Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (119)

Search Parameters:
Keywords = nitrite exposure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1978 KB  
Article
Sublethal Nitrite Exposure Alters Redox Status and Metabolic Functions in Adult Zebrafish
by Gianluca Fasciolo, Eugenio Geremia, Carlos Gravato, Adriana Petito, Maria Teresa Muscari Tomajoli, Claudio Agnisola, Paola Venditti and Gaetana Napolitano
Environments 2026, 13(1), 49; https://doi.org/10.3390/environments13010049 - 13 Jan 2026
Viewed by 359
Abstract
Nitrite pollution in aquatic environments, often driven by human activity, can disrupt fish physiology. Nitrite is absorbed by freshwater fish through their gills, leading to internal accumulation and interference with nitric oxide (NO) signaling, redox state, and the oxygen-carrying capacity of blood. The [...] Read more.
Nitrite pollution in aquatic environments, often driven by human activity, can disrupt fish physiology. Nitrite is absorbed by freshwater fish through their gills, leading to internal accumulation and interference with nitric oxide (NO) signaling, redox state, and the oxygen-carrying capacity of blood. The effects of nitrite are concentration-dependent. Although moderate environmental nitrite levels have little impact on oxygen transport, they may still interfere with NO homeostasis and cellular metabolism. We report the effects of 72 h of exposure to 10 μM nitrite on adult zebrafish blood’s O2-carrying capacity and on muscle mitochondrial activity, metabolism, and redox state. The results show that this environmentally relevant but moderate concentration of nitrite leads to decreases in fish routine oxygen consumption (rMO2) and spontaneous activity, an increase in blood nitrosyl hemoglobin (HbNO), indicating increased NO production in the blood, accumulation of nitrite in muscle tissue, oxidative stress, and changes in muscle aerobic capacity linked to a rise in mitochondrial efficiency. Parallel to these effects, increases in antioxidant capacity, arginase activity, and urea and lactate levels were observed. Globally, these results are consistent with altered NO homeostasis in the fish body induced by nitrite stress. Full article
Show Figures

Graphical abstract

22 pages, 5812 KB  
Article
Acute CO2 Toxicity and the Effects of Seawater Acidification on Health Status, Histopathology, Immunity and Disease Resistance in Asian Seabass (Lates calcarifer)
by Phattarapan Mongconpattarasuk, Thanasin Sumngern, Phutana Kongwatananonda, Anurak Uchuwittayakul, Chalermchai Ruangchainikom and Prapansak Srisapoome
Environments 2026, 13(1), 16; https://doi.org/10.3390/environments13010016 - 29 Dec 2025
Viewed by 287
Abstract
Carbon dioxide capture and storage (CCS) is a technology that can be used to reduce carbon dioxide (CO2) emissions generated by both natural and anthropogenic industrial processes, particularly petroleum production. To mimic and investigate the effects of CO2 leakage that [...] Read more.
Carbon dioxide capture and storage (CCS) is a technology that can be used to reduce carbon dioxide (CO2) emissions generated by both natural and anthropogenic industrial processes, particularly petroleum production. To mimic and investigate the effects of CO2 leakage that may result from CCS, the acute toxicity of seawater acidification induced by continuous CO2 injection was studied in Asian seabass (Lates calcarifer) fry under static bioassay conditions. Fry (0.828 ± 0.22 g) were exposed to seawater with different pH levels (5.5, 6.0, 6.5, 7.5, and 8.3). Rapid and 100% mortality within 15 min was observed in the pH 5.5 exposure group, while mortality rates ranging from 10.00–41.67% were recorded at 6–96 h in the pH 6.0 exposure group; no mortality was noted in the other pH exposure groups. According to these mortality data, the median lethal concentration at 96 h (96 h LC50) was determined to be a pH of 5.884. Interestingly, after exposure to seawater with pH levels of 5.5 and 6.0, histopathological alterations in the skin, gills, trunk kidney and liver were evident. Additionally, some water quality parameters, especially dissolved oxygen (DO) levels, alkalinity, ammonia levels, and nitrite levels, vary depending on the pH. To further investigate the effects of seawater with pH levels of 8.3 and 5.884 (96 h LC50) and 6.5 (10% safety level) on health status, immune responses and disease susceptibility, fingerling fish (21.25 ± 3.89 g) were studied. Unexpectedly, fish exposed to seawater with a pH of 5.884 rapidly lost muscle control and gradually died, reaching 100% mortality within 24 h, and all response analyses were aborted. Interestingly, with the exception of hematocrit and some immune parameters, various serum innate immune indices, blood biochemistry parameters and immune-related gene expression patterns were similar in fish exposed to seawater with pH levels of 8.3 and 6.5. Additionally, fish were challenged with 0 (control), 1 × 107 and 1 × 109 CFU/mL Vibrio vulnificus, and fish in seawater with a pH level of 6.5 showed a higher sensitivity to 1 × 109 CFU/mL Vibrio vulnificus than fish in seawater with a pH level of 8.3, with mortality rates of 71.24% and 25.44%, respectively (p < 0.05). These findings enhance the understanding of the toxicity effects of seawater acidification caused by CO2, which will be useful for further assessing the site-specific effects of CCS projects. Full article
Show Figures

Figure 1

14 pages, 1227 KB  
Article
Effects of Copper Stress on Nitrogen Metabolism-Related Enzymes in Nymphoides peltata
by Simeng Qiu, Chengxia Jia, Shuangyue Luo, Liye Liang, Yanfei Wu, Ruijun Ren, Jing Xu and Qingjing Zhang
Water 2025, 17(24), 3558; https://doi.org/10.3390/w17243558 - 15 Dec 2025
Viewed by 346
Abstract
Copper (Cu) pollution poses environmental and health risks. Owing to its adaptability and potential for water purification, Nymphoides peltata (N. peltata) is being considered for use in the remediation of Cu pollution. However, the feasibility of using N. peltata for the [...] Read more.
Copper (Cu) pollution poses environmental and health risks. Owing to its adaptability and potential for water purification, Nymphoides peltata (N. peltata) is being considered for use in the remediation of Cu pollution. However, the feasibility of using N. peltata for the remediation of Cu-polluted water bodies has not yet been assessed. Here, the physiological response of N. peltata to Cu stress was determined. N. peltata samples were exposed to varying Cu concentrations (0.2, 0.4, 0.6 and 0.8 mg∙L−1), and the activities of glutamine synthetase (GS), nitrate reductase (NR), nitrite reductase (NiR), ribulose-1,5-diphosphate carboxylase (Rubisco), and glycolate oxidase (GO) were measured together with the concentrations of photosynthetic pigments. The results revealed that under Cu stress, NR and GS activities significantly decreased, while NiR activity significantly increased. Exposure to 0.2 mg∙L−1 Cu promoted chlorophyll synthesis and enhanced Rubisco and GO activities; in contrast, exposure to Cu concentrations above 0.4 mg∙L−1 significantly inhibited the aforementioned parameters. These findings indicate that Cu stress, regardless of concentration, significantly affects nitrogen metabolism in N. peltata by decelerating nitrate reduction and impairing the ammonification process. Meanwhile, only high Cu concentrations significantly affected photosynthesis. N. peltata can survive low Cu stress by regulating its photosynthetic enzymes. Therefore, N. peltata has potential for the ecological restoration of water bodies polluted with low Cu concentrations. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

53 pages, 4688 KB  
Review
Integrative Neuroimmune Role of the Parasympathetic Nervous System, Vagus Nerve and Gut Microbiota in Stress Modulation: A Narrative Review
by Natalia Kurhaluk, Renata Kołodziejska, Piotr Kamiński and Halina Tkaczenko
Int. J. Mol. Sci. 2025, 26(23), 11706; https://doi.org/10.3390/ijms262311706 - 3 Dec 2025
Viewed by 3465
Abstract
It has been demonstrated that prolonged exposure to stress engenders a plethora of neuropsychiatric, immune and metabolic disorders. However, its pathophysiology transcends the conventional hypothalamic–pituitary–adrenal (HPA) axis. This review addresses the central question of how integrated neural and microbial pathways regulate stress responses [...] Read more.
It has been demonstrated that prolonged exposure to stress engenders a plethora of neuropsychiatric, immune and metabolic disorders. However, its pathophysiology transcends the conventional hypothalamic–pituitary–adrenal (HPA) axis. This review addresses the central question of how integrated neural and microbial pathways regulate stress responses and resilience. We present a model in which the parasympathetic nervous system (particularly the vagus nerve) and the gut microbiota interact to form a bidirectional neuroimmune network that modulates the HPA axis, immune function, neurotransmitter balance, and metabolic adaptation. Key molecular pathways include nitric oxide synthesis via the classical nitric oxide synthase (NOS)-dependent and microbiota-mediated nitrate–nitrite routes, inducible nitric oxide synthase (iNOS) regulation, nuclear factor erythroid 2-related factor 2 (Nrf2) signalling, lysosomal function, autophagy and the cholinergic anti-inflammatory reflex. Other pathways include the gamma-aminobutyric acid (GABA) and serotonin (5-HT) systems, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) signalling, polyamine metabolism and peroxisome proliferator-activated receptor gamma (PPARγ). Intermittent hypoxia training (IHT) enhances mitochondrial function, oxidative stress responses, autonomic balance and gut microbiota composition. This promotes parasympathetic activity and stress resilience that is tailored to the individual. These adaptations support the concept of personalised stress response profiles based on hypoxic adaptability. Clinical implications include combining IHT with vagus nerve stimulation, probiotics, dietary strategies, and stress reduction techniques. Monitoring vagal tone and microbiota composition could also serve as predictive biomarkers for personalised interventions in stress-related disorders. This integrative framework highlights the therapeutic potential of targeting the parasympathetic system and the gut microbiota to modulate stress. Full article
Show Figures

Figure 1

17 pages, 2945 KB  
Article
Differential Profile of Hemostasis in Dengue Fever Before and After COVID-19
by Alanna Calheiros Santos, Julya Farias Carneiro, Anna Paula de Souza e Silva Sales, Mariana Gandini, Flávia Barreto dos Santos, Paulo Vieira Damasco, Luis José de Souza, Elzinandes Leal de Azeredo and Luzia Maria de-Oliveira-Pinto
Viruses 2025, 17(11), 1431; https://doi.org/10.3390/v17111431 - 28 Oct 2025
Viewed by 760
Abstract
Dengue and COVID-19 are viral diseases characterized by coagulopathies, with Dengue associated with fibrinolysis and COVID-19 with prothrombotic events. Furthermore, cross-reactivity between anti-SARS-CoV-2 and anti-DENV antibodies may confer protective immunity or exacerbate disease severity. Our investigation explored the impact of prior COVID-19 exposure [...] Read more.
Dengue and COVID-19 are viral diseases characterized by coagulopathies, with Dengue associated with fibrinolysis and COVID-19 with prothrombotic events. Furthermore, cross-reactivity between anti-SARS-CoV-2 and anti-DENV antibodies may confer protective immunity or exacerbate disease severity. Our investigation explored the impact of prior COVID-19 exposure on the immunopathogenesis of Dengue, focusing on hemostatic parameters. We quantified nitrites, procoagulant, anticoagulant, and fibrinolytic mediators in the plasma of Dengue patients before and after the COVID-19 pandemic. We also evaluated the influence of plasma from dengue patients on platelet activation in vitro using platelets from healthy donors exposed to DENV-2. Hemorrhagic manifestations were more frequent in pre-COVID-19 Dengue, while nitrite levels were elevated in post-COVID-19 Dengue patients, particularly among those without hemorrhagic signs. Among procoagulant factors, tissue factor (TF) levels were increased in post-COVID-19 Dengue, whereas Factