Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = noise equivalent power (NEP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3224 KiB  
Article
Impact of Charge Carrier Trapping at the Ge/Si Interface on Charge Transport in Ge-on-Si Photodetectors
by Dongyan Zhao, Yali Shao, Shuo Zhang, Tanyi Li, Boming Chi, Yaxing Zhu, Fang Liu, Yingzong Liang and Sichao Du
Electronics 2025, 14(15), 2982; https://doi.org/10.3390/electronics14152982 - 26 Jul 2025
Viewed by 225
Abstract
The performance of optoelectronic devices is affected by various noise sources. A notable factor is the 4.2% lattice mismatch at the Ge/Si interface, which significantly influences the efficiency of Ge-on-Si photodetectors. These noise sources can be analyzed by examining the impact of the [...] Read more.
The performance of optoelectronic devices is affected by various noise sources. A notable factor is the 4.2% lattice mismatch at the Ge/Si interface, which significantly influences the efficiency of Ge-on-Si photodetectors. These noise sources can be analyzed by examining the impact of the Ge/Si interface and deep traps on dark and photocurrents. This study evaluates the impact of these charge traps on key photodetector performance metrics, including responsivity, photo-to-dark current ratio, noise equivalent power (NEP), and specific detectivity (D*). The trapping effects on charge transport under both forward and reverse bias conditions are monitored through hysteresis analysis. When illuminated with an unmodulated 1550 nm laser, all the key performance metrics exhibit maximum variations at a specific reverse bias. This critical bias marks the transition from saturated to exponential charge transport regimes, where intensified electric fields enhance trap-assisted recombination and thus maximize metric fluctuations. Full article
(This article belongs to the Section Optoelectronics)
Show Figures

Figure 1

17 pages, 9212 KiB  
Article
Monolithically Integrated THz Detectors Based on High-Electron-Mobility Transistors
by Adam Rämer, Edoardo Negri, Eugen Dischke, Serguei Chevtchenko, Hossein Yazdani, Lars Schellhase, Viktor Krozer and Wolfgang Heinrich
Sensors 2025, 25(11), 3539; https://doi.org/10.3390/s25113539 - 4 Jun 2025
Viewed by 451
Abstract
We present THz direct detectors based on an AlGaN/GaN high electron mobility transistor (HEMT), featuring excellent optical sensitivity and low noise-equivalent power (NEP). These detectors are monolithically integrated with various antenna designs and exhibit state-of-the-art performance at room temperature. Their architecture enables straightforward [...] Read more.
We present THz direct detectors based on an AlGaN/GaN high electron mobility transistor (HEMT), featuring excellent optical sensitivity and low noise-equivalent power (NEP). These detectors are monolithically integrated with various antenna designs and exhibit state-of-the-art performance at room temperature. Their architecture enables straightforward scaling to two-dimensional formats, paving the way for terahertz focal plane arrays (FPAs). In particular, for one detector type, a fully realized THz FPA has been demonstrated in this paper. Theoretical and experimental characterizations are provided for both single-pixel detectors (0.1–1.5 THz) and the FPA (0.1–1.1 THz). The broadband single detectors achieve optical sensitivities exceeding 20 mA/W up to 1 THz and NEP values below 100 pW/Hz. The best optical NEP is below 10 pW/Hz at 175 GHz. The reported sensitivity and NEP values were achieved including antenna and optical coupling losses, underlining the excellent overall performance of the detectors. Full article
Show Figures

