Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = no-load air gap magnetic field

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7744 KiB  
Article
Optimization and Design of Built-In U-Shaped Permanent Magnet and Salient-Pole Electromagnetic Hybrid Excitation Generator for Vehicles
by Keqi Chen, Shilun Ma, Changwei Li, Yongyi Wu and Jianwei Ma
Symmetry 2025, 17(6), 897; https://doi.org/10.3390/sym17060897 - 6 Jun 2025
Cited by 1 | Viewed by 402
Abstract
In this paper, the concept of symmetry is utilized to optimize the structural parameters and output characteristics of the generator design—that is, the construction and solution of the equivalent magnetic circuit method for the hybrid excitation generator are symmetrical. To address the issues [...] Read more.
In this paper, the concept of symmetry is utilized to optimize the structural parameters and output characteristics of the generator design—that is, the construction and solution of the equivalent magnetic circuit method for the hybrid excitation generator are symmetrical. To address the issues of high excitation loss and low power density in purely electrically excited generators, as well as the difficulty in adjusting the magnetic field in purely permanent magnet generators, a new topology for a built-in permanent magnet and salient-pole electromagnetic hybrid excitation generator is proposed. Firstly, an equivalent magnetic circuit model of the generator is established. Secondly, expressions are derived to describe the relationships between the dimensions of the salient-pole rotor and the permanent magnets and the generator’s no-load induced electromotive force, cogging torque, and air gap flux density. These expressions are then used to analyze the structural parameters that influence the generator’s performance. Thirdly, optimization targets are selected through sensitivity analysis, with the no-load induced electromotive force, cogging torque, and air gap flux density serving as the optimization objectives. A multi-objective genetic algorithm is employed to optimize these parameters and determine the optimal structural matching parameters for the generator. As a result, the optimized no-load induced electromotive force increased from 18.96 V to 20.14 V, representing a 6.22% improvement; the cogging torque decreased from 177.08 mN·m to 90.52 mN·m, a 48.88% reduction; the air gap flux density increased from 0.789 T to 0.829 T, a 5.07% improvement; and the air gap flux density waveform distortion rate decreased from 6.22% to 2.38%, a 39.3% reduction. Finally, a prototype is fabricated and experimentally tested, validating the accuracy of the simulation analysis, the feasibility of the optimization method, and the rationality of the generator design. Therefore, the proposed topology and optimization method can effectively enhance the output performance of the generator, providing a valuable theoretical reference for the design of hybrid excitation generators for vehicles. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

14 pages, 3592 KiB  
Article
A Permanent-Magnet Eddy-Current Loss Analytical Model for Axial Flux Permanent-Magnet Electric Machine Accounting for Stator Saturation
by Hao Liu, Jin Tian, Guofeng He and Xiaopeng Li
Energies 2025, 18(10), 2462; https://doi.org/10.3390/en18102462 - 11 May 2025
Viewed by 416
Abstract
This paper introduces a hybrid analytical model (HAM) for the evaluation of permanent-magnet (PM) eddy-current loss in dual-stator single-rotor axial flux permanent-magnet machine (AFPMM), accounting for stator saturation. The proposed model integrates the magnetic equivalent circuit (MEC) with an analytical model based on [...] Read more.
This paper introduces a hybrid analytical model (HAM) for the evaluation of permanent-magnet (PM) eddy-current loss in dual-stator single-rotor axial flux permanent-magnet machine (AFPMM), accounting for stator saturation. The proposed model integrates the magnetic equivalent circuit (MEC) with an analytical model based on scalar magnetic potential, enabling simultaneous consideration of different rotor positions and stator slotting effects. The three-dimensional finite element method (3D-FEM) validates the no-load and armature reaction magnetic field calculated by HAM, as well as the PM eddy-current loss under both no-load and load conditions. Compared to 3D-FEM, the proposed model reduces the calculation time by more than 98% with an error of no more than 18%, demonstrating a significant advantage in terms of computational time. Based on the proposed model, the effects of air-gap length and slot opening width on PM eddy-current loss are analyzed; the results indicate that reducing the slot opening width can effectively mitigate PM eddy-current loss for AFPMM. Full article
(This article belongs to the Special Issue Design, Analysis, Optimization and Control of Electric Machines)
Show Figures

