Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,156)

Search Parameters:
Keywords = noise indicators

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3856 KiB  
Article
Wavelet Fusion with Sobel-Based Weighting for Enhanced Clarity in Underwater Hydraulic Infrastructure Inspection
by Minghui Zhang, Jingkui Zhang, Jugang Luo, Jiakun Hu, Xiaoping Zhang and Juncai Xu
Appl. Sci. 2025, 15(14), 8037; https://doi.org/10.3390/app15148037 - 18 Jul 2025
Abstract
Underwater inspection images of hydraulic structures often suffer from haze, severe color distortion, low contrast, and blurred textures, impairing the accuracy of automated crack, spalling, and corrosion detection. However, many existing enhancement methods fail to preserve structural details and suppress noise in turbid [...] Read more.
Underwater inspection images of hydraulic structures often suffer from haze, severe color distortion, low contrast, and blurred textures, impairing the accuracy of automated crack, spalling, and corrosion detection. However, many existing enhancement methods fail to preserve structural details and suppress noise in turbid environments. To address these limitations, we propose a compact image enhancement framework called Wavelet Fusion with Sobel-based Weighting (WWSF). This method first corrects global color and luminance distributions using multiscale Retinex and gamma mapping, followed by local contrast enhancement via CLAHE in the L channel of the CIELAB color space. Two preliminarily corrected images are decomposed using discrete wavelet transform (DWT); low-frequency bands are fused based on maximum energy, while high-frequency bands are adaptively weighted by Sobel edge energy to highlight structural features and suppress background noise. The enhanced image is reconstructed via inverse DWT. Experiments on real-world sluice gate datasets demonstrate that WWSF outperforms six state-of-the-art methods, achieving the highest scores on UIQM and AG while remaining competitive on entropy (EN). Moreover, the method retains strong robustness under high turbidity conditions (T ≥ 35 NTU), producing sharper edges, more faithful color representation, and improved texture clarity. These results indicate that WWSF is an effective preprocessing tool for downstream tasks such as segmentation, defect classification, and condition assessment of hydraulic infrastructure in complex underwater environments. Full article
Show Figures

Figure 1

16 pages, 1383 KiB  
Article
Probabilistic Demand Forecasting in the Southeast Region of the Mexican Power System Using Machine Learning Methods
by Ivan Itai Bernal Lara, Roberto Jair Lorenzo Diaz, María de los Ángeles Sánchez Galván, Jaime Robles García, Mohamed Badaoui, David Romero Romero and Rodolfo Alfonso Moreno Flores
Forecasting 2025, 7(3), 39; https://doi.org/10.3390/forecast7030039 - 18 Jul 2025
Abstract
This paper focuses on electricity demand forecasting and its uncertainty representation using a hybrid machine learning (ML) model in the eastern control area of southeastern Mexico. In this case, different sources of uncertainty are integrated by applying the Bootstrap method, which adds the [...] Read more.
This paper focuses on electricity demand forecasting and its uncertainty representation using a hybrid machine learning (ML) model in the eastern control area of southeastern Mexico. In this case, different sources of uncertainty are integrated by applying the Bootstrap method, which adds the characteristics of stochastic noise, resulting in a hybrid probabilistic and ML model in the form of a time series. The proposed methodology addresses a function density probability, which is the generalized of extreme values obtained from the errors of the ML model; however, it is adaptable and independent and simulates the variability that may arise due to unforeseen events. Results indicate that for a five-day forecast using only demand data, the proposed model achieves a Mean Absolute Percentage Error (MAPE) of 4.358%; however, incorporating temperature increases the MAPE to 5.123% due to growing uncertainty. In contrast, a day-ahead forecast, including temperature, improves accuracy, reducing MAPE to 1.644%. The stochastic noise component enhances probabilistic modeling, yielding a MAPE of 3.042% with and 2.073% without temperature in five-day forecasts. Therefore, the proposed model proves useful for regions with high demand variability, such as southeastern Mexico, while maintaining accuracy over longer time horizons. Full article
(This article belongs to the Section Power and Energy Forecasting)
Show Figures

Figure 1

20 pages, 5236 KiB  
Article
Leakage Detection in Subway Tunnels Using 3D Point Cloud Data: Integrating Intensity and Geometric Features with XGBoost Classifier
by Anyin Zhang, Junjun Huang, Zexin Sun, Juju Duan, Yuanai Zhang and Yueqian Shen
Sensors 2025, 25(14), 4475; https://doi.org/10.3390/s25144475 - 18 Jul 2025
Abstract
Detecting leakage using a point cloud acquired by mobile laser scanning (MLS) presents significant challenges, particularly from within three-dimensional space. These challenges primarily arise from the prevalence of noise in tunnel point clouds and the difficulty in accurately capturing the three-dimensional morphological characteristics [...] Read more.
Detecting leakage using a point cloud acquired by mobile laser scanning (MLS) presents significant challenges, particularly from within three-dimensional space. These challenges primarily arise from the prevalence of noise in tunnel point clouds and the difficulty in accurately capturing the three-dimensional morphological characteristics of leakage patterns. To address these limitations, this study proposes a classification method based on XGBoost classifier, integrating both intensity and geometric features. The proposed methodology comprises the following steps: First, a RANSAC algorithm is employed to filter out noise from tunnel objects, such as facilities, tracks, and bolt holes, which exhibit intensity values similar to leakage. Next, intensity features are extracted to facilitate the initial separation of leakage regions from the tunnel lining. Subsequently, geometric features derived from the k neighborhood are incorporated to complement the intensity features, enabling more effective segmentation of leakage from the lining structures. The optimal neighborhood scale is determined by selecting the scale that yields the highest F1-score for leakage across various multiple evaluated scales. Finally, the XGBoost classifier is applied to the binary classification to distinguish leakage from tunnel lining. Experimental results demonstrate that the integration of geometric features significantly enhances leakage detection accuracy, achieving an F1-score of 91.18% and 97.84% on two evaluated datasets, respectively. The consistent performance across four heterogeneous datasets indicates the robust generalization capability of the proposed methodology. Comparative analysis further shows that XGBoost outperforms other classifiers, such as Random Forest, AdaBoost, LightGBM, and CatBoost, in terms of balance of accuracy and computational efficiency. Moreover, compared to deep learning models, including PointNet, PointNet++, and DGCNN, the proposed method demonstrates superior performance in both detection accuracy and computational efficiency. Full article
(This article belongs to the Special Issue Application of LiDAR Remote Sensing and Mapping)
Show Figures

Figure 1

22 pages, 12507 KiB  
Article
Research on the Friction Prediction Method of Micro-Textured Cemented Carbide–Titanium Alloy Based on the Noise Signal
by Hao Zhang, Xin Tong and Baiyi Wang
Coatings 2025, 15(7), 843; https://doi.org/10.3390/coatings15070843 - 18 Jul 2025
Abstract
The vibration and noise of friction pairs are severe when cutting titanium alloy with cemented carbide tools, and the surface micro-texture can significantly reduce noise and friction. Therefore, it is very important to clarify the correlation mechanism between friction noise and friction force [...] Read more.
The vibration and noise of friction pairs are severe when cutting titanium alloy with cemented carbide tools, and the surface micro-texture can significantly reduce noise and friction. Therefore, it is very important to clarify the correlation mechanism between friction noise and friction force for processing quality control. Consequently, investigating the underlying mechanisms that link friction noise and friction is of considerable importance. This study focuses on the friction and wear acoustic signals generated by micro-textured cemented carbide–titanium alloy. A friction testing platform specifically designed for the micro-textured cemented carbide grinding of titanium alloy has been established. Acoustic sensors are employed to capture the acoustic signals, while ultra-depth-of-field microscopy and scanning electron microscopy are utilized for surface analysis. A novel approach utilizing the dung beetle algorithm (DBO) is proposed to optimize the parameters of variational mode decomposition (VMD), which is subsequently combined with wavelet packet threshold denoising (WPT) to enhance the quality of the original signal. Continuous wavelet transform (CWT) is applied for time–frequency analysis, facilitating a discussion on the underlying mechanisms of micro-texture. Additionally, features are extracted from the time domain, frequency domain, wavelet packet, and entropy. The Relief-F algorithm is employed to identify 19 significant features, leading to the development of a hybrid model that integrates Bayesian optimization (BO) and Transformer-LSTM for predicting friction. Experimental results indicate that the model achieves an R2 value of 0.9835, a root mean square error (RMSE) of 0.2271, a mean absolute error (MAE) of 0.1880, and a mean bias error (MBE) of 0.1410 on the test dataset. The predictive performance and stability of this model are markedly superior to those of the BO-LSTM, LSTM–Attention, and CNN–LSTM–Attention models. This research presents a robust methodology for predicting friction in the context of friction and wear of cemented carbide–titanium alloys. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

22 pages, 15962 KiB  
Article
Audible Noise-Based Hardware System for Acoustic Monitoring in Wind Turbines
by Gabriel Miguel Castro Martins, Murillo Ferreira dos Santos, Mathaus Ferreira da Silva, Juliano Emir Nunes Masson, Vinícius Barbosa Schettino, Iuri Wladimir Molina and William Rodrigues Silva
Inventions 2025, 10(4), 58; https://doi.org/10.3390/inventions10040058 - 17 Jul 2025
Abstract
This paper presents a robust hardware system designed for future detection of faults in wind turbines by analyzing audible noise signals. Predictive maintenance strategies have increasingly relied on acoustic monitoring as a non-invasive method for identifying anomalies that may indicate component wear, misalignment, [...] Read more.
This paper presents a robust hardware system designed for future detection of faults in wind turbines by analyzing audible noise signals. Predictive maintenance strategies have increasingly relied on acoustic monitoring as a non-invasive method for identifying anomalies that may indicate component wear, misalignment, or impending mechanical failures. The proposed device captures and processes sound signals in real-time using strategically positioned microphones, ensuring high-fidelity data acquisition without interfering with turbine operation. Signal processing techniques are applied to extract relevant acoustic features, facilitating future identification of abnormal sound patterns that may indicate mechanical issues. The system’s effectiveness was validated through rigorous field tests, demonstrating its capability to enhance the reliability and efficiency of wind turbine maintenance. Experimental results showed an average transmission latency of 131.8 milliseconds, validating the system’s applicability for near real-time audible noise monitoring in wind turbines operating under limited connectivity conditions. Full article
Show Figures

Figure 1

33 pages, 6828 KiB  
Article
Acoustic Characterization of Leakage in Buried Natural Gas Pipelines
by Yongjun Cai, Xiaolong Gu, Xiahua Zhang, Ke Zhang, Huiye Zhang and Zhiyi Xiong
Processes 2025, 13(7), 2274; https://doi.org/10.3390/pr13072274 - 17 Jul 2025
Abstract
To address the difficulty of locating small-hole leaks in buried natural gas pipelines, this study conducted a comprehensive theoretical and numerical analysis of the acoustic characteristics associated with such leakage events. A coupled flow–acoustic simulation framework was developed, integrating gas compressibility via the [...] Read more.
To address the difficulty of locating small-hole leaks in buried natural gas pipelines, this study conducted a comprehensive theoretical and numerical analysis of the acoustic characteristics associated with such leakage events. A coupled flow–acoustic simulation framework was developed, integrating gas compressibility via the realizable k-ε and Large Eddy Simulation (LES) turbulence models, the Peng–Robinson equation of state, a broadband noise source model, and the Ffowcs Williams–Hawkings (FW-H) acoustic analogy. The effects of pipeline operating pressure (2–10 MPa), leakage hole diameter (1–6 mm), soil type (sandy, loam, and clay), and leakage orientation on the flow field, acoustic source behavior, and sound field distribution were systematically investigated. The results indicate that the leakage hole size and soil medium exert significant influence on both flow dynamics and acoustic propagation, while the pipeline pressure mainly affects the strength of the acoustic source. The leakage direction was found to have only a minor impact on the overall results. The leakage noise is primarily composed of dipole sources arising from gas–solid interactions and quadrupole sources generated by turbulent flow, with the frequency spectrum concentrated in the low-frequency range of 0–500 Hz. This research elucidates the acoustic characteristics of pipeline leakage under various conditions and provides a theoretical foundation for optimal sensor deployment and accurate localization in buried pipeline leak detection systems. Full article
(This article belongs to the Special Issue Design, Inspection and Repair of Oil and Gas Pipelines)
Show Figures

