A High-Performance Thin-Film Sensor in 6G for Remote Sensing of the Sea Surface
Abstract
1. Introduction
2. Experimental Design
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belkin, I.M. Remote Sensing of Ocean Fronts in Marine Ecology and Fisheries. Remote Sens. 2021, 13, 883. [Google Scholar] [CrossRef]
- Grotte, M.E.; Birkeland, R.; Honore-Livermore, E.; Bakken, S.; Garrett, J.L.; Prentice, E.F.; Sigernes, F.; Orlandic, M.; Gravdahl, J.T.; Johansen, T.A. Ocean Color Hyperspectral Remote Sensing With High Resolution and Low Latency—The HYPSO-1 CubeSat Mission. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–19. [Google Scholar] [CrossRef]
- Kramer, S.J.; Siegel, D.A.; Maritorena, S.; Catlett, D. Modeling surface ocean phytoplankton pigments from hyperspectral remote sensing reflectance on global scales. Remote Sens. Environ. 2022, 270, 112879. [Google Scholar] [CrossRef]
- Su, H.; Qin, T.; Wang, A.; Lu, W. Reconstructing Ocean Heat Content for Revisiting Global Ocean Warming from Remote Sensing Perspectives. Remote Sens. 2021, 13, 3799. [Google Scholar] [CrossRef]
- Liu, H.; He, X.; Li, Q.; Kratzer, S.; Wang, J.; Shi, T.; Hu, Z.; Yang, C.; Hu, S.; Zhou, Q.; et al. Estimating ultraviolet reflectance from visible bands in ocean colour remote sensing. Remote Sens. Environ. 2021, 258, 112404. [Google Scholar] [CrossRef]
- Seydi, S.T.; Hasanlou, M.; Amani, M.; Huang, W. Oil Spill Detection Based on Multiscale Multidimensional Residual CNN for Optical Remote Sensing Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10941–10952. [Google Scholar] [CrossRef]
- Wang, T.; Yu, P.; Wu, Z.; Lu, W.; Liu, X.; Li, Q.P.; Huang, B. Revisiting the Intraseasonal Variability of Chlorophyll-a in the Adjacent Luzon Strait With a New Gap-Filled Remote Sensing Data Set. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–11. [Google Scholar] [CrossRef]
- Hsu, T.Y.; Chang, Y.; Lee, M.A.; Wu, R.F.; Hsiao, S.C. Predicting skipjack tuna fishing grounds in the Western and Central Pacific Ocean based on high-spatial-temporal-resolution satellite data. Remote Sens. 2021, 13, 861. [Google Scholar] [CrossRef]
- Fan, Y.; Li, W.; Chen, N.; Ahn, J.-H.; Park, Y.-J.; Kratzer, S.; Schroeder, T.; Ishizaka, J.; Chang, R.; Stamnes, K. OC-SMART: A machine learning based data analysis platform for satellite ocean color sensors. Remote Sens. Environ. 2021, 253, 112236. [Google Scholar] [CrossRef]
- Xie, T.; Ouyang, R.; Perrie, W.; Zhao, L.; Zhang, X. Proof and Application of Discriminating Ocean Oil Spills and Seawater Based on Polarization Ratio Using Quad-Polarization Synthetic Aperture Radar. Remote Sens. 2023, 15, 1855. [Google Scholar] [CrossRef]
- Silva, G.S.M.; Garcia, C.A.E. Evaluation of ocean chlorophyll-a remote sensing algorithms using in situ fluorescence data in Southern Brazilian Coastal Waters. Ocean. Coast. Res. 2021, 69. [Google Scholar] [CrossRef]
- Seela, B.K.; Janapati, J.; Unnikrishnan, C.K.; Lin, P.-L.; Le Loh, J.; Chang, W.-Y.; Kumar, U.; Reddy, K.K.; Lee, D.-I.; Reddy, M.V. Raindrop Size Distributions of North Indian Ocean Tropical Cyclones Observed at the Coastal and Inland Stations in South India. Remote Sens. 2021, 13, 3178. [Google Scholar] [CrossRef]
- Ma, Y.; Yin, W.; Guo, Z.; Xuan, J. The Ocean Surface Current in the East China Sea Computed by the Geostationary Ocean Color Imager Satellite. Remote Sens. 2023, 15, 2210. [Google Scholar] [CrossRef]
- Kuroda, H.; Setou, T. Extensive Marine Heatwaves at the Sea Surface in the Northwestern Pacific Ocean in Summer 2021. Remote Sens. 2021, 13, 3989. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.; Cheng, Z.; Liu, T.; Zhai, J.; Hu, H. Polarization Maintaining 3-D Convolutional Neural Network for Color Polarimetric Images Denoising. IEEE Trans. Instrum. Meas. 2023, 72, 1–9. [Google Scholar] [CrossRef]
- Li, X.; Hu, H.; Zhao, L.; Wang, H.; Yu, Y.; Wu, L.; Liu, T. Polarimetric image recovery method combining histogram stretching for underwater imaging. Sci. Rep. 2018, 8, 12430. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Hu, H.; Jiang, J.; Li, X.; Zhao, K.; Cheng, Z.; Sang, M.; Liu, T. Underwater Imaging by Suppressing the Backscattered Light Based on Mueller Matrix. IEEE Photonics J. 2021, 13, 7800106. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Qi, P.; Zhu, Z.; Xu, J.; Liu, T.; Zhai, J.; Hu, H. Are Indices of Polarimetric Purity Excellent Metrics for Object Identification in Scattering Media? Remote Sens. 2022, 14, 4148. [Google Scholar] [CrossRef]
- Li, X.; Hu, H.; Zhao, L.; Wang, H.; Han, Q.; Cheng, Z.; Liu, T. Pseudo-polarimetric Method for Dense Haze Removal. IEEE Photonics J. 2019, 11, 6900611. [Google Scholar] [CrossRef]
- Li, X.; Hu, H.; Wu, L.; Liu, T. Optimization of instrument matrix for Mueller matrix ellipsometry based on partial elements analysis of the Mueller matrix. Opt. Express 2017, 25, 18872–18884. [Google Scholar] [CrossRef]
- Li, X.; Han, Y.; Wang, H.; Liu, T.; Chen, S.-C.; Hu, H. Polarimetric Imaging Through Scattering Media: A Review. Front. Phys. 2022, 10, 815296. [Google Scholar] [CrossRef]
- Liao, S.; Wu, J.; Li, J.; Konstantin, K. Information-Centric Massive IoT-Based Ubiquitous Connected VR/AR in 6G: A Proposed Caching Consensus Approach. IEEE Internet Things 2021, 8, 5172–5184. [Google Scholar] [CrossRef]
- Rajesh, G.; Dakshita, R.; Sudeep, T. 6G-enabled Edge Intelligence for Ultra -Reliable Low Latency Applications: Vision and Mission. Comput. Stand Inter. 2021, 77, 103521. [Google Scholar]
- Qi, W.; Li, Q.; Song, Q.; Guo, L.; Jamalipour, A. Extensive Edge Intelligence for Future Vehicular Networks in 6G. IEEE Wirel Commun. 2021, 28, 128–135. [Google Scholar] [CrossRef]
- Guo, H.; Zhou, X.; Liu, J.; Zhang, Y. Vehicular intelligence in 6G: Networking communications and computing. Veh. Commun. 2022, 33, 100399. [Google Scholar] [CrossRef]
- Shilpa, T.; Nageen, H.; Hosein, N.; Feng, X.; Geng, W.; Vida, I. 6G: Connectivity in the Era of Distributed Intelligence. IEEE Commun. Mag. 2021, 59, 45–50. [Google Scholar]
- Huang, X.; Zhang, K.; Wu, F.; Leng, S. Collaborative Machine Learning for Energy-Efficient Edge Networks in 6G. IEEE Netw. 2021, 35, 12–19. [Google Scholar] [CrossRef]
- Liu, D.F.; Liang, A.J.; Liu, E.K.; Xu, Q.N.; Li, Y.W.; Chen, C.; Pei, D.; Shi, W.J.; Mo, S.K.; Dudin, P.; et al. Magnetic Weyl semimetal phase in a Kagome crystal. Science 2019, 365, 1282–1285. [Google Scholar] [CrossRef]
- Rees, D.; Manna, K.; Lu, B.; Morimoto, T.; Borrmann, H.; Felser, C.; Moore, J.E.; Darius, T.; Orenstein, J. Helicity-dependent photocurrents in the chiral Weyl semimetal RhSi. Sci. Adv. 2020, 6, eaba0509. [Google Scholar] [CrossRef]
