. 2023, 10, 1125695. [Google Scholar] [CrossRef]
- Companion Animal Arthritis Market Size & Share|Report—2031. Available online: https://www.alliedmarketresearch.com/companion-animal-arthritis-market-A31361 (accessed on 17 May 2024).
- Spitznagel, M.B.; Jacobson, D.M.; Cox, M.D.; Carlson, M.D. Caregiver Burden in Owners of a Sick Companion Animal: A Cross-sectional Observational Study. Vet. Rec. 2017, 181, 321. [Google Scholar] [CrossRef]
- Tietze, D.C.; Geissler, K.; Borchers, J. The Effects of Platelet-Rich Plasma in the Treatment of Large-Joint Osteoarthritis: A Systematic Review. Phys. Sportsmed. 2014, 42, 27–37. [Google Scholar] [CrossRef]
- Bland, S.D. Canine Osteoarthritis and Treatments: A Review. Vet. Sci. Dev. 2015, 5, 84–89. [Google Scholar] [CrossRef]
- Catarino, J.; Carvalho, P.; Santos, S.; Martins, Â.; Requicha, J. Treatment of Canine Osteoarthritis with Allogeneic Platelet-Rich Plasma: Review of Five Cases. Open Vet. J. 2020, 10, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Pye, C.; Clark, N.; Bruniges, N.; Peffers, M.; Comerford, E. Current Evidence for Non-pharmaceutical, Non-surgical Treatments of Canine Osteoarthritis. J. Small Anim. Pract. 2024, 65, 3–23. [Google Scholar] [CrossRef] [PubMed]
- Hashemi-Afzal, F.; Fallahi, H.; Bagheri, F.; Collins, M.N.; Eslaminejad, M.B.; Seitz, H. Advancements in Hydrogel Design for Articular Cartilage Regeneration: A Comprehensive Review. Bioact. Mater. 2025, 43, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Beddoes, C.; Whitehouse, M.; Briscoe, W.; Su, B. Hydrogels as a Replacement Material for Damaged Articular Hyaline Cartilage. Materials 2016, 9, 443. [Google Scholar] [CrossRef]
- Gupta, A.; Lee, J.; Ghosh, T.; Nguyen, V.Q.; Dey, A.; Yoon, B.; Um, W.; Park, J.H. Polymeric Hydrogels for Controlled Drug Delivery to Treat Arthritis. Pharmaceutics 2022, 14, 540. [Google Scholar] [CrossRef]
- de Clifford, L.T.; Lowe, J.N.; McKellar, C.D.; Bolwell, C.; David, F. Use of a 2.5% Cross-Linked Polyacrylamide Hydrogel in the Management of Joint Lameness in a Population of Flat Racing Thoroughbreds: A Pilot Study. J. Equine Vet. Sci. 2019, 77, 57–62. [Google Scholar] [CrossRef]
- Christensen, L.; Camitz, L.; Illigen, K.E.; Hansen, M.; Sarvaa, R.; Conaghan, P.G. Synovial Incorporation of Polyacrylamide Hydrogel after Injection into Normal and Osteoarthritic Animal Joints. Osteoarthr. Cartil. 2016, 24, 1999–2002. [Google Scholar] [CrossRef]
- Tnibar, A.; Schougaard, H.; Camitz, L.; Rasmussen, J.; Koene, M.; Jahn, W.; Markussen, B. An International Multi-Centre Prospective Study on the Efficacy of an Intraarticular Polyacrylamide Hydrogel in Horses with Osteoarthritis: A 24 Months Follow-Up. Acta Vet. Scand. 2015, 57, 20. [Google Scholar] [CrossRef]
- Lowe, J.; de Clifford, L.; Julian, A.; Koene, M. Histologic and Cytologic Changes in Normal Equine Joints after Injection with 2.5% Injectable Polyacrylamide Hydrogel Reveal Low-Level Macrophage-Driven Foreign Body Response. J. Am. Vet. Med. Assoc. 2024, 262, 647–649. [Google Scholar] [CrossRef]
- Brahm, J.; Lessel, R.; Ditlev, S.; Schmidt, R. Flux of Selected Body Fluid Constituents and Benzylpenicillin in Polyacrylamide Hydrogel (PAAG). J. Tissue Eng. Regen. Med. 2012, 6, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Zarini, E.; Supino, R.; Pratesi, G.; Laccabue, D.; Tortoreto, M.; Scanziani, E.; Ghisleni, G.; Paltrinieri, S.; Tunesi, G.; Nava, M. Biocompatibility and Tissue Interactions of a New Filler Material for Medical Use. Plast. Reconstr. Surg. 2004, 114, 934–942. [Google Scholar] [CrossRef] [PubMed]
- Reis, I.L.; Lopes, B.; Sousa, P.; Sousa, A.C.; Caseiro, A.R.; Mendonça, C.M.; Santos, J.M.; Atayde, L.M.; Alvites, R.D.; Maurício, A.C. Equine Musculoskeletal Pathologies: Clinical Approaches and Therapeutical Perspectives—A Review. Vet. Sci. 2024, 11, 190. [Google Scholar] [CrossRef]