Figure 1

9 pages, 2543 KiB  
Article
Microwave Kinetic Inductance Detector Made of Molecular Beam Epitaxy (MBE)-Grown MgB2 Film
by Ariel Roitman, Corentin Pfaff, Thomas Hauet, Avner Shaulov and Yosef Yeshurun
Nanomaterials 2024, 14(21), 1731; https://doi.org/10.3390/nano14211731 - 29 Oct 2024
Viewed by 1074
Abstract
We present a MgB2-based Microwave Kinetic Inductance Detector (MKID) featuring a quality factor Qi ~ 105 and noise equivalent power NEP ~ 10−14 W/Hz at 2 K. In comparison to YBCO-based MKIDs, the MgB2 [...] Read more.
We present a MgB2-based Microwave Kinetic Inductance Detector (MKID) featuring a quality factor Qi ~ 105 and noise equivalent power NEP ~ 10−14 W/Hz at 2 K. In comparison to YBCO-based MKIDs, the MgB2 detector shows greater sensitivity to both temperature and magnetic field, a result of its two-gap nature and relatively low critical Hc2 field. Our data indicate that MgB2 is more advantageous for MKID applications at temperatures lower than 3 K. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

14 pages, 2238 KiB  
Article
Enhancement of Photodetector Characteristics by Zn-Porphyrin-Passivated MAPbBr3 Single Crystals
by Abdul Kareem Kalathil Soopy, Shengzhong (Frank) Liu and Adel Najar
Nanomaterials 2024, 14(13), 1068; https://doi.org/10.3390/nano14131068 - 21 Jun 2024
Cited by 2 | Viewed by 1551
Abstract
Perovskite single crystals have garnered significant interest in photodetector applications due to their exceptional optoelectronic properties. The outstanding crystalline quality of these materials further enhances their potential for efficient charge transport, making them promising candidates for next-generation photodetector devices. This article reports the [...] Read more.
Perovskite single crystals have garnered significant interest in photodetector applications due to their exceptional optoelectronic properties. The outstanding crystalline quality of these materials further enhances their potential for efficient charge transport, making them promising candidates for next-generation photodetector devices. This article reports the synthesis of methyl ammonium lead bromide (MAPbBr3) perovskite single crystal (SC) via the inverse-temperature crystallization method. To further improve the performance of the photodetector, Zn-porphyrin (Zn-PP) was used as a passivating agent during the growth of SC. The optical characterization confirmed the enhancement of optical properties with Zn-PP passivation. On single-crystal surfaces, integrated photodetectors are fabricated, and their photodetection performances are evaluated. The results show that the single-crystalline photodetector passivated with 0.05% Zn-PP enhanced photodetection properties and rapid response speed. The photoelectric performance of the device, including its responsivity (R), external quantum efficiency (EQE), detective nature (D), and noise-equivalent power (NEP), showed an enhancement of the un-passivated devices. This development introduces a new potential to employ high-quality perovskite single-crystal-based devices for more advanced optoelectronics. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

15 pages, 6820 KiB  
Article
On-Chip Modification of Titanium Electrothermal Characteristics by Joule Heating: Application to Terahertz Microbolometer
by Durgadevi Elamaran, Ko Akiba, Hiroaki Satoh, Amit Banerjee, Norihisa Hiromoto and Hiroshi Inokawa
Nanomaterials 2024, 14(2), 225; https://doi.org/10.3390/nano14020225 - 19 Jan 2024
Viewed by 1797
Abstract
This study demonstrates the conversion of metallic titanium (Ti) to titanium oxide just by conducting electrical current through Ti thin film in vacuum and increasing the temperature by Joule heating. This led to the improvement of electrical and thermal properties of a microbolometer. [...] Read more.
This study demonstrates the conversion of metallic titanium (Ti) to titanium oxide just by conducting electrical current through Ti thin film in vacuum and increasing the temperature by Joule heating. This led to the improvement of electrical and thermal properties of a microbolometer. A microbolometer with an integrated Ti thermistor and heater width of 2.7 µm and a length of 50 µm was fabricated for the current study. Constant-voltage stresses were applied to the thermistor wire to observe the effect of the Joule heating on its properties. Thermistor resistance ~14 times the initial resistance was observed owing to the heating. A negative large temperature coefficient of resistance (TCR) of −0.32%/K was also observed owing to the treatment, leading to an improved responsivity of ~4.5 times from devices with untreated Ti thermistors. However, this does not improve the noise equivalent power (NEP), due to the increased flicker noise. Microstructural analyses with transmission electron microscopy (TEM), transmission electron diffraction (TED) and energy dispersive X-ray (EDX) confirm the formation of a titanium oxide (TiOx) semiconducting phase on the Ti phase (~85% purity) deposited initially, further to the heating. Formation of TiOx during annealing could minimize the narrow width effect, which we reported previously in thin metal wires, leading to enhancement of responsivity. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