- Morali, N.; Batabyal, R.; Nag Pranab, K.; Liu, E.; Xu, Q.; Sun, Y.; Yan, B.; Felser, C.; Avraham, N.; Beidenkopf, H. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science 2019, 365, 1286–1291. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, T.; Wang, J.; Xu, L.; Lin, Z.; Liu, J.; Wang, C.; Lau, S.P.; Zhang, W.; Chhowalla, M.; et al. Topological phase change transistors based on tellurium Weyl semiconductor. Sci. Adv. 2022, 8, eabn3837. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Y.; Li, Z.; Liu, X.; Zhang, C.; Peng, S.; Han, J.; Zhou, H.; Gou, J.; Xiu, F.; et al. Weyl Semiconductor Te/Sb2Se3 Heterostructure for Broadband Photodetection and Its Binary Photoresponse by C60 as Charge-Regulation Medium. Adv. Opt. Mater. 2021, 9, 2101256. [Google Scholar] [CrossRef]
- Zhang, N.; Zhao, G.; Li, L.; Wang, P.; Xie, L.; Cheng, B.; Li, H.; Lin, Z.; Xi, C.; Ke, J.; et al. Magnetotransport signatures of Weyl physics and discrete scale invariance in the elemental semiconductor tellurium. Proc. Natl. Acad. Sci. USA 2020, 117, 11337–11343. [Google Scholar] [CrossRef]
- Liu, N.; Wang, Y.; Li, W.B.; Zhang, L.Y.; He, S.K.; Zhao, J.K.; Zhao, J.J. Thermal stability study of Weyl semimetal WTe2/Ti heterostructures by Raman scattering. Acta Phys. Sin. Ch. Ed. 2022, 71, 197501. [Google Scholar] [CrossRef]
- Lu, W.; Zhang, Y.D.; Zhu, Z.S.; Lai, J.W.; Zhao, C.; Liu, X.F.; Liu, J.; Sun, D. Thin tungsten telluride layer preparation by thermal annealing. Nanotechnology 2017, 27, 414006. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Chai, L.; Liu, W.; Ma, Q.; Li, Y.; Hu, M. THz polarization-sensitive characterization of a large-area multilayer rhenium diselenide nanofilm. Nanotechnology 2019, 30, 505203. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Chen, H.; Zhang, M.; Li, L.; Yang, J.; Yan, P. Broadband electrically controlled bismuth nanofilm THz modulator. APL Photonics 2021, 6, 056103. [Google Scholar] [CrossRef]
- Tong, J.; Suo, F.; Zhang, T.; Huang, Z.; Chu, J.; Zhang, D.H. Plasmonic semiconductor nanogroove array enhanced broad spectral band millimetre and terahertz wave detection. Light Sci. Appl. 2021, 10, 58. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.W.; Politano, A.; Guo, C.; Guo, W.L.; Liu, C.L.; Wang, L.; Chen, X.S.; Lu, W. Ultrasensitive Room-Temperature Terahertz Direct Detection Based on a Bismuth Selenide Topological Insulator. Adv. Funct. Mater. 2018, 28, 1801786. [Google Scholar] [CrossRef]
- Xu, H.; Guo, C.; Zhang, J.; Guo, W.; Kuo, C.-N.; Lue, C.S.; Hu, W.; Wang, L.; Chen, G.; Politano, A.; et al. PtTe2-Based Type-II Dirac Semimetal and Its van der Waals Heterostructure for Sensitive Room Temperature Terahertz Photodetection. Small 2019, 15, 1903362. [Google Scholar] [CrossRef]
- Guo, C.; Hu, Y.; Chen, G.; Wei, D.; Zhang, L.; Chen, Z.; Guo, W.; Xu, H.; Kuo, C.-N.; Lue, C.S.; et al. Anisotropic ultrasensitive PdTe2 -based phototransistor for room-temperature long-wavelength detection. Sci. Adv. 2020, 6, eabb6500. [Google Scholar] [CrossRef]
- Song, Q.; Xu, Y.F.; Zhou, Z.W.; Liang, H.W.; Zhang, M.Y.; Zhu, G.Y.; Yang, J.B.; Yan, P.G. Terahertz Detectors for 6G Technology Using Quantum Dot 3D Concave Convergence Microwheel Arrays. ACS Photonics 2022, 9, 2520–2527. [Google Scholar] [CrossRef]