- Herman, K.; Gobbi, A. Evidence-Based Approach to Orthobiologics for Osteoarthritis and Other Joint Disorders. Phys. Med. Rehabil. Clin. N. Am. 2023, 34, 71–81. [Google Scholar] [CrossRef]
- Mavrogenis, A.F.; Karampikas, V.; Zikopoulos, A.; Sioutis, S.; Mastrokalos, D.; Koulalis, D.; Scarlat, M.M.; Hernigou, P. Orthobiologics: A Review. Int. Orthop. 2023, 47, 1645–1662. [Google Scholar] [CrossRef]
- Bogers, S.H. Cell-Based Therapies for Joint Disease in Veterinary Medicine: What We Have Learned and What We Need to Know. Front. Vet. Sci. 2018, 5, 342236. [Google Scholar] [CrossRef]
- Umar, A.K. Stem Cell’s Secretome Delivery Systems. Adv. Pharm. Bull. 2023, 13, 244–258. [Google Scholar] [CrossRef]
- Hu, X.; Xia, Z.; Cai, K. Recent Advances in 3D Hydrogel Culture Systems for Mesenchymal Stem Cell-Based Therapy and Cell Behavior Regulation. J. Mater. Chem. B 2022, 10, 1486–1507. [Google Scholar] [CrossRef]
- Tan, L.; Liu, X.; Dou, H.; Hou, Y. Characteristics and Regulation of Mesenchymal Stem Cell Plasticity by the Microenvironment —Specific Factors Involved in the Regulation of MSC Plasticity. Genes. Dis. 2022, 9, 296–309. [Google Scholar] [CrossRef]
- Keating, A. Mesenchymal Stromal Cells. Curr. Opin. Hematol. 2006, 13, 419–425. [Google Scholar] [CrossRef]
- Harman, R.M.; Marx, C.; Van de Walle, G.R. Translational Animal Models Provide Insight Into Mesenchymal Stromal Cell (MSC) Secretome Therapy. Front. Cell Dev. Biol. 2021, 9, 654885. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Baptista, C.; Ferreira, R.; Fernandes, M.H.; Gomes, P.S.; Colaço, B. Influence of the Anatomical Site on Adipose Tissue-Derived Stromal Cells’ Biological Profile and Osteogenic Potential in Companion Animals. Vet. Sci. 2023, 10, 673. [Google Scholar] [CrossRef] [PubMed]
- Cassano, J.M.; Kennedy, J.G.; Ross, K.A.; Fraser, E.J.; Goodale, M.B.; Fortier, L.A. Bone Marrow Concentrate and Platelet-Rich Plasma Differ in Cell Distribution and Interleukin 1 Receptor Antagonist Protein Concentration. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 333–342. [Google Scholar] [CrossRef]
- Fortier, L.A. Equine Bone Marrow Aspirate Concentrate. Vet. Clin. N. Am. Equine Pract. 2023, 39, 453–459. [Google Scholar] [CrossRef]
- Maleas, G.; Mageed, M. Effectiveness of Platelet-Rich Plasma and Bone Marrow Aspirate Concentrate as Treatments for Chronic Hindlimb Proximal Suspensory Desmopathy. Front. Vet. Sci. 2021, 8, 678453. [Google Scholar] [CrossRef]
- Maqsood, M.; Kang, M.; Wu, X.; Chen, J.; Teng, L.; Qiu, L. Adult Mesenchymal Stem Cells and Their Exosomes: Sources, Characteristics, and Application in Regenerative Medicine. Life Sci. 2020, 256, 118002. [Google Scholar] [CrossRef]
- Pawitan, J.A. Prospect of Stem Cell Conditioned Medium in Regenerative Medicine. Biomed. Res. Int. 2014, 2014, 965849. [Google Scholar] [CrossRef]
- Arifka, M.; Wilar, G.; Elamin, K.M.; Wathoni, N. Polymeric Hydrogels as Mesenchymal Stem Cell Secretome Delivery System in Biomedical Applications. Polymers 2022, 14, 1218. [Google Scholar] [CrossRef]
- Trairatthanom, J.; Trairatthanom, S.; Thengchaisri, N. A Retrospective Study of the Effect of Single Dose Intra-Articular Hyaluronic Acid Injection on Postoperative Recovery in Dogs Undergoing Stifle Surgery. Thai J. Vet. Med. 2019, 49, 319–326. [Google Scholar] [CrossRef]
- Chavda, S.; Rabbani, S.A.; Wadhwa, T. Role and Effectiveness of Intra-Articular Injection of Hyaluronic Acid in the Treatment of Knee Osteoarthritis: A Systematic Review. Cureus 2022, 14, e24503. [Google Scholar] [CrossRef]
- Wu, Y.-Z.; Huang, H.-T.; Ho, C.-J.; Shih, C.-L.; Chen, C.-H.; Cheng, T.-L.; Wang, Y.-C.; Lin, S.-Y. Molecular Weight of Hyaluronic Acid Has Major Influence on Its Efficacy and Safety for Viscosupplementation in Hip Osteoarthritis: A Systematic Review and Meta-Analysis. Cartilage 2021, 13 (Suppl. S1), 169S–184S. [Google Scholar] [CrossRef] [PubMed]