Figure 1

15 pages, 8029 KiB  
Article
Study on Length–Diameter Ratio of Axial–Radial Flux Hybrid Excitation Machine
by Mingyu Guo, Jiakuan Xia, Qimin Wu, Wenhao Gao and Hongbo Qiu
Processes 2024, 12(12), 2942; https://doi.org/10.3390/pr12122942 - 23 Dec 2024
Cited by 1 | Viewed by 697
Abstract
To improve the flux regulation range of the Axial–Radial Flux Hybrid Excitation Machine (ARFHEM) and the utilization rate of permanent magnets (PMs), the effects of different length–diameter ratios (LDRs) on the ARFHEM performance are studied. Firstly, the principle of the flux regulation of [...] Read more.
To improve the flux regulation range of the Axial–Radial Flux Hybrid Excitation Machine (ARFHEM) and the utilization rate of permanent magnets (PMs), the effects of different length–diameter ratios (LDRs) on the ARFHEM performance are studied. Firstly, the principle of the flux regulation of the ARFHEM is introduced by means of the structure and equivalent magnetic circuit method. Then, based on the principle of the bypass effect, the analytical formulas of LDRs, the number of pole-pairs, and the flux regulation ability are derived, and then the restrictive relationship between the air-gap magnetic field, LDR, and the number of pole-pairs is revealed. On this basis, the influence of an electric LDR on motor performance is studied. By comparing and analyzing the air-gap magnetic density and no-load back electromotive force (EMF) of motors with different LDRs, the variation in the magnetic flux regulation ability of motors with different LDRs is obtained and its influence mechanism is revealed. In addition, the torque regulation ability and loss of motors with different LDRs are compared and analyzed, and the influence mechanism of the LDR on torque and loss is determined. Finally, the above analysis is verified by experiments. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

17 pages, 23136 KiB  
Article
Analysis of an Axial Field Hybrid Excitation Synchronous Generator
by Junyue Yu, Shushu Zhu and Chuang Liu
Energies 2024, 17(24), 6329; https://doi.org/10.3390/en17246329 - 16 Dec 2024
Viewed by 807
Abstract
An axial field hybrid excitation synchronous generator (AF-HESG) is proposed for an independent power supply system, and its electromagnetic performance is studied in this paper. The distinguishing feature of the proposed generator is the addition of static magnetic bridges at both ends to [...] Read more.
An axial field hybrid excitation synchronous generator (AF-HESG) is proposed for an independent power supply system, and its electromagnetic performance is studied in this paper. The distinguishing feature of the proposed generator is the addition of static magnetic bridges at both ends to place the field windings and the use of a sloping surface to increase the additional air-gap cross-sectional area. The advantage of the structure is that it achieves brushless excitation and improves the flux-regulation range. The structure and magnetic circuit characteristics are introduced in detail. Theoretical analysis of the flux-regulation principle is conducted by studying the relationship between field magnetomotive force, rotor reluctance, and air-gap flux density. Quantitative calculation is performed using a magnetomotive force (MMF)-specific permeance model, and the influence of the main parameters on the air-gap flux density and flux-regulation range is analyzed. Subsequently, magnetic field, no-load, and load characteristics are investigated through three-dimensional finite element analysis. The loss distribution is analyzed, and the temperature of the generator under rated conditions is simulated. Finally, a 30 kW, 1500 r/min prototype is developed and tested. The test results show good flux-regulation capability and stable voltage output performance of the proposed generator. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

17 pages, 9016 KiB  
Article
Optimization of an Asymmetric-Rotor Permanent Magnet-Assisted Synchronous Reluctance Motor for Improved Anti-Demagnetization Performance
by Feng Xing, Jiajia Zhang, Feng Zuo and Yuge Gao
Appl. Sci. 2024, 14(23), 11233; https://doi.org/10.3390/app142311233 - 2 Dec 2024
Cited by 1 | Viewed by 1464
Abstract
Permanent magnet-assisted synchronous reluctance motors (PMA-SynRMs) are widely used in various fields due to their significant advantages, including strong torque output, high efficiency, excellent speed regulation, and low cost. The PMA-SynRM with asymmetric-rotor structure has a weaker anti-demagnetization performance than the conventional PMA-SynRM [...] Read more.
Permanent magnet-assisted synchronous reluctance motors (PMA-SynRMs) are widely used in various fields due to their significant advantages, including strong torque output, high efficiency, excellent speed regulation, and low cost. The PMA-SynRM with asymmetric-rotor structure has a weaker anti-demagnetization performance than the conventional PMA-SynRM due to its multi-layer and thin permanent magnets construction. According to the finite element (FEM) simulation analysis, the anti-demagnetization performance of the asymmetric-rotor PMA-SynRM can be improved by adding bypass magnetic bridges on the ribs of the flux barriers and by changing the positions of the permanent magnets. The rotor structure of the proposed model is globally optimized by combining the two methods. Anti-demagnetization performance is improved as much as possible under the premise of ensuring the torque performance of the basic model. After multi-objective optimization, there is almost no difference between the optimized model and the basic model in terms of no-load air-gap flux density, no-load Back-electromotive force (EMF), and average torque. The maximum demagnetization rate of the optimized model is reduced by 81.44% compared with the basic model, and the anti-demagnetization performance is significantly improved. At the same time, the torque ripple is also reduced by 44.14%, which is obviously reduced. Compared with the basic model, the optimized model has better stability and reliability. Full article
(This article belongs to the Collection Modeling, Design and Control of Electric Machines: Volume II)
Show Figures

Figure 1

18 pages, 12466 KiB  
Article
Electromagnetic Vibration Analysis of Transverse Flux Permanent Magnet Linear Submersible Motor for Oil Production
by Mei Zhao, Yihao Li, Sicheng Zuo, Pingpeng Tang, Tong Yao, Huaqiang Zhang and Shunjie Wu
Energies 2023, 16(23), 7911; https://doi.org/10.3390/en16237911 - 4 Dec 2023
Cited by 1 | Viewed by 1305
Abstract
A transverse flux linear motor is a special type of linear motor with a high thrust force density, and it has broad application prospects in the field of linear direct-drive systems. In the process of oil production, the vibration of the linear motor [...] Read more.
A transverse flux linear motor is a special type of linear motor with a high thrust force density, and it has broad application prospects in the field of linear direct-drive systems. In the process of oil production, the vibration of the linear motor poses a significant amount of harm to the system due to its special slender structure. This paper focuses on the electromagnetic vibration of a transverse flux permanent magnet linear submersible motor (TFPMLSM). Firstly, the no-load air gap flux density is calculated based on the field modulation principle. Secondly, the radial electromagnetic force (REF) of the TFPMLSM is calculated, and the finite element method (FEM) is used to analyze the time-space and spectral characteristics of the REF. Then, the influence of secondary eccentricity on the frequency spectrum of the REF is further concluded. Finally, the natural frequencies of each vibration mode are calculated using the modal superposition method and the influence of the REF on the motor vibration is obtained through magnetic-structural coupling analysis. The research results found that the motor does not cause resonance at low speeds, and the fundamental frequency of REF has the greatest impact on electromagnetic vibration. Full article
Show Figures