- Song, Q.; Zhou, Z.; Zhu, G.; Liang, H.; Zhang, M.; Zhang, B.; Liu, F.; Yan, P. Microdisk array based Weyl semimetal nanofilm terahertz detector. Nanophotonics 2022, 11, 3595–3602. [Google Scholar] [CrossRef]
- Zhou, Z.; Song, Q.; Xu, Y.; Liang, H.; Zhang, M.; Zhang, B.; Yan, P. Magnetron sputtering deposited large-scale Weyl semimetal THz detector. Infrared Phys. Technol. 2022, 121, 104060. [Google Scholar] [CrossRef]
- Ma, W.N.; Gao, Y.Q.; Shang, L.Y.; Zhou, W.; Yao, N.J.; Jiang, L.; Qiu, Q.X.; Li, J.B.; Shi, Y.; Hu, Z.G.; et al. Ultrabroadband Tellurium Photoelectric Detector from Visible to Millimeter Wave. Adv. Sci. 2021, 9, 2103873. [Google Scholar] [CrossRef]
- Khodzitsky, M.; Tukmakova, A.; Zykov, D.; Novoselov, M.; Tkhorzhevskiy, I.; Sedinin, A.; Novotelnova, A.; Zaitsev, A.; Demchenko, P.; Makarova, E.; et al. THz room-temperature detector based on thermoelectric frequency-selective surface fabricated from Bi88Sb12 thin film. Appl. Phys. Lett. 2021, 119, 164101. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, T.; Yan, L.; Zhu, C.; Shen, W.; Hu, C.; Lei, H.; Luo, H.; Zhang, D.; Liu, F.; et al. Colossal Room-Temperature Terahertz Topological Response in Type-II Weyl Semimetal NbIrTe4. Adv. Mater. 2022, 34, 2204621. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y.; Chen, Z.; Zhang, S.; Shi, C.; Li, G.; Yu, X.; Xu, Z.; Zhang, L.; Zhao, W.; et al. A candidate material EuSn2As2-based terahertz direct detection and imaging. npj 2D Mater. Appl. 2022, 6, 26. [Google Scholar] [CrossRef]
- Li, J.; Ma, W.; Jiang, L.; Yao, N.; Deng, J.; Qiu, Q.; Shi, Y.; Zhou, W.; Huang, Z. High Performance of Room-Temperature NbSe2 Terahertz Photoelectric Detector. ACS Appl. Mater. Interfaces 2022, 14, 14331–14341. [Google Scholar] [CrossRef]
- Li, J.; Zou, Y.; Hu, D.; Gu, Y.; Han, Z.; Liu, J.; Xu, X. Enhanced room-temperature terahertz detection and imaging derived from anti-reflection 2D perovskite layer on MAPbI3 single crystals. Nanoscale 2022, 14, 6109–6117. [Google Scholar] [CrossRef]
- Li, J.; Jiang, L.; Ma, W.; Wu, T.; Qiu, Q.; Shi, Y.; Zhou, W.; Yao, N.; Huang, Z. VSe2 Nanosheets for Broadband Photodetection from Visible to Terahertz. ACS Appl. Nano Mater. 2022, 5, 5158–5167. [Google Scholar] [CrossRef]
- Huang, Z.; Yan, W.; Li, Z.; Dong, H.; Yang, F.; Wang, X. High-Responsivity, Low-Leakage Current, Ultra-Fast Terahertz Detectors Based on a GaN High-Electron-Mobility Transistor with Integrated Bowtie Antennas. Sensors 2022, 22, 933. [Google Scholar] [CrossRef]
- Jia, H.; Tang, X.; Zhu, X.; Li, M.; Wu, D.; Li, P.; Wang, J.; Li, M.; Li, J. Low-noise room-temperature terahertz detector based on the photothermoelectric effect of graphene oxide-Bi films. Opt. Mater. 2023, 136, 113432. [Google Scholar] [CrossRef]
- Delgado-Notario, J.A.; Knap, W.; Clericò, V.; Salvador-Sánchez, J.; Calvo-Gallego, J.; Taniguchi, T.; Watanabe, K.; Otsuji, T.; Popov, V.V.; Fateev, D.V.; et al. Enhanced terahertz detection of multigate graphene nanostructures. Nanophotonics 2022, 11, 519–529. [Google Scholar] [CrossRef]
- Guo, W.; Dong, Z.; Xu, Y.; Liu, C.; Wei, D.; Zhang, L.; Shi, X.; Guo, C.; Xu, H.; Chen, G.; et al. Sensitive Terahertz Detection and Imaging Driven by the Photothermoelectric Effect in Ultrashort-Channel Black Phosphorus Devices. Adv. Sci. 2020, 7, 1902699. [Google Scholar] [CrossRef] [PubMed]