- Jerosch, J. Effects of Glucosamine and Chondroitin Sulfate on Cartilage Metabolism in OA: Outlook on Other Nutrient Partners Especially Omega-3 Fatty Acids. Int. J. Rheumatol. 2011, 2011, 969012. [Google Scholar] [CrossRef] [PubMed]
- Kawano, T.; Miura, H.; Mawatari, T.; Moro-Oka, T.; Nakanishi, Y.; Higaki, H.; Iwamoto, Y. Mechanical Effects of the Intraarticular Administration of High Molecular Weight Hyaluronic Acid plus Phospholipid on Synovial Joint Lubrication and Prevention of Articular Cartilage Degeneration in Experimental Osteoarthritis. Arthritis Rheum. 2003, 48, 1923–1929. [Google Scholar] [CrossRef] [PubMed]
- Williams, V.S. Intraarticular Hyaluronic Acid Supplementation in the Horse: The Role of Molecular Weight. J. Equine Vet. Sci. 2007, 27, 298–303. [Google Scholar] [CrossRef]
- Kim, S.; Elam, L.; Johnson, V.; Hess, A.; Webb, T.; Dow, S.; Duerr, F. Intra-Articular Injections of Allogeneic Mesenchymal Stromal Cells vs. High Molecular Weight Hyaluronic Acid in Dogs With Osteoarthritis: Exploratory Data From a Double-Blind, Randomized, Prospective Clinical Trial. Front. Vet. Sci. 2022, 9, 890704. [Google Scholar] [CrossRef]
- Asari, A.; Miyauchi, S.; Matsuzaka, S.; Ito, T.; Kominami, E.; Uchiyama, Y. Molecular Weight-Dependent Effects of Hyaluronate on the Arthritic Synovium. Arch. Histol. Cytol. 1998, 61, 125–135. [Google Scholar] [CrossRef]
- Kawcak, C.E.; Frisbie, D.D.; Trotter, G.W.; McIlwraith, C.W.; Gillette, S.M.; Powers, B.E.; Walton, R.M. Effects of Intravenous Administration of Sodium Hyaluronate on Carpal Joints in Exercising Horses after Arthroscopic Surgery and Osteochondral Fragmentation. Am. J. Vet. Res. 1997, 58, 1132–1140. [Google Scholar] [CrossRef]
- Chevalier, X.; Jerosch, J.; Goupille, P.; van Dijk, N.; Luyten, F.P.; Scott, D.L.; Bailleul, F.; Pavelka, K. Single, Intra-Articular Treatment with 6 Ml Hylan G-F 20 in Patients with Symptomatic Primary Osteoarthritis of the Knee: A Randomised, Multicentre, Double-Blind, Placebo Controlled Trial. Ann. Rheum. Dis. 2010, 69, 113–119. [Google Scholar] [CrossRef]
- Raman, R.; Dutta, A.; Day, N.; Sharma, H.K.; Shaw, C.J.; Johnson, G.V. Efficacy of Hylan G-F 20 and Sodium Hyaluronate in the Treatment of Osteoarthritis of the Knee—A Prospective Randomized Clinical Trial. Knee 2008, 15, 318–324. [Google Scholar] [CrossRef]
- Leighton, R.; Åkermark, C.; Therrien, R.; Richardson, J.B.; Andersson, M.; Todman, M.G.; Arden, N.K. NASHA Hyaluronic Acid vs Methylprednisolone for Knee Osteoarthritis: A Prospective, Multi-Centre, Randomized, Non-Inferiority Trial. Osteoarthr. Cartil. 2014, 22, 17–25. [Google Scholar] [CrossRef]
- Altman, R.D.; Åkermark, C.; Beaulieu, A.D.; Schnitzer, T. Efficacy and Safety of a Single Intra-Articular Injection of Non-Animal Stabilized Hyaluronic Acid (NASHA) in Patients with Osteoarthritis of the Knee. Osteoarthr. Cartil. 2004, 12, 642–649. [Google Scholar] [CrossRef] [PubMed]
- Dougados, M.; Nguyen, M.; Listrat, V.; Amor, B. High Molecular Weight Sodium Hyaluronate (Hyalectin) in Osteoarthritis of the Knee: A 1 Year Placebo-Controlled Trial. Osteoarthr. Cartil. 1993, 1, 97–103. [Google Scholar] [CrossRef]
- Rydell, N.; Balazs, E.A. Effect of Intra-Articular Injection of Hyaluronic Acid on the Clinical Symptoms of Osteoarthritis and on Granulation Tissue Formation. Clin. Orthop. Relat. Res. 1971, 80, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Nganvongpanit, K.; Boonsri, B.; Sripratak, T.; Markmee, P. Effects of One-Time and Two-Time Intra-Articular Injection of Hyaluronic Acid Sodium Salt after Joint Surgery in Dogs. J. Vet. Sci. 2013, 14, 215. [Google Scholar] [CrossRef] [PubMed]
- Volz, F.; Eberle, D.; Kornmayer, M.; Zablotski, Y.; Meyer-Lindenberg, A. Effect of Intra-articular Platelet-rich Plasma or Hyaluronic Acid on Limb Function Recovery in Dogs with TPLO for Cranial Cruciate Ligament Rupture: A Randomised Controlled Trial. J. Small Anim. Pract. 2024, 65, 223–233. [Google Scholar] [CrossRef]