Figure 1

17 pages, 7812 KiB  
Article
A Novel Analytical Formulation of the Magnetic Field Generated by Halbach Permanent Magnet Arrays
by Antonino Di Gerlando, Simone Negri and Claudio Ricca
Magnetism 2023, 3(4), 280-296; https://doi.org/10.3390/magnetism3040022 - 5 Oct 2023
Cited by 7 | Viewed by 2807
Abstract
This paper presents an analytical study of the air-gap magnetic field of a surface permanent magnet (SPM) linear, slot-less machine with a Halbach PM configuration, under the no-load condition. While other analytical formulations of the magnetic field generated by PMs are available, they [...] Read more.
This paper presents an analytical study of the air-gap magnetic field of a surface permanent magnet (SPM) linear, slot-less machine with a Halbach PM configuration, under the no-load condition. While other analytical formulations of the magnetic field generated by PMs are available, they exhibit some drawbacks, such as only providing a Fourier series, or being suitable to determine magnetic field average values, but not local magnetic field distributions. On the contrary, the proposed approach allows the determination of a unique, closed-form formulation for the slot-less machine air-gap field. This is obtained starting from the complex expression of the magnetic field of a conductor, inside the air gap, between two parallel smooth iron surfaces, obtained by means of the method of images. The magnetic field due to an infinitesimal conductor belonging to a current sheet is then integrated along a segment, providing the expression of the magnetic field due to the corresponding linear current density distribution, for current sheets perpendicular or parallel to the iron surfaces. Any Halbach PM segment disposition can, hence, be obtained via a suitable combination of field distributions generated by couples of current sheets with perpendicular and parallel orientation. Lastly, the no-load magnetic field expression with a Halbach array of PMs is retrieved. The proposed analytical model provides an accurate representation of the magnetic field distribution produced by any Halbach array, with an arbitrary number of segments and orientations. Additionally, the results obtained from the proposed analytical expressions are compared with FEM simulations realized by commercial software, and show an excellent agreement. Full article
Show Figures

Figure 1

19 pages, 13582 KiB  
Article
Demagnetization Modeling and Analysis for a Six-Phase Surface-Mounted Field-Modulated Permanent-Magnet Machine Based on Equivalent Magnetic Network
by Xianglin Li, Yingjie Tan, Bo Yan, Yujian Zhao and Hao Wang
Energies 2023, 16(16), 6099; https://doi.org/10.3390/en16166099 - 21 Aug 2023
Cited by 3 | Viewed by 1866
Abstract
Based on the magnetic gear effect, the field-modulated permanent-magnet machine (FMPMM) can realize the unequal pole design of the rotor PM field and the stator armature magnetic field. With the advantages of high torque density and high efficiency, the FMPMM has been widely [...] Read more.
Based on the magnetic gear effect, the field-modulated permanent-magnet machine (FMPMM) can realize the unequal pole design of the rotor PM field and the stator armature magnetic field. With the advantages of high torque density and high efficiency, the FMPMM has been widely studied in low-speed direct-drive applications. As a kind of machine excited by PMs, the performance of the FMPMM was affected by the demagnetization state. However, the method for establishing the FMPMM demagnetization model based on a finite element analysis (FEA) presented some problems, including tedious repeated modeling work and long calculation time-consuming under fine subdivision. Therefore, in this paper, a six-phase surface-mounted FMPMM was taken as an example, and an equivalent magnetic network (EMN) model was proposed for evaluating the machine performance under demagnetization. In order to realize the rapid establishing EMN models under diverse demagnetization types, the variable coercivity of PM was introduced. Furthermore, for the purpose of improving the calculation accuracy and shortening the calculation time, the least square method was used in fitting and analyzing the discrete results. Then, in order to verify the validity of the proposed EMN model, a prototype was fabricated and a testing platform was built. The air-gap flux density and the no-load back EMF obtained by the FEA, the proposed EMN model, and the experimental testing were compared. The results showed that the proposed EMN model can realize the rapid modeling and accurate analysis of the six-phase surface-mounted FMPMM under diverse demagnetization types. Full article
Show Figures