Figure 1

31 pages, 2663 KiB  
Article
Integrating Noise Pollution into Life Cycle Assessment: A Comparative Framework for Concrete and Timber Floor Construction
by Rabaka Sultana, Taslima Khanam and Ahmad Rashedi
Sustainability 2025, 17(14), 6514; https://doi.org/10.3390/su17146514 - 16 Jul 2025
Viewed by 120
Abstract
Despite the well-documented health risks of noise pollution, its impact remains overlooked mainly in life cycle assessment (LCA). This study introduces a methodological innovation by integrating both traffic and construction noise into the LCA framework for concrete construction, providing a more holistic and [...] Read more.
Despite the well-documented health risks of noise pollution, its impact remains overlooked mainly in life cycle assessment (LCA). This study introduces a methodological innovation by integrating both traffic and construction noise into the LCA framework for concrete construction, providing a more holistic and realistic evaluation of environmental and health impacts. By combining building information modeling (BIM) with LCA, the method automates material quantification and assesses both environmental and noise-related health burdens. A key advancement is the inclusion of health-based indicators, such as annoyance and sleep disturbance, quantified through disability-adjusted life years (DALYs). Two scenarios are examined: (1) a comparative analysis of concrete versus timber flooring and (2) end-of-life options (reuse vs. landfill). The results reveal that concrete has up to 7.4 times greater environmental impact than timber, except in land use. When noise is included, its contribution ranges from 7–33% in low-density regions (Darwin) and 62–92% in high-density areas (NSW), underscoring the critical role of local context. Traffic noise emerged as the dominant source, while equipment-related noise was minimal (0.3–1.5% of total DALYs). Timber slightly reduced annoyance but showed similar sleep disturbance levels. Material reuse reduced midpoint environmental impacts by 67–99.78%. Sensitivity analysis confirmed that mitigation measures like double glazing can cut noise-related impacts by 2–10% in low-density settings and 31–45% in high-density settings, validating the robustness of this framework. Overall, this study establishes a foundation for integrating noise into LCA, supporting sustainable material choices, environmentally responsible construction, and health-centered policymaking, particularly in noise-sensitive urban development. Full article
Show Figures

Figure 1

25 pages, 1318 KiB  
Article
Mobile Reading Attention of College Students in Different Reading Environments: An Eye-Tracking Study
by Siwei Xu, Mingyu Xu, Qiyao Kang and Xiaoqun Yuan
Behav. Sci. 2025, 15(7), 953; https://doi.org/10.3390/bs15070953 - 14 Jul 2025
Viewed by 168
Abstract
With the widespread adoption of mobile reading across diverse scenarios, understanding environmental impacts on attention has become crucial for reading performance optimization. Building upon this premise, the study examined the impacts of different reading environments on attention during mobile reading, utilizing a mixed-methods [...] Read more.
With the widespread adoption of mobile reading across diverse scenarios, understanding environmental impacts on attention has become crucial for reading performance optimization. Building upon this premise, the study examined the impacts of different reading environments on attention during mobile reading, utilizing a mixed-methods approach that combined eye-tracking experiments with semi-structured interviews. Thirty-two college students participated in the study. Quantitative attention metrics, including total fixation duration and fixation count, were collected through eye-tracking, while qualitative data regarding perceived environmental influences were obtained through interviews. The results indicated that the impact of different environments on mobile reading attention varies significantly, as this variation is primarily attributable to environmental complexity and individual interest. Environments characterized by multisensory inputs or dynamic disturbances, such as fluctuating noise and visual motion, were found to induce greater attentional dispersion compared to monotonous, low-variation environments. Notably, more complex potential task-like disturbances (e.g., answering calls, conversations) were found to cause the greatest distraction. Moreover, stimuli aligned with an individual’s interests were more likely to divert attention compared to those that did not. These findings contribute methodological insights for optimizing mobile reading experiences across diverse environmental contexts. Full article
Show Figures