- Smith, G.N.; Mickler, E.A.; Myers, S.L.; Brandt, K.D. Effect of Intraarticular Hyaluronan Injection on Synovial Fluid Hyaluronan in the Early Stage of Canine Post-Traumatic Osteoarthritis. J. Rheumatol. 2001, 28, 1341–1346. [Google Scholar]
- Hellström, L.; Carlsson, C.; Boucher, J.F.; Michanek, P. Intra-articular Injections with High Molecular Weight Sodium Hyaluronate as a Therapy for Canine Arthritis. Vet. Rec. 2003, 153, 89–90. [Google Scholar] [CrossRef]
- Lee, E.; Lee, M.-I.; Kim, S.; Kang, B.-J. Spontaneous Osteoarthritis in Dogs—Clinical Effects of Single and Multiple Intra-Articular Injections of Hyaluronic Acid. Acta Sci. Vet. 2023, 51, 1–9. [Google Scholar] [CrossRef]
- Pozo, M.A.; Balazs, E.A.; Belmonte, C. Reduction of Sensory Responses to Passive Movements of Inflamed Knee Joints by Hylan, a Hyaluronan Derivative. Exp. Brain Res. 1997, 116, 3–9. [Google Scholar] [CrossRef]
- Gaustad, G.; Larsen, S. Comparison of Polysulphated Glycosaminoglycan and Sodium Hyaluronate with Placebo in Treatment of Traumatic Arthritis in Horses. Equine Vet. J. 1995, 27, 356–362. [Google Scholar] [CrossRef]
- de Clifford, L.T.; Lowe, J.N.; McKellar, C.D.; McGowan, C.; David, F. A Double-Blinded Positive Control Study Comparing the Relative Efficacy of 2.5% Polyacrylamide Hydrogel (PAAG) Against Triamcinolone Acetonide (TA) And Sodium Hyaluronate (HA) in the Management of Middle Carpal Joint Lameness in Racing Thoroughbreds. J. Equine Vet. Sci. 2021, 107, 103780. [Google Scholar] [CrossRef] [PubMed]
- Frisbie, D.D.; Kawcak, C.E.; McIlwraith, C.W.; Werpy, N.M. Evaluation of Polysulfated Glycosaminoglycan or Sodium Hyaluronan Administered Intra-Articularly for Treatment of Horses with Experimentally Induced Osteoarthritis. Am. J. Vet. Res. 2009, 70, 203–209. [Google Scholar] [CrossRef]
- Gingerich, D.A.; Auer, J.A.; Fackelman, G.E. Effect of Exogenous Hyaluronic Acid on Joint Function in Experimentally Induced Equine Osteoarthritis: Dosage Titration Studies. Res. Vet. Sci. 1981, 30, 192–197. [Google Scholar] [CrossRef]
- Giannotti, L.; Di Chiara Stanca, B.; Spedicato, F.; Nitti, P.; Damiano, F.; Demitri, C.; Calabriso, N.; Carluccio, M.A.; Palermo, A.; Siculella, L.; et al. Progress in Regenerative Medicine: Exploring Autologous Platelet Concentrates and Their Clinical Applications. Genes 2023, 14, 1669. [Google Scholar] [CrossRef]
- Brossi, P.M.; Moreira, J.J.; Machado, T.S.; Baccarin, R.Y. Platelet-Rich Plasma in Orthopedic Therapy: A Comparative Systematic Review of Clinical and Experimental Data in Equine and Human Musculoskeletal Lesions. BMC Vet. Res. 2015, 11, 98. [Google Scholar] [CrossRef]
- Senzel, L.; Gnatenko, D.V.; Bahou, W.F. The Platelet Proteome. Curr. Opin. Hematol. 2009, 16, 329–333. [Google Scholar] [CrossRef]
- Le, A.D.K.; Enweze, L.; DeBaun, M.R.; Dragoo, J.L. Platelet-Rich Plasma. Clin. Sports Med. 2019, 38, 17–44. [Google Scholar] [CrossRef]
- Foster, T.E.; Puskas, B.L.; Mandelbaum, B.R.; Gerhardt, M.B.; Rodeo, S.A. Platelet-Rich Plasma. Am. J. Sports Med. 2009, 37, 2259–2272. [Google Scholar] [CrossRef]
- Boswell, S.G.; Cole, B.J.; Sundman, E.A.; Karas, V.; Fortier, L.A. Platelet-Rich Plasma: A Milieu of Bioactive Factors. Arthrosc. J. Arthrosc. Relat. Surg. 2012, 28, 429–439. [Google Scholar] [CrossRef]
- Dhillon, M.S.; Behera, P.; Patel, S.; Shetty, V. Orthobiologics and Platelet Rich Plasma. Indian J. Orthop. 2014, 48, 1–9. [Google Scholar] [CrossRef]
- Tramś, E.; Malesa, K.; Pomianowski, S.; Kamiński, R. Role of Platelets in Osteoarthritis—Updated Systematic Review and Meta-Analysis on the Role of Platelet-Rich Plasma in Osteoarthritis. Cells 2022, 11, 1080. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.I.-K.; Diaz, R.; Borg-Stein, J. Platelet-Rich Plasma. Phys. Med. Rehabil. Clin. N. Am. 2016, 27, 825–853. [Google Scholar] [CrossRef] [PubMed]