13 pages, 2268 KiB  
Communication
A High-Performance Thin-Film Sensor in 6G for Remote Sensing of the Sea Surface
by Qi Song, Xiaoguang Xu, Jianchen Zi, Jiatong Wang, Zhongze Peng, Bingyuan Zhang and Min Zhang
Remote Sens. 2023, 15(14), 3682; https://doi.org/10.3390/rs15143682 - 24 Jul 2023
Cited by 2 | Viewed by 2322
Abstract
Functional devices in the THz band will provide a highly important technical guarantee for the promotion and application of 6G technology. We sought to design a high-performance sensor with a large area, high responsiveness, and low equivalent noise power, which is stable at [...] Read more.
Functional devices in the THz band will provide a highly important technical guarantee for the promotion and application of 6G technology. We sought to design a high-performance sensor with a large area, high responsiveness, and low equivalent noise power, which is stable at room temperature for long periods and still usable under high humidity; it is suitable for the environment of marine remote sensing technology and has the potential for mass production. We prepared a Te film with high stability and studied its crystallization method by comparing the sensing and detection effects of THz waves at different annealing temperatures. It is proposed that the best crystallization and detection effect is achieved by annealing at 100 °C for 60 min, with a sensitivity of up to 19.8 A/W and an equivalent noise power (NEP) of 2.8 pW Hz−1/2. The effective detection area of the detector can reach the centimeter level, and this level is maintained for more than 2 months in a humid environment at 30 °C with 70–80% humidity and without encapsulation. Considering its advantages of stability, detection performance, large effective area, and easy mass preparation, our Te thin film is an ideal sensor for 6G ocean remote sensing technology. Full article
(This article belongs to the Special Issue Advanced Techniques for Water-Related Remote Sensing)
Show Figures

Figure 1

12 pages, 2364 KiB  
Communication
Room–Temperature Terahertz Detector Based on Monolayer Graphene Integrated with an Asymmetric Bowtie Antenna
by Zicheng Guo, Chaojun Ma, Hai Ou, Ximiao Wang, Shaojing Liu, Huanjun Chen, Shaoyong Zheng and Shaozhi Deng
Photonics 2023, 10(5), 576; https://doi.org/10.3390/photonics10050576 - 15 May 2023
Cited by 5 | Viewed by 2736
Abstract
Terahertz (THz) technology has great potential for applications in various fields, such as security imaging detection, optical communication, environmental quality monitoring, and life sciences. Most of these applications require THz detectors with high sensitivity, fast response, and a miniaturized size that can operate [...] Read more.
Terahertz (THz) technology has great potential for applications in various fields, such as security imaging detection, optical communication, environmental quality monitoring, and life sciences. Most of these applications require THz detectors with high sensitivity, fast response, and a miniaturized size that can operate at room temperature. In this study, we present a graphene THz detector integrated with an asymmetric bowtie antenna. The asymmetric antenna confines the incident THz waves into the graphene active layer, leading to photocurrent generation and its directional flow. The maximum responsivity of this device can reach 19.6 V/W at 2.52 THz, with a noise–equivalent power (NEP) of 0.59 nW /Hz0.5. Additionally, the response time is less than 21 μs, with an active area of less than 1500 μm2. Such a small device enables THz imaging with a spatial resolution as small as 200 μm. These results provide a feasible way to design miniaturized and integrable two–dimensional material–based THz detectors. Full article
(This article belongs to the Special Issue Micro-Nano Optical Devices)
Show Figures