Figure 1

27 pages, 8538 KiB  
Article
Optimizing Hyperspectral Desertification Monitoring Through Metaheuristic-Enhanced Wavelet Packet Noise Reduction and Feature Band Selection
by Weichao Liu, Jiapeng Xiao, Rongyuan Liu, Yan Liu, Yunzhu Tao, Tian Zhang, Fuping Gan, Ping Zhou, Yuanbiao Dong and Qiang Zhou
Remote Sens. 2025, 17(14), 2444; https://doi.org/10.3390/rs17142444 - 14 Jul 2025
Viewed by 124
Abstract
Land desertification represents a significant and sensitive global ecological issue. In the Inner Mongolia region of China, soil desertification and salinization are widespread, resulting from the combined effects of extreme drought conditions and human activities. Using Gaofen 5B AHSI imagery as our data [...] Read more.
Land desertification represents a significant and sensitive global ecological issue. In the Inner Mongolia region of China, soil desertification and salinization are widespread, resulting from the combined effects of extreme drought conditions and human activities. Using Gaofen 5B AHSI imagery as our data source, we collected spectral data for seven distinct land cover types: lush vegetation, yellow sand, white sand, saline soil, saline shell, saline soil with saline vegetation, and sandy soil. We applied Particle Swarm Optimization (PSO) to fine-tune the Wavelet Packet (WP) decomposition levels, thresholds, and wavelet basis function, ensuring optimal spectral decomposition and reconstruction. Subsequently, PSO was deployed to optimize key hyperparameters of the Random Forest algorithm and compare its performance with the ResNet-Transformer model. Our results indicate that PSO effectively automates the search for optimal WP decomposition parameters, preserving essential spectral information while efficiently reducing high-frequency spectral noise. The Genetic Algorithm (GA) was also found to be effective in extracting feature bands relevant to land desertification, which enhances the classification accuracy of the model. Among all the models, integrating wavelet packet denoising, genetic algorithm feature selection, the first-order differential (FD), and the hybrid architecture of the ResNet-Transformer, the WP-GA-FD-ResNet-Transformer model achieved the highest accuracy in extracting soil sandification and salinization, with Kappa coefficients and validation set accuracies of 0.9746 and 97.82%, respectively. This study contributes to the field by advancing hyperspectral desertification monitoring techniques and suggests that the approach could be valuable for broader ecological conservation and land management efforts. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Figure 1