- Mariani, E.; Pulsatelli, L. Platelet Concentrates in Musculoskeletal Medicine. Int. J. Mol. Sci. 2020, 21, 1328. [Google Scholar] [CrossRef] [PubMed]
- Camargo Garbin, L.; Lopez, C.; Carmona, J.U. A Critical Overview of the Use of Platelet-Rich Plasma in Equine Medicine Over the Last Decade. Front. Vet. Sci. 2021, 8, 641818. [Google Scholar] [CrossRef]
- Pavlovic, V.; Ciric, M.; Jovanovic, V.; Trandafilovic, M.; Stojanovic, P. Platelet-Rich Fibrin: Basics of Biological Actions and Protocol Modifications. Open Med. 2021, 16, 446–454. [Google Scholar] [CrossRef]
- Jeyakumar, V.; Kuten, O.; Nehrer, S. Blood Derived Products—Background and Technology and Clinical Application in Osteoarthritis. Sports Orthop. Traumatol. 2019, 35, 386–393. [Google Scholar] [CrossRef]
- Carr, B.J.; Miller, A.V.; Colbath, A.C.; Peralta, S.; Frye, C.W. Literature Review Details and Supports the Application of Platelet-Rich Plasma Products in Canine Medicine, Particularly as an Orthobiologic Agent for Osteoarthritis. J. Am. Vet. Med. Assoc. 2024, 262 (Suppl. S1), S8–S15. [Google Scholar] [CrossRef]
- Dohan Ehrenfest, D.M.; Rasmusson, L.; Albrektsson, T. Classification of Platelet Concentrates: From Pure Platelet-Rich Plasma (P-PRP) to Leucocyte- and Platelet-Rich Fibrin (L-PRF). Trends Biotechnol. 2009, 27, 158–167. [Google Scholar] [CrossRef]
- Cavallo, C.; Filardo, G.; Mariani, E.; Kon, E.; Marcacci, M.; Pereira Ruiz, M.T.; Facchini, A.; Grigolo, B. Comparison of Platelet-Rich Plasma Formulations for Cartilage Healing. J. Bone Jt. Surg. 2014, 96, 423–429. [Google Scholar] [CrossRef]
- Braun, H.J.; Kim, H.J.; Chu, C.R.; Dragoo, J.L. The Effect of Platelet-Rich Plasma Formulations and Blood Products on Human Synoviocytes. Am. J. Sports Med. 2014, 42, 1204–1210. [Google Scholar] [CrossRef]
- Boswell, S.G.; Schnabel, L.V.; Mohammed, H.O.; Sundman, E.A.; Minas, T.; Fortier, L.A. Increasing Platelet Concentrations in Leukocyte-Reduced Platelet-Rich Plasma Decrease Collagen Gene Synthesis in Tendons. Am. J. Sports Med. 2014, 42, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, R.; Murray, M.M. Peripheral Blood Mononuclear Cells Enhance the Anabolic Effects of Platelet-Rich Plasma on Anterior Cruciate Ligament Fibroblasts. J. Orthop. Res. 2013, 31, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Peláez, P.; Damiá, E.; Torres-Torrillas, M.; Chicharro, D.; Cuervo, B.; Miguel, L.; Del Romero, A.; Carrillo, J.M.; Sopena, J.J.; Rubio, M. Cell and Cell Free Therapies in Osteoarthritis. Biomedicines 2021, 9, 1726. [Google Scholar] [CrossRef] [PubMed]
- Venator, K.; Frye, C.W.; Gamble, L.-J.; Wakshlag, J.J. Assessment of a Single Intra-Articular Stifle Injection of Pure Platelet Rich Plasma on Symmetry Indices in Dogs with Unilateral or Bilateral Stifle Osteoarthritis from Long-Term Medically Managed Cranial Cruciate Ligament Disease. Vet. Med. Res. Rep. 2020, 11, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Fahie, M.A.; Ortolano, G.A.; Guercio, V.; Schaffer, J.A.; Johnston, G.; Au, J.; Hettlich, B.A.; Phillips, T.; Allen, M.J.; Bertone, A.L. A Randomized Controlled Trial of the Efficacy of Autologous Platelet Therapy for the Treatment of Osteoarthritis in Dogs. J. Am. Vet. Med. Assoc. 2013, 243, 1291–1297. [Google Scholar] [CrossRef]
- Franklin, S.; Stoker, A.; Bozynski, C.; Kuroki, K.; Clarke, K.; Johnson, J.; Cook, J. Comparison of Platelet-Rich Plasma, Stromal Vascular Fraction (SVF), or SVF with an Injectable PLGA Nanofiber Scaffold for the Treatment of Osteochondral Injury in Dogs. J. Knee Surg. 2018, 31, 686–697. [Google Scholar] [CrossRef]