- Safin, A.; Puliafito, V.; Carpentieri, M.; Finocchio, G.; Nikitov, S.; Stremoukhov, P.; Kirilyuk, A.; Tyberkevych, V.; Slavin, A. Electrically tunable detector of THz-frequency signals based on an antiferromagnet. Appl. Phys. Lett. 2020, 117, 222411. [Google Scholar] [CrossRef]
- Gayduchenko, I.; Xu, S.G.; Alymov, G.; Moskotin, M.; Tretyakov, I.; Taniguchi, T.; Watanabe, K.; Goltsman, G.; Geim, A.K.; Fedorov, G.; et al. Tunnel field-effect transistors for sensitive terahertz detection. Nat. Commun. 2021, 12, 543. [Google Scholar] [CrossRef]
- Čibiraitė-Lukenskienė, D.; Ikamas, K.; Lisauskas, T.; Krozer, V.; Roskos, H.G.; Lisauskas, A. Passive Detection and Imaging of Human Body Radiation Using an Uncooled Field-Effect Transistor-Based THz Detector. Sensors 2020, 20, 4087. [Google Scholar] [CrossRef]
Materials | Detection Frequency | Photoresponsivity | NEP (pW/Hz1/2) | Effective Detection Area | Ref |
---|---|---|---|---|---|
Bi2Se3 | 0.3 THz | 0.29 × 10−2 V/W | 0.36 | Nanoscale | [39] |
PtTe2 | 0.12 THz | 1400 V/W | 10 | Nanoscale | [40] |
PdTe2 | 0.3 THz | 1.3 × 10−8 V/W | 57 | Nanoscale | [41] |
PbS | 0.14 THz | 3.12 A/W | 0.661 | Millimeter scale | [42] |
WTe2 | 0.1 THz | 8.78 A/W | 0.74 | Millimetre scale | [43] |
MoTe2 | 0.1 THz | 4 A/W | 9.74 | Millimetre scale | [44] |
Te crystal | 0.305 THz | 9.83 A/W | 0.6 | Nanoscale | [45] |
Bi88Sb12 | 0.14 THz | 12–20 mV/W | 770 | Micron scale | [46] |
NbIrTe4 | 0.03 THz | 5.7 × 104 V/W | - | Nanoscale | [47] |
EuSn2As2 | 0.02 THz | 0.2 A/W | 30 | Nanoscale | [48] |
NbSe2 | 0.173 THz | 7.8 × 106 V/W | 0.05 | Nanoscale | [49] |
MAPbI3 | 0.1 THz | 88.8 μA/W | 2160 | Nanoscale | [50] |
VSe2 | 0.256 THz | 1.3 × 103 A/W | 0.02 | Nanoscale | [51] |
GaN | 0.21~0.23 THz | 4.9 kV/W | 72 | Nanoscale | [52] |
GO/Bi | 0.22 THz | 0.226 V/W | 1340 | Nanoscale | [53] |
multigate graphene | 0.3 THz | 1.9 mA/W | 670 | Nanoscale | [54] |
Black Phosphorus | 0.12 THz | 297 V/W | 58 | Nanoscale | [55] |
antiferromagnetic/heavy metal | 0.45 THz | 2500 V/W | - | Nanoscale | [56] |
bilayer graphene | 0.13THz | >4 kV/W | 0.2 | Microscale | [57] |
Si-metal | 0.1–1.5 THz | 40 mA/W | 42 | Millimeter scale | [58] |
Te | 0.1 THz | 19.8 A/W | 2.8 | Centimeter scale | This Work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Q.; Xu, X.; Zi, J.; Wang, J.; Peng, Z.; Zhang, B.; Zhang, M. A High-Performance Thin-Film Sensor in 6G for Remote Sensing of the Sea Surface. Remote Sens. 2023, 15, 3682. https://doi.org/10.3390/rs15143682
Song Q, Xu X, Zi J, Wang J, Peng Z, Zhang B, Zhang M. A High-Performance Thin-Film Sensor in 6G for Remote Sensing of the Sea Surface. Remote Sensing. 2023; 15(14):3682. https://doi.org/10.3390/rs15143682
Chicago/Turabian StyleSong, Qi, Xiaoguang Xu, Jianchen Zi, Jiatong Wang, Zhongze Peng, Bingyuan Zhang, and Min Zhang. 2023. "A High-Performance Thin-Film Sensor in 6G for Remote Sensing of the Sea Surface" Remote Sensing 15, no. 14: 3682. https://doi.org/10.3390/rs15143682
APA StyleSong, Q., Xu, X., Zi, J., Wang, J., Peng, Z., Zhang, B., & Zhang, M. (2023). A High-Performance Thin-Film Sensor in 6G for Remote Sensing of the Sea Surface. Remote Sensing, 15(14), 3682. https://doi.org/10.3390/rs15143682