22 pages, 9751 KiB  
Article
Investigation on the Coupling Effect of Bionic Micro-Texture Shape and Distribution on the Tribological Performance of Water-Lubricated Sliding Bearings
by Xiansheng Tang, Yunfei Lan, Sergei Bosiakov, Michael Zhuravkov, Tao He, Yang Xia and Yongtao Lyu
Lubricants 2025, 13(7), 305; https://doi.org/10.3390/lubricants13070305 - 14 Jul 2025
Viewed by 164
Abstract
Water-lubricated bearings (WLB), due to their pollution-free nature and low noise, are increasingly becoming critical components in aerospace, marine applications, high-speed railway transportation, precision machine tools, etc. However, in practice, water-lubricated bearings suffer severe friction and wear due to low-viscosity water, harsh conditions, [...] Read more.
Water-lubricated bearings (WLB), due to their pollution-free nature and low noise, are increasingly becoming critical components in aerospace, marine applications, high-speed railway transportation, precision machine tools, etc. However, in practice, water-lubricated bearings suffer severe friction and wear due to low-viscosity water, harsh conditions, and contaminants like sediment, which can compromise the lubricating film and shorten their lifespan. The implementation of micro-textures has been demonstrated to improve the tribological performance of water-lubricated bearings to a certain extent, leading to their widespread adoption for enhancing the frictional dynamics of sliding bearings. The shape, dimensions (including length, width, and depth), and distribution of these micro-textures have a significant influence on the frictional performance. Therefore, this study aims to explore the coupling effect of different micro-texture shapes and distributions on the frictional performance of water-lubricated sliding, using the computational fluid dynamics (CFD) analysis. The results indicate that strategically arranging textures across multiple regions can enhance the performance of the bearing. Specifically, placing linear groove textures in the outlet of the divergent zone and triangular textures in the divergent zone body maximize improvements in the load-carrying capacity and frictional performance. This specific configuration increases the load-carrying capacity by 7.3% and reduces the friction coefficient by 8.6%. Overall, this study provided critical theoretical and technical insights for the optimization of WLB, contributing to the advancement of clean energy technologies and the extension of critical bearing service life. Full article
(This article belongs to the Special Issue Water Lubricated Bearings)
Show Figures

Figure 1

25 pages, 3861 KiB  
Article
Research on Acoustic and Parametric Coupling of Single-Layer Porous Plate–Lightweight Glass Wool Composite Structure Doors for Pure Electric Vehicles
by Jintao Su, Xue Li, Haibiao Yang and Ti Wu
World Electr. Veh. J. 2025, 16(7), 393; https://doi.org/10.3390/wevj16070393 - 14 Jul 2025
Viewed by 167
Abstract
Due to the absence of engine noise in new energy vehicles, road noise and wind noise become particularly noticeable. Therefore, studying the noise transmission through car doors is essential to effectively reduce the impact of these noises on the passenger compartment. To address [...] Read more.
Due to the absence of engine noise in new energy vehicles, road noise and wind noise become particularly noticeable. Therefore, studying the noise transmission through car doors is essential to effectively reduce the impact of these noises on the passenger compartment. To address the optimization of the sound absorption performance of single-layer porous plates combined with lightweight glass wool used in the doors of electric vehicles, this study established a microscopic acoustic performance analysis model based on the transfer matrix method and sound transmission loss theory. The effects of medium type, perforation rate, perforation radius, material thickness, and porosity on the sound absorption coefficient, impedance characteristics, and reflection coefficient were systematically investigated. Results indicate that in the high-frequency range (above 1200 Hz), the sound absorption coefficients of both rigid and flexible media can reach up to 0.9. When the perforation rate increases from 0.01 to 0.2, the peak sound absorption coefficient in the high-frequency band (1400–2000 Hz) rises from 0.45 to 0.85. Increasing the perforation radius to 0.03 m improves acoustic impedance matching. This research provides theoretical support and a parameter optimization basis for the design of acoustic packaging materials for electric vehicles, contributing significantly to enhancing the interior acoustic environment. Full article
Show Figures