- Raulinaitė, K.; Želvytė, R.; Škėmienė, K.; Burbaitė, E.; Karvelienė, B.; Monkevičienė, I. The Single Intra-Articular Injection of Platelet-Rich Plasma vs. Non-Steroidal Anti-Inflammatory Drugs as Treatment Options for Canine Cruciate Ligament Rupture and Patellar Luxation. Vet. Sci. 2023, 10, 555. [Google Scholar] [CrossRef]
- Gines, J.A. Effect of Leukoreduced Platelet Rich Plasma on Intra-Articular Pro-Inflammatory Cytokines in a Canine Pilot Study. Animals 2022, 12, 2163. [Google Scholar] [CrossRef]
- Xiao, W.; Yang, Y.; Xie, W.; He, M.; Liu, D.; Cai, Z.; Yu, D.; Li, Y.; Wei, L. Effects of Platelet-Rich Plasma and Bone Marrow Mesenchymal Stem Cells on Meniscal Repair in the White-White Zone of the Meniscus. Orthop. Surg. 2021, 13, 2423–2432. [Google Scholar] [CrossRef]
- Vilar, J.M.; Manera, M.E.; Santana, A.; Spinella, G.; Rodriguez, O.; Rubio, M.; Carrillo, J.M.; Sopena, J.; Batista, M. Effect of Leukocyte-Reduced Platelet-Rich Plasma on Osteoarthritis Caused by Cranial Cruciate Ligament Rupture: A Canine Gait Analysis Model. PLoS ONE 2018, 13, e0194752. [Google Scholar] [CrossRef]
- Yun, S.; Ku, S.-K.; Kwon, Y.-S. Adipose-Derived Mesenchymal Stem Cells and Platelet-Rich Plasma Synergistically Ameliorate the Surgical-Induced Osteoarthritis in Beagle Dogs. J. Orthop. Surg. Res. 2016, 11, 9. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.L.; Smith, P.A.; Bozynski, C.C.; Kuroki, K.; Cook, C.R.; Stoker, A.M.; Pfeiffer, F.M. Multiple Injections of Leukoreduced Platelet Rich Plasma Reduce Pain and Functional Impairment in a Canine Model of ACL and Meniscal Deficiency. J. Orthop. Res. 2016, 34, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Intekhab Alam, N.; Raghavendra, R. A Preliminary Study of Regenerative Treatments for Horse Orthopaedic Disease. Rev. Electron. De. Vet. 2023, 24, 181–190. [Google Scholar]
- Arican, M.; Şimşek, A.; Parlak, K.; Atli, K.; Sönmez, G. Effect of Inflammatory Marker Activity after Intra-Articular Injection of Autologous Platelet-Rich Plasma in Dogs with Osteoarthritis. Med. Weter. 2019, 75, 744–748. [Google Scholar] [CrossRef]
- Sample, S.J.; Racette, M.A.; Hans, E.C.; Volstad, N.J.; Schaefer, S.L.; Bleedorn, J.A.; Little, J.P.; Waller, K.R.; Hao, Z.; Block, W.F.; et al. Use of a Platelet-Rich Plasma-Collagen Scaffold as a Bioenhanced Repair Treatment for Management of Partial Cruciate Ligament Rupture in Dogs. PLoS ONE 2018, 13, e0197204. [Google Scholar] [CrossRef]
- Franklin, S.P.; Garner, B.C.; Cook, J.L. Characteristics of Canine Platelet-Rich Plasma Prepared with Five Commercially Available Systems. Am. J. Vet. Res. 2015, 76, 822–827. [Google Scholar] [CrossRef]
- Hessel, L.N.; Bosch, G.; van Weeren, P.R.; Ionita, J.-C. Equine Autologous Platelet Concentrates: A Comparative Study between Different Available Systems. Equine Vet. J. 2015, 47, 319–325. [Google Scholar] [CrossRef]
- King, W.; Cawood, K.; Bookmiller, M. The Use of Autologous Protein Solution (Pro-Stride®) and Leukocyte-Rich Platelet-Rich Plasma (Restigen®) in Canine Medicine. Vet. Med. Res. Rep. 2021, 12, 53–65. [Google Scholar] [CrossRef]
- Camargo Garbin, L.; Morris, M.J. A Comparative Review of Autologous Conditioned Serum and Autologous Protein Solution for Treatment of Osteoarthritis in Horses. Front. Vet. Sci. 2021, 8, 602978. [Google Scholar] [CrossRef]
- Goldring, M.B. The Role of Cytokines as Inflammatory Mediators in Osteoarthritis: Lessons from Animal Models. Connect. Tissue Res. 1999, 40, 1–11. [Google Scholar] [CrossRef]
- Zarezadeh Mehrabadi, A.; Shahba, F.; Khorramdelazad, H.; Aghamohammadi, N.; Karimi, M.; Bagherzadeh, K.; Khoshmirsafa, M.; Massoumi, R.; Falak, R. Interleukin-1 Receptor Accessory Protein (IL-1RAP): A Magic Bullet Candidate for Immunotherapy of Human Malignancies. Crit. Rev. Oncol. Hematol. 2024, 193, 104200. [Google Scholar] [CrossRef] [PubMed]
- IRAP | Atlantic Equine Services. Available online: https://www.sporthorsevets.com/veterinary-services/irap/ (accessed on 9 October 2024).