Figure 1

19 pages, 2749 KiB  
Article
Analytical Calculation of Air Gap Magnetic Field of SPMSM with Eccentrically Cut Poles Based on Magnetic Pole Division
by Jiahe Zhang, Jiapei Hu, Guobiao Gu and Fangmian Du
Energies 2023, 16(11), 4450; https://doi.org/10.3390/en16114450 - 31 May 2023
Viewed by 1878
Abstract
In the design process of surface-mounted permanent magnet motor (SPMSM) for industrial robots and computer numerical control (CNC) machine tools, to pursue the sinusoidal nature of the back electromotive force, the magnetic poles in the form of eccentric pole cutting structure are often [...] Read more.
In the design process of surface-mounted permanent magnet motor (SPMSM) for industrial robots and computer numerical control (CNC) machine tools, to pursue the sinusoidal nature of the back electromotive force, the magnetic poles in the form of eccentric pole cutting structure are often used. To analyze the no-load air gap magnetic field of the SPMSM with eccentrically cut poles simply and accurately, a subdomain model magnetic field analytical calculation method based on equal-area integral block processing of permanent magnets is proposed. The problem that the traditional subdomain analysis model cannot be directly applied to the SPMSM with eccentrically cut poles of unequal thickness is solved. The proposed method considers the influence of stator slotting and the actual permeability of permanent magnets, and directly obtains the fundamental wave and harmonic components of the no-load air gap flux density by solving the subdomain model. The finite element method (FEM) is used to directly calculate the air gap magnetic field for verification. The results of the analytical method and the no-load air gap magnetic density calculated by the FEM are consistent, which verifies the accuracy of the proposed analytical method and can quickly guide the design of the SPMSM with eccentrically cut poles. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

19 pages, 954 KiB  
Article
Analytical Modeling of Magnetic Field Distribution at No Load for Surface Mounted Permanent Magnet Machines
by Antonino Di Gerlando and Claudio Ricca
Energies 2023, 16(7), 3197; https://doi.org/10.3390/en16073197 - 1 Apr 2023
Cited by 5 | Viewed by 2816
Abstract
This paper presents an analytical study of the air-gap magnetic field of a Surface Permanent Magnet (SPM) linear machine under no load. By means of the method of images, the complex expression of the magnetic field of a conductor, inside the air gap [...] Read more.
This paper presents an analytical study of the air-gap magnetic field of a Surface Permanent Magnet (SPM) linear machine under no load. By means of the method of images, the complex expression of the magnetic field of a conductor, inside the air gap between two smooth iron surfaces, is retrieved. Then, integrating the conductor expression, the formulation of the magnetic field of a current sheet and thus the one of a SPM, using two vertical current sheets, is obtained. At last, the no-load magnetic field expression, for a generic time instant, of a slotless machine is retrieved. The novelty of the proposed approach is the availability, due to a different calculation approach, of a unique closed-form formulation for the slotless machine air-gap field, a quantity that, in literature, is usually present in Fourier series formulation. Additionally, as a means to calculate integral quantities and show the goodness of the method a complex slotting function is introduced to account for the slotted geometry. Finally, starting from Lorenz’s force formulation, the expression of the Maxwell tensor in complex form is retrieved and the contribution of forces, integral of the complex stress tensor quantity, will be calculated and compared with FEM simulations, showing a good agreement also with the analytical slotted model. Full article
Show Figures

Figure 1

17 pages, 6836 KiB  
Article
Analysis on the Variation Laws of Electromagnetic Force Wave and Vibration Response of Squirrel-Cage Induction Motor under Rotor Eccentricity
by Jianmin Du and Yan Li
Electronics 2023, 12(6), 1295; https://doi.org/10.3390/electronics12061295 - 8 Mar 2023
Cited by 9 | Viewed by 2715
Abstract
Aiming to address the rotor eccentricity problem caused by various factors, such as manufacturing, operation and the mass imbalance of the induction motor, the variation law of electromagnetic force wave and vibration response under rotor eccentricity during no-load operation is investigated. To begin [...] Read more.
Aiming to address the rotor eccentricity problem caused by various factors, such as manufacturing, operation and the mass imbalance of the induction motor, the variation law of electromagnetic force wave and vibration response under rotor eccentricity during no-load operation is investigated. To begin with, on the basis of the air-gap permeability, the air-gap magnetic density components under static and dynamic eccentricity are analyzed by using the analytical method. The order and amplitude expressions of the radial electromagnetic force generated by the interaction of harmonics are obtained. Subsequently, a finite element model of the electromagnetic field was developed, and the space-time spectrum of the electromagnetic force was obtained by combining the 2D Fourier analysis. Finally, the electromagnetic force wave is used as a load to investigate the electromagnetic vibration response under different rotor eccentric forms. The effect of rotor eccentricity on the vibration response of the motor is quantitatively analyzed by using the spectral analysis method. The method of analyzing electromagnetic force wave and vibration response can also provide a reference for the same type of motor. Full article
Show Figures