Figure 1

12 pages, 1217 KiB  
Article
State-of-the-Art Room Temperature Operable Zero-Bias Schottky Diode-Based Terahertz Detector Up to 5.56 THz
by Rahul Yadav, Florian Ludwig, Fahd Rushd Faridi, J. Michael Klopf, Hartmut G. Roskos, Sascha Preu and Andreas Penirschke
Sensors 2023, 23(7), 3469; https://doi.org/10.3390/s23073469 - 26 Mar 2023
Cited by 20 | Viewed by 3953
Abstract
We present the characterization of a Zero-bias Schottky diode-based Terahertz (THz) detector up to 5.56 THz. The detector was operated with both a table-top system until 1.2 THz and at a Free-Electron Laser (FEL) facility at singular frequencies from 1.9 to 5.56 THz. [...] Read more.
We present the characterization of a Zero-bias Schottky diode-based Terahertz (THz) detector up to 5.56 THz. The detector was operated with both a table-top system until 1.2 THz and at a Free-Electron Laser (FEL) facility at singular frequencies from 1.9 to 5.56 THz. We used two measurement techniques in order to discriminate the sub-ns-scale (via a 20 GHz oscilloscope) and the ms-scale (using the lock-in technique) responsivity. While the lock-in measurements basically contain all rectification effects, the sub-ns-scale detection with the oscilloscope is not sensitive to slow bolometric effects caused by changes of the IV characteristic due to temperature. The noise equivalent power (NEP) is 10 pW/Hz in the frequency range from 0.2 to 0.6 THz and 17 pW/Hz at 1.2 THz and increases to 0.9 μW/Hz at 5.56 THz, which is at the state of the art for room temperature zero-bias Schottky diode-based THz detectors with non-resonant antennas. The voltage and current responsivity of ∼500 kV/W and ∼100 mA/W, respectively, is demonstrated over a frequency range of 0.2 to 1.2 THz with the table-top system. Full article
(This article belongs to the Special Issue Superconductor and Semiconductor-Based Radiation Detectors)
Show Figures

Figure 1

17 pages, 2966 KiB  
Article
Ensquared Energy and Optical Centroid Efficiency in Optical Sensors: Part 1, Theory
by Marija Strojnik, Beethoven Bravo-Medina, Robert Martin and Yaujen Wang
Photonics 2023, 10(3), 254; https://doi.org/10.3390/photonics10030254 - 28 Feb 2023
Cited by 8 | Viewed by 2998
Abstract
High-performance megapixel focal plane arrays with small pixels have been widely used in modern optical remote sensing, astronomical, and surveillance instruments. In the prediction models applied in the traditional instrument performance analysis, the image of a point source is assumed to fall on [...] Read more.
High-performance megapixel focal plane arrays with small pixels have been widely used in modern optical remote sensing, astronomical, and surveillance instruments. In the prediction models applied in the traditional instrument performance analysis, the image of a point source is assumed to fall on the center of a detector pixel. A geometrical image of a point source in the realistic optical system may actually fall on any position on the detector pixel because the sensor’s line of sight includes pointing errors and jitter. This traditional assumption may lead to an optimistic error, estimated at between 10% and 20%. We present the critical factors that impact the performance estimate in a realistic instrument design based on the prediction for the noise-equivalent power (NEP). They are the optical centroid efficiency (OCE) and the ensquared energy, or more precisely, the energy on the rectangular detector pixel (EOD). We performed the simulation studies for imaging with an optical system with and without a generalized rectangular central obscuration. Full article
Show Figures