- Vincent, T.L. IL-1 in Osteoarthritis: Time for a Critical Review of the Literature. F1000Res 2019, 8, 934. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.A. The IL-1 Family and Inflammatory Diseases. Clin. Exp. Rheumatol. 2002, 20 (Suppl. S27), S1–S13. [Google Scholar] [PubMed]
- Jacques, C.; Gosset, M.; Berenbaum, F.; Gabay, C. The Role of IL-1 and IL-1Ra in Joint Inflammation and Cartilage Degradation. In Vitamins and Hormones; Elsevier: Amsterdam, The Netherlands, 2006; Volume 74, pp. 371–403. [Google Scholar] [CrossRef]
- Fernandes, J.C.; Martel-Pelletier, J.; Pelletier, J.-P. The Role of Cytokines in Osteoarthritis Pathophysiology. Biorheology 2002, 39, 237–246. [Google Scholar] [CrossRef]
- Ehrle, A.; Lischer, C.J.; Lasarzik, J.; Einspanier, R.; Bondzio, A. Synovial Fluid and Serum Concentrations of Interleukin-1 Receptor Antagonist and Interleukin-1ß in Naturally Occurring Equine Osteoarthritis and Septic Arthritis. J. Equine Vet. Sci. 2015, 35, 815–822. [Google Scholar] [CrossRef]
- Wilson, J.M.; McKenzie, E.; Duesterdieck-Zellmer, K. International Survey Regarding the Use of Rehabilitation Modalities in Horses. Front. Vet. Sci. 2018, 5, 359629. [Google Scholar] [CrossRef]
- Caron, J.P.; Fernandes, J.C.; Martel-Pelletier, J.; Tardif, G.; Mineau, F.; Geng, C.; Pelletier, J.P. Chondroprotective Effect of Intraarticular Injections of Interleukin-1 Receptor Antagonist in Experimental Osteoarthritis. Suppression of Collagenase-1 Expression. Arthritis Rheum. 1996, 39, 1535–1544. [Google Scholar] [CrossRef]
- Baltzer, A.W.A.; Moser, C.; Jansen, S.A.; Krauspe, R. Autologous Conditioned Serum (Orthokine) Is an Effective Treatment for Knee Osteoarthritis. Osteoarthr. Cartil. 2009, 17, 152–160. [Google Scholar] [CrossRef]
- Darabos, N.; Haspl, M.; Moser, C.; Darabos, A.; Bartolek, D.; Groenemeyer, D. Intraarticular Application of Autologous Conditioned Serum (ACS) Reduces Bone Tunnel Widening after ACL Reconstructive Surgery in a Randomized Controlled Trial. Knee Surg. Sports Traumatol. Arthrosc. 2011, 19 (Suppl. S1), 36–46. [Google Scholar] [CrossRef]
- Sawyere, D.M.; Lanz, O.I.; Dahlgren, L.A.; Barry, S.L.; Nichols, A.C.; Werre, S.R. Cytokine and Growth Factor Concentrations in Canine Autologous Conditioned Serum. Vet. Surg. 2016, 45, 582–586. [Google Scholar] [CrossRef]
- Fortier, L.A.; Barker, J.U.; Strauss, E.J.; McCarrel, T.M.; Cole, B.J. The Role of Growth Factors in Cartilage Repair. Clin. Orthop. Relat. Res. 2011, 469, 2706. [Google Scholar] [CrossRef] [PubMed]
- Frizziero, A.; Giannotti, E.; Oliva, F.; Masiero, S.; Maffulli, N. Autologous Conditioned Serum for the Treatment of Osteoarthritis and Other Possible Applications in Musculoskeletal Disorders. Br. Med. Bull. 2013, 105, 169–184. [Google Scholar] [CrossRef] [PubMed]
- Shakouri, S.K.; Dolati, S.; Santhakumar, J.; Thakor, A.S.; Yarani, R. Autologous Conditioned Serum for Degenerative Diseases and Prospects. Growth Factors 2021, 39, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Lasarzik, J.; Bondzio, A.; Rettig, M.; Estrada, R.; Klaus, C.; Ehrle, A.; Einspanier, R.; Lischer, C.J. Evaluation of Two Protocols Using Autologous Conditioned Serum for Intra-Articular Therapy of Equine Osteoarthritis—A Pilot Study Monitoring Cytokines and Cartilage-Specific Biomarkers. J. Equine Vet. Sci. 2018, 60, 35–42.e2. [Google Scholar] [CrossRef]
- Velloso Alvarez, A.; Boone, L.H.; Pondugula, S.R.; Caldwell, F.; Wooldridge, A.A. Effects of Autologous Conditioned Serum, Autologous Protein Solution, and Triamcinolone on Inflammatory and Catabolic Gene Expression in Equine Cartilage and Synovial Explants Treated With IL-1β in Co-Culture. Front. Vet. Sci. 2020, 7, 541926. [Google Scholar] [CrossRef]
- Marques-Smith, P.; Kallerud, A.S.; Johansen, G.M.; Boysen, P.; Jacobsen, A.M.; Reitan, K.M.; Henriksen, M.M.; Löfgren, M.; Fjordbakk, C.T. Is Clinical Effect of Autologous Conditioned Serum in Spontaneously Occurring Equine Articular Lameness Related to ACS Cytokine Profile? BMC Vet. Res. 2020, 16, 181. [Google Scholar] [CrossRef]
- Linardi, R.L.; Dodson, M.E.; Moss, K.L.; King, W.J.; Ortved, K.F. The Effect of Autologous Protein Solution on the Inflammatory Cascade in Stimulated Equine Chondrocytes. Front. Vet. Sci. 2019, 6, 444835. [Google Scholar] [CrossRef]
- Wanstrath, A.W.; Hettlich, B.F.; Su, L.; Smith, A.; Zekas, L.J.; Allen, M.J.; Bertone, A.L. Evaluation of a Single Intra-Articular Injection of Autologous Protein Solution for Treatment of Osteoarthritis in a Canine Population. Vet. Surg. 2016, 45, 764–774. [Google Scholar] [CrossRef]
- Bertone, A.L.; Ishihara, A.; Zekas, L.J.; Wellman, M.L.; Lewis, K.B.; Schwarze, R.A.; Barnaba, A.R.; Schmall, M.L.; Kanter, P.M.; Genovese, R.L. Evaluation of a Single Intra-Articular Injection of Autologous Protein Solution for Treatment of Osteoarthritis in Horses. Am. J. Vet. Res. 2014, 75, 141–151. [Google Scholar] [CrossRef]