Figure 1

20 pages, 1753 KiB  
Article
Hybrid Cloud-Based Information and Control System Using LSTM-DNN Neural Networks for Optimization of Metallurgical Production
by Kuldashbay Avazov, Jasur Sevinov, Barnokhon Temerbekova, Gulnora Bekimbetova, Ulugbek Mamanazarov, Akmalbek Abdusalomov and Young Im Cho
Processes 2025, 13(7), 2237; https://doi.org/10.3390/pr13072237 - 13 Jul 2025
Viewed by 515
Abstract
A methodology for detecting systematic errors in sets of equally accurate, uncorrelated, aggregate measurements is proposed and applied within the automatic real-time dispatch control system of a copper concentrator plant (CCP) to refine the technical and economic performance indicators (EPIs) computed by the [...] Read more.
A methodology for detecting systematic errors in sets of equally accurate, uncorrelated, aggregate measurements is proposed and applied within the automatic real-time dispatch control system of a copper concentrator plant (CCP) to refine the technical and economic performance indicators (EPIs) computed by the system. This work addresses and solves the problem of selecting and obtaining reliable measurement data by exploiting the redundant measurements of process streams together with the balance equations linking those streams. This study formulates an approach for integrating cloud technologies, machine learning methods, and forecasting into information control systems (ICSs) via predictive analytics to optimize CCP production processes. A method for combining the hybrid cloud infrastructure with an LSTM-DNN neural network model has been developed, yielding a marked improvement in TEP for copper concentration operations. The forecasting accuracy for the key process parameters rose from 75% to 95%. Predictive control reduced energy consumption by 10% through more efficient resource use, while the copper losses to tailings fell by 15–20% thanks to optimized reagent dosing and the stabilization of the flotation process. Equipment failure prediction cut the amount of unplanned downtime by 30%. As a result, the control system became adaptive, automatically correcting the parameters in real time and lessening the reliance on operator decisions. The architectural model of an ICS for metallurgical production based on the hybrid cloud and the LSTM-DNN model was devised to enhance forecasting accuracy and optimize the EPIs of the CCP. The proposed model was experimentally evaluated against alternative neural network architectures (DNN, GRU, Transformer, and Hybrid_NN_TD_AIST). The results demonstrated the superiority of the LSTM-DNN in forecasting accuracy (92.4%), noise robustness (0.89), and a minimal root-mean-square error (RMSE = 0.079). The model shows a strong capability to handle multidimensional, non-stationary time series and to perform adaptive measurement correction in real time. Full article
(This article belongs to the Section AI-Enabled Process Engineering)
Show Figures

Figure 1

15 pages, 5395 KiB  
Article
Recommendations for Preventing Free-Stroke Failures in Electric Vehicle Suspension Dampers Based on Experimental and Numerical Approaches
by Na Zhang, Zhenhuan Yu and Zhiyuan Liu
World Electr. Veh. J. 2025, 16(7), 392; https://doi.org/10.3390/wevj16070392 - 13 Jul 2025
Viewed by 170
Abstract
Free stroke, which means the intermittent no-load operation state of dampers, can cause an abnormal noise and unavoidably lead to the deterioration of vehicle NVH performance. In electric vehicles, the noise is particularly intolerable because there are no engine sounds to mask it. [...] Read more.
Free stroke, which means the intermittent no-load operation state of dampers, can cause an abnormal noise and unavoidably lead to the deterioration of vehicle NVH performance. In electric vehicles, the noise is particularly intolerable because there are no engine sounds to mask it. Focusing on this, the mechanism of the free-stroke phenomenon is analyzed. A method, which involves parametric models and numerical simulation, is proposed to prevent free-stroke phenomena during the damper design phase. This paper proposes a free-stroke mechanism based on a fluid–structure interaction (FSI) numerical method, combined with experiments, which intends to provide a design reference with guaranteed performance for dampers. Initially, according to parametric cavitation models and by applying numerical methods, simulations for the proposed FSI model are calculated. By analyzing the simulation results, strain variation characteristics near the bottom of the damper valves are revealed, which establish the relationships between strain change, cavitation and the free-stroke phenomena. Meanwhile, the specific position and distribution of free-stroke failure are clearly located by running diverse loading speeds. Finally, all the theoretical analysis results are verified using damper noise tests and indicator bench tests. Full article
(This article belongs to the Special Issue Intelligent Electric Vehicle Control, Testing and Evaluation)
Show Figures