Graphical abstract

11 pages, 3132 KiB  
Article
Fabrication and Characterization of Visible to Near-Infrared Photodetector Based on Multilayer Graphene/Mg2Si/Si Heterojunction
by Hong Yu, Rui Deng, Zhangjie Mo, Shentong Ji and Quan Xie
Nanomaterials 2022, 12(18), 3230; https://doi.org/10.3390/nano12183230 - 17 Sep 2022
Cited by 6 | Viewed by 2522
Abstract
In this investigation, p–Mg2Si/n–Si heterojunction photodetector (PD) is fabricated by magnetron sputtering and low vacuum annealing in the absence of argon or nitrogen atmosphere. Multilayer Graphene (MLG)/Mg2Si/Si heterojunction PD is first fabricated by transferring MLG to Mg2Si/Si [...] Read more.
In this investigation, p–Mg2Si/n–Si heterojunction photodetector (PD) is fabricated by magnetron sputtering and low vacuum annealing in the absence of argon or nitrogen atmosphere. Multilayer Graphene (MLG)/Mg2Si/Si heterojunction PD is first fabricated by transferring MLG to Mg2Si/Si heterojunction substrate using the suspended self-help transfer MLG method. After characterizing the phase composition, morphology and detection properties of Mg2Si/Si and MLG/Mg2Si/Si heterojunction PDs, the successful fabrication of the Mg2Si/Si and MLG/Mg2Si/Si heterojunction PDs are confirmed and some detection capabilities are realized. Compared with the Mg2Si/Si heterojunction PD, the light absorption and the ability to effectively separate and transfer photogenerated carriers of MLG/Mg2Si/Si heterojunction PD are improved. The responsivity, external quantum efficiency (EQE), noise equivalent power (NEP), detectivity (D*), on/off ratio and other detection properties are enhanced. The peak responsivity and EQE of the MLG/Mg2Si/Si heterojunction PD are 23.7 mA/W and 2.75%, respectively, which are better than the previous 1–10 mA/W and 2.3%. The results illustrate that the fabrication technology of introducing MLG to regulate the detection properties of the Mg2Si/Si heterojunction PD is feasible. In addition, this study reveals the potential of MLG to enhance the detection properties of optoelectronic devices, broadens the application prospect of the Mg2Si/Si-based heterojunction PDs and provides a direction for the regulation of optoelectronic devices. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

17 pages, 7490 KiB  
Article
Responsivity and NEP Improvement of Terahertz Microbolometer by High-Impedance Antenna
by Arie Pangesti Aji, Hiroaki Satoh, Catur Apriono, Eko Tjipto Rahardjo and Hiroshi Inokawa
Sensors 2022, 22(14), 5107; https://doi.org/10.3390/s22145107 - 7 Jul 2022
Cited by 5 | Viewed by 2920
Abstract
The antenna-coupled microbolometer with suspended titanium heater and thermistor was attractive as a terahertz (THz) detector due to its structural simplicity and low noise levels. In this study, we attempted to improve the responsivity and noise-equivalent power (NEP) of the THz detector by [...] Read more.
The antenna-coupled microbolometer with suspended titanium heater and thermistor was attractive as a terahertz (THz) detector due to its structural simplicity and low noise levels. In this study, we attempted to improve the responsivity and noise-equivalent power (NEP) of the THz detector by using high-resistance heater stacked on the meander thermistor. A wide range of heater resistances were prepared by changing the heater width and thickness. It was revealed that the electrical responsivity and NEP could be improved by increasing the heater’s resistance. To make the best use of this improvement, a high-impedance folded dipole antenna was introduced, and the optical performance at 1 THz was found to be better than that of the conventional halfwave dipole antenna combined with a low-resistance heater. Both the electrical and optical measurement results indicated that the increase in heater resistance could reduce the thermal conductance in the detector, thus improved the responsivity and NEP even if the thermistor resistance was kept the same. Full article
(This article belongs to the Special Issue UV, Infrared and THz Radiation Sensing System)
Show Figures