- King, W.; Woodell-May, J. Comparison of the Cellular and Cytokine Concentrations in the Output of the Autologous Protein Solution, Orthokine, and Onoccomed 2 Device Systems. Osteoarthr. Cartil. 2014, 22, S484. [Google Scholar] [CrossRef]
- Daneshmandi, L.; Shah, S.; Jafari, T.; Bhattacharjee, M.; Momah, D.; Saveh-Shemshaki, N.; Lo, K.W.-H.; Laurencin, C.T. Emergence of the Stem Cell Secretome in Regenerative Engineering. Trends Biotechnol. 2020, 38, 1373–1384. [Google Scholar] [CrossRef] [PubMed]
- Mocchi, M.; Dotti, S.; Del Bue, M.; Villa, R.; Bari, E.; Perteghella, S.; Torre, M.L.; Grolli, S. Veterinary Regenerative Medicine for Musculoskeletal Disorders: Can Mesenchymal Stem/Stromal Cells and Their Secretome Be the New Frontier? Cells 2020, 9, 1453. [Google Scholar] [CrossRef] [PubMed]
- Lange-Consiglio, A.; Perrini, C.; Tasquier, R.; Deregibus, M.C.; Camussi, G.; Pascucci, L.; Marini, M.G.; Corradetti, B.; Bizzaro, D.; De Vita, B.; et al. Equine Amniotic Microvesicles and Their Anti-Inflammatory Potential in a Tenocyte Model In Vitro. Stem Cells Dev. 2016, 25, 610–621. [Google Scholar] [CrossRef] [PubMed]
- Kornicka-Garbowska, K.; Pędziwiatr, R.; Woźniak, P.; Kucharczyk, K.; Marycz, K. Microvesicles Isolated from 5-Azacytidine-and-Resveratrol-Treated Mesenchymal Stem Cells for the Treatment of Suspensory Ligament Injury in Horse—A Case Report. Stem Cell Res. Ther. 2019, 10, 394. [Google Scholar] [CrossRef] [PubMed]
- El-Tookhy, O.S.; Shamaa, A.A.; Shehab, G.G.; Abdallah, A.N.; Azzam, O.M. Histological Evaluation of Experimentally Induced Critical Size Defect Skin Wounds Using Exosomal Solution of Mesenchymal Stem Cells Derived Microvesicles. Int. J. Stem Cells 2017, 10, 144–153. [Google Scholar] [CrossRef]
- Kearney, C.M.; Khatab, S.; van Buul, G.M.; Plomp, S.G.M.; Korthagen, N.M.; Labberté, M.C.; Goodrich, L.R.; Kisiday, J.D.; Van Weeren, P.R.; van Osch, G.J.V.M.; et al. Treatment Effects of Intra-Articular Allogenic Mesenchymal Stem Cell Secretome in an Equine Model of Joint Inflammation. Front. Vet. Sci. 2022, 9, 907616. [Google Scholar] [CrossRef]
- Mocchi, M.; Bari, E.; Dotti, S.; Villa, R.; Berni, P.; Conti, V.; Del Bue, M.; Squassino, G.P.; Segale, L.; Ramoni, R.; et al. Canine Mesenchymal Cell Lyosecretome Production and Safety Evaluation after Allogenic Intraarticular Injection in Osteoarthritic Dogs. Animals 2021, 11, 3271. [Google Scholar] [CrossRef]
- Mocchi, M.; Grolli, S.; Dotti, S.; Di Silvestre, D.; Villa, R.; Berni, P.; Conti, V.; Passignani, G.; Brambilla, F.; Bue, M.D.; et al. Equine Mesenchymal Stem/Stromal Cells Freeze-Dried Secretome (Lyosecretome) for the Treatment of Musculoskeletal Diseases: Production Process Validation and Batch Release Test for Clinical Use. Pharmaceuticals 2021, 14, 553. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Available online: https://www.fda.gov/ (accessed on 19 January 2025).
Disease Model | Animals | Mode of Application | Findings | Ref |
---|---|---|---|---|
Spontaneous OA | Dog | Group 1 (n = 3) → 2 intra-articular injections of lyosecretome (in the right joint) at 40-day intervals Control group (n = 3) → 2 intra-articular injections placebo (in the left joint) at 40-day intervals | Lysosecretome did not induce systemic adverse reactions in terms of lameness and pain worsening. | [161] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerra-Gomes, M.; Ferreira-Baptista, C.; Barros, J.; Alves-Pimenta, S.; Gomes, P.; Colaço, B. Exploring the Potential of Non-Cellular Orthobiologic Products in Regenerative Therapies for Stifle Joint Diseases in Companion Animals. Animals 2025, 15, 589. https://doi.org/10.3390/ani15040589
Guerra-Gomes M, Ferreira-Baptista C, Barros J, Alves-Pimenta S, Gomes P, Colaço B. Exploring the Potential of Non-Cellular Orthobiologic Products in Regenerative Therapies for Stifle Joint Diseases in Companion Animals. Animals. 2025; 15(4):589. https://doi.org/10.3390/ani15040589
Chicago/Turabian StyleGuerra-Gomes, Maria, Carla Ferreira-Baptista, Joana Barros, Sofia Alves-Pimenta, Pedro Gomes, and Bruno Colaço. 2025. "Exploring the Potential of Non-Cellular Orthobiologic Products in Regenerative Therapies for Stifle Joint Diseases in Companion Animals" Animals 15, no. 4: 589. https://doi.org/10.3390/ani15040589
APA StyleGuerra-Gomes, M., Ferreira-Baptista, C., Barros, J., Alves-Pimenta, S., Gomes, P., & Colaço, B. (2025). Exploring the Potential of Non-Cellular Orthobiologic Products in Regenerative Therapies for Stifle Joint Diseases in Companion Animals. Animals, 15(4), 589. https://doi.org/10.3390/ani15040589