Figure 1

17 pages, 6443 KiB  
Article
Electromagnetic Torque Analysis and Structure Optimization of Interior Permanent Magnet Synchronous Machine with Air-Gap Eccentricity
by Jing Wang and Yubin Wang
Energies 2023, 16(4), 1665; https://doi.org/10.3390/en16041665 - 7 Feb 2023
Cited by 5 | Viewed by 3389
Abstract
Interior permanent magnet synchronous machine with air-gap eccentricity (AGE-IPMSM) has the advantages of low torque ripple and low noise. However, air-gap eccentricity will lower the power density of the machine to a certain extent. In this paper, an 18-slot/8-pole interior permanent magnet synchronous [...] Read more.
Interior permanent magnet synchronous machine with air-gap eccentricity (AGE-IPMSM) has the advantages of low torque ripple and low noise. However, air-gap eccentricity will lower the power density of the machine to a certain extent. In this paper, an 18-slot/8-pole interior permanent magnet synchronous machine with air-gap eccentricity is taken as the research object. According to the magnetic circuit method, the no-load and load air-gap magnetic field analytical models are calculated, respectively. Then, by Maxwell’s tensor method, the variation law of radial and tangential air-gap magnetic density harmonic amplitudes and phase angle difference cosine values are analyzed, and it is concluded that the electromagnetic torque can be improved by increasing phase angle difference cosine values of the magnetic density harmonic, which produces the driving torque after eccentricity. On this basis, in order to improve the output characteristics of the machine, the eccentricity and the angle between the V-type permanent magnets are optimized with the total harmonic distortion (THD), electromagnetic torque, and torque ripple as the optimization goals, and then the optimal structure size parameters of the machine are finally determined. Finally, a prototype is manufactured on the basis of the optimal parameters, and the experimental results of the prototype verify the validity and correctness of the theoretical analysis and finite element analysis (FEA). Full article
Show Figures

Figure 1

22 pages, 5555 KiB  
Article
Modeling and Simulation of a Novel Low-Speed High-Torque Permanent Magnet Synchronous Motor with Asymmetric Stator Slots
by Shaokai Kou, Ziming Kou, Juan Wu and Yandong Wang
Machines 2022, 10(12), 1143; https://doi.org/10.3390/machines10121143 - 1 Dec 2022
Cited by 8 | Viewed by 2581
Abstract
Focusing on the unstable electromagnetic performance of an air gap magnetic field caused by torque ripple and harmonic interference of a multi-slot and multi-pole low-speed high-torque permanent magnet synchronous motor (LHPMSM), an asymmetric stator slot is proposed to improve the comprehensive electromagnetic performance [...] Read more.
Focusing on the unstable electromagnetic performance of an air gap magnetic field caused by torque ripple and harmonic interference of a multi-slot and multi-pole low-speed high-torque permanent magnet synchronous motor (LHPMSM), an asymmetric stator slot is proposed to improve the comprehensive electromagnetic performance of the motor. Moreover, this paper develops an exact analytical model which predicts the magnetic field distribution based on Laplace’s and Poisson’s equations. The stator slot asymmetry is introduced into the model and solved by the method of separating variables. Taking a 40p168s LHPMSM as an example, numerical results of the no-load flux density field distributions are obtained by the finite element method (FEM) and employed to validate the analytical model. The influence of stator slot asymmetric structure on electromagnetic characteristics is subsequently analyzed. The results show that, compared with the semi-closed slot model, the asymmetric slot has better torque characteristics, and the electromagnetic characteristics of the motor can be significantly improved by optimizing the stator slot asymmetry. Finally, a prototype is manufactured and tested to validate the theoretical analysis. Full article
(This article belongs to the Topic Advanced Electrical Machines and Drives Technologies)
Show Figures