Figure 1

25 pages, 7859 KiB  
Article
Methodology for the Early Detection of Damage Using CEEMDAN-Hilbert Spectral Analysis of Ultrasonic Wave Attenuation
by Ammar M. Shakir, Giovanni Cascante and Taher H. Ameen
Materials 2025, 18(14), 3294; https://doi.org/10.3390/ma18143294 - 12 Jul 2025
Viewed by 325
Abstract
Current non-destructive testing (NDT) methods, such as those based on wave velocity measurements, lack the sensitivity necessary to detect early-stage damage in concrete structures. Similarly, common signal processing techniques often assume linearity and stationarity among the signal data. By analyzing wave attenuation measurements [...] Read more.
Current non-destructive testing (NDT) methods, such as those based on wave velocity measurements, lack the sensitivity necessary to detect early-stage damage in concrete structures. Similarly, common signal processing techniques often assume linearity and stationarity among the signal data. By analyzing wave attenuation measurements using advanced signal processing techniques, mainly Hilbert–Huang transform (HHT), this work aims to enhance the early detection of damage in concrete. This study presents a novel energy-based technique that integrates complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and Hilbert spectrum analysis (HSA), to accurately capture nonlinear and nonstationary signal behaviors. Ultrasonic non-destructive testing was performed in this study on manufactured concrete specimens subjected to micro-damage characterized by internal microcracks smaller than 0.5 mm, induced through controlled freeze–thaw cycles. The recorded signals were decomposed from the time domain using CEEMDAN into frequency-ordered intrinsic mode functions (IMFs). A multi-criteria selection strategy, including damage index evaluation, was employed to identify the most effective IMFs while distinguishing true damage-induced energy loss from spurious nonlinear artifacts or noise. Localized damage was then analyzed in the frequency domain using HSA, achieving an up to 88% reduction in wave energy via Marginal Hilbert Spectrum analysis, compared to 68% using Fourier-based techniques, demonstrating a 20% improvement in sensitivity. The results indicate that the proposed technique enhances early damage detection through wave attenuation analysis and offers a superior ability to handle nonlinear, nonstationary signals. The Hilbert Spectrum provided a higher time-frequency resolution, enabling clearer identification of damage-related features. These findings highlight the potential of CEEMDAN-HSA as a practical, sensitive tool for early-stage microcrack detection in concrete. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

21 pages, 1329 KiB  
Systematic Review
The Application of Machine Learning to Educational Process Data Analysis: A Systematic Review
by Jing Huang, Yan Ping Xin and Hua Hua Chang
Educ. Sci. 2025, 15(7), 888; https://doi.org/10.3390/educsci15070888 - 11 Jul 2025
Viewed by 166
Abstract
Educational process data offers valuable opportunities to enhance teaching and learning by providing more detailed insights into students’ learning and problem-solving processes. However, its large size, unstructured format, and inherent noise pose significant challenges for effective analysis. Machine learning (ML) has emerged as [...] Read more.
Educational process data offers valuable opportunities to enhance teaching and learning by providing more detailed insights into students’ learning and problem-solving processes. However, its large size, unstructured format, and inherent noise pose significant challenges for effective analysis. Machine learning (ML) has emerged as a powerful tool for tackling such complexities. Despite growing interest, a comprehensive review of ML applications in process data analysis remains lacking. This study contributes to the literature by systematically reviewing 38 peer-reviewed publications, dated from 2013 to 2024, following PRISMA 2020 guidelines. The findings of this review indicate that (1) clickstream data is the most widely used processing data type, (2) process data analysis offers actionable insights to support differentiated instruction and address diverse student needs, and (3) ML typically serves as a tool for coding process data or estimating student ability. Persistent challenges, including feature extraction and interpreting results for practical applications, are also discussed. Finally, implications for future research and practice are discussed with a focus on enhancing personalized learning, improving assessment accuracy, and promoting test fairness. Full article
(This article belongs to the Section Special and Inclusive Education)
Show Figures

Figure 1

Back to TopTop