Figure 1

21 pages, 4903 KiB  
Article
MIS-Like Structures with Silicon-Rich Oxide Films Obtained by HFCVD: Their Response as Photodetectors
by Gabriel Omar Mendoza Conde, José Alberto Luna López, Zaira Jocelyn Hernández Simón, José Álvaro David Hernández de la Luz, Godofredo García Salgado, Erick Gastellou Hernández, Haydee Patricia Martínez Hernández and Javier Flores Méndez
Sensors 2022, 22(10), 3904; https://doi.org/10.3390/s22103904 - 21 May 2022
Cited by 10 | Viewed by 2918
Abstract
MIS-type structures composed of silicon-rich oxide (SRO), thin films deposited by hot filament chemical vapor deposition (HFCVD), show interesting I-V and I-t properties under white light illumination and a response as photodetectors. From electrical measurements, it was found that at a reverse bias [...] Read more.
MIS-type structures composed of silicon-rich oxide (SRO), thin films deposited by hot filament chemical vapor deposition (HFCVD), show interesting I-V and I-t properties under white light illumination and a response as photodetectors. From electrical measurements, it was found that at a reverse bias of −4 V, the illumination current increased by up to three orders of magnitude relative to the dark current, which was about 82 nA, while the photogenerated current reached a value of 25 μA. The reported MIS structure with SRO as the dielectric layer exhibited a hopping conduction mechanism, and an ohmic conduction mechanism was found with low voltage. I-t measurements confirmed the increased photogenerated current. Furthermore, the MIS structure, characterized by current-wavelength (I-λ) measurements, exhibited a maximum responsivity value at 254 mA/W, specific detectivity (D*) at 2.21 × 1011 cm Hz1/2 W−1, and a noise equivalent power (NEP) of 49 pW at a wavelength of 535 nm. The structure exhibited good switching behavior, with rise and fall times between 120 and 150 ms, respectively. These rise and decay times explain the generation and recombination of charge carriers and the trapping and release of traps, respectively. These results make MIS-type structures useful as photodetectors in the 420 to 590 nm range. Full article
(This article belongs to the Topic Optical and Optoelectronic Materials and Applications)
Show Figures

Figure 1

9 pages, 1989 KiB  
Communication
Optimization of Pixel Size and Electrode Structure for Ge:Ga Terahertz Photoconductive Detectors
by Yifei Wu, Zuoru Dong, Yulu Chen, Bingbing Wang, Liming Wang, Xiaowan Dai, Junming Zhang and Xiaodong Wang
Sensors 2022, 22(5), 1916; https://doi.org/10.3390/s22051916 - 1 Mar 2022
Cited by 4 | Viewed by 2195
Abstract
To investigate the effects of the pixel sizes and the electrode structures on the performance of Ge-based terahertz (THz) photoconductive detectors, vertical structure Ge:Ga detectors with different structure parameters were fabricated. The characteristics of the detectors were investigated at 4.2 K, including the [...] Read more.
To investigate the effects of the pixel sizes and the electrode structures on the performance of Ge-based terahertz (THz) photoconductive detectors, vertical structure Ge:Ga detectors with different structure parameters were fabricated. The characteristics of the detectors were investigated at 4.2 K, including the spectral response, blackbody response (Rbb), dark current density-voltage characters, and noise equivalent power (NEP). The detector with the pixel radius of 400 μm and the top electrode of the ring structure showed the best performance. The spectral response band of this detector was about 20–180 μm. The Rbb of this detector reached as high as 0.92 A/W, and the NEP reached 5.4 × 10−13 W/Hz at 0.5 V. Compared with the detector with a pixel radius of 1000 μm and the top electrode of the spot structure, the Rbb increased nearly six times, and the NEP decreased nearly 12 times. This is due to the fact that the optimized parameters increased the equivalent electric field of the detector. This work provides a route for future research into large-scale array Ge-based THz detectors. Full article
(This article belongs to the Special Issue State-of-the-Art Optical Sensors Technology in China)
Show Figures

Figure 1

9 pages, 9017 KiB  
Communication
High-Responsivity, Low-Leakage Current, Ultra-Fast Terahertz Detectors Based on a GaN High-Electron-Mobility Transistor with Integrated Bowtie Antennas
by Zhen Huang, Wei Yan, Zhaofeng Li, Hui Dong, Fuhua Yang and Xiaodong Wang
Sensors 2022, 22(3), 933; https://doi.org/10.3390/s22030933 - 25 Jan 2022
Cited by 11 | Viewed by 3007
Abstract
In this study, we fabricated three kinds of terahertz detectors with different leakage currents to analyze the plateau-like effect. The results indicate that the platform becomes increasingly apparent with the decrease in the leakage current. The fabricated device with the lowest leakage current [...] Read more.
In this study, we fabricated three kinds of terahertz detectors with different leakage currents to analyze the plateau-like effect. The results indicate that the platform becomes increasingly apparent with the decrease in the leakage current. The fabricated device with the lowest leakage current shows a responsivity of 4.9 kV/W and noise equivalent power (NEP) of 72 pW/Hz. Further, it can be used for broadband detection between 215 GHz and 232 GHz with a voltage responsivity of more than 3.4 kV/W, and the response time can be up to 8 ns. Overall, the proposed device exhibits high sensitivity, large modulation frequency, and fast response, which indicates its excellent potential for detection and imaging applications in the THz range, including the detection of the 220 GHz atmospheric window. Full article
(This article belongs to the Special Issue MEMS and Ultra-Sensitive Sensors)
Show Figures

Figure 1

20 pages, 11350 KiB  
Article
Simulation Study on the Effect of Doping Concentrations on the Photodetection Properties of Mg2Si/Si Heterojunction Photodetector
by Hong Yu, Chenggui Gao, Jiang Zou, Wensheng Yang and Quan Xie
Photonics 2021, 8(11), 509; https://doi.org/10.3390/photonics8110509 - 11 Nov 2021
Cited by 15 | Viewed by 3503
Abstract
To develop and design an environmentally friendly, low-cost shortwave infrared (SWIR) photodetector (PD) material and extend the optical response cutoff wavelengths of existing silicon photodetectors beyond 1100 nm, high-performance silicon-compatible Mg2Si/Si PDs are required. First, the structural model of the Mg [...] Read more.
To develop and design an environmentally friendly, low-cost shortwave infrared (SWIR) photodetector (PD) material and extend the optical response cutoff wavelengths of existing silicon photodetectors beyond 1100 nm, high-performance silicon-compatible Mg2Si/Si PDs are required. First, the structural model of the Mg2Si/Si heterojunction was established using the Silvaco Atlas module. Second, the effects of the doping concentrations of Mg2Si and Si on the photoelectric properties of the Mg2Si/Si heterojunction PD, including the energy band, breakdown voltage, dark current, forward conduction voltage, external quantum efficiency (EQE), responsivity, noise equivalent power (NEP), detectivity, on/off ratio, response time, and recovery time, were simulated. At different doping concentrations, the heterojunction energy band shifted, and a peak barrier appeared at the conduction band of the Mg2Si/Si heterojunction interface. When the doping concentrations of Si and Mg2Si layer were 1017, and 1016 cm−3, respectively, the Mg2Si/Si heterojunction PD could obtain optimal photoelectric properties. Under these conditions, the maximum EQE was 70.68% at 800 nm, the maximum responsivity was 0.51 A/W at 1000 nm, the minimum NEP was 7.07 × 10−11 WHz–1/2 at 1000 nm, the maximum detectivity was 1.4 × 1010 Jones at 1000 nm, and the maximum on/off ratio was 141.45 at 1000 nm. The simulation and optimization result also showed that the Mg2Si/Si heterojunction PD could be used for visible and SWIR photodetection in the wavelength range from 400 to 1500 nm. The results also provide technical support for the future preparation of eco-friendly heterojunction photodetectors. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

Back to TopTop