Figure 1

13 pages, 4939 KiB  
Article
Design Optimization and Electromagnetic Performance Analysis of an Axial-Flux Permanent Magnet Brushless DC Motor with Unequal-Thickness Magnets
by Shasha Wu, Baojian Wang, Tao Zhang and Quanhao Gu
Appl. Sci. 2022, 12(15), 7863; https://doi.org/10.3390/app12157863 - 5 Aug 2022
Cited by 6 | Viewed by 3537
Abstract
To improve electromagnetic performance, an axial-flux permanent magnet brushless DC motor (AFPMBLDCM) with unequal-thickness arc permanent magnets is proposed in this paper. Firstly, the structure and magnetic circuit of the AFPMBLDCM with unequal-thickness arc permanent magnets were designed. Then, the mathematical models and [...] Read more.
To improve electromagnetic performance, an axial-flux permanent magnet brushless DC motor (AFPMBLDCM) with unequal-thickness arc permanent magnets is proposed in this paper. Firstly, the structure and magnetic circuit of the AFPMBLDCM with unequal-thickness arc permanent magnets were designed. Then, the mathematical models and design method of the main parameters were derived. According to the rated power and rated speed, the main parameters were further designed, and the analytical model was established by using Maxwell 3D. The air-gap flux density, back electromotive force (EMF) and torque under no-load and load conditions were calculated and analyzed to verify the validity of the model and design. Finally, based on a parameter scanning optimization method, the effects of the permanent magnet thickness, pole arc coefficient and permanent magnet radius on cogging torque were analyzed. The optimized parameters of the AFPMBLDCM with unequal-thickness arc permanent magnets were obtained. The results show that the sinusoidal degree of the air-gap magnetic field is improved, and the maximum torque ripple of the AFPMBLDCM is reduced to 2.92%. Full article
Show Figures

Figure 1

22 pages, 5318 KiB  
Article
Magnetic Field Analysis of an Inner-Mounted Permanent Magnet Synchronous Motor for New Energy Vehicles
by Huihui Geng, Xueyi Zhang, Shilong Yan, Yufeng Zhang, Lei Wang, Yutong Han and Wei Wang
Energies 2022, 15(11), 4074; https://doi.org/10.3390/en15114074 - 1 Jun 2022
Cited by 4 | Viewed by 2829
Abstract
The motor is an important component that affects the output performance of new energy vehicles (using new energy sources such as electric energy and hydrogen fuel energy to drive the motor and provide kinetic energy). Motors with high power and low noise can [...] Read more.
The motor is an important component that affects the output performance of new energy vehicles (using new energy sources such as electric energy and hydrogen fuel energy to drive the motor and provide kinetic energy). Motors with high power and low noise can effectively improve the dynamic performance, passability and smoothness of new energy vehicles and bring a comfortable experience to driver and passengers. The magnetic field analytical model of the inner-mounted permanent magnet synchronous motor (IPMSM) is studied to improve its output quality. The motor is divided into four subdomains: the stator slot subdomain, the stator slot notch subdomain, the air-gap subdomain, and the permanent magnet (PM) subdomain. The general solution of the vector magnetic potential of each subdomain is solved, and the expression of magnetic flux density of each subdomain is derived. Meanwhile, the analytical model of the non-uniform air gap is established according to the uniform air-gap model. The model’s accuracy is verified by finite element analysis and prototype tests. The results show that the calculation results of the analytical model are effective. The model can be applied to predict the no-load back electromotive force (EMF) and cogging torque of the motor under different main air gaps. It also provides an effective and fast analysis method for the design and optimization of IPMSM for new energy vehicles. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

Back to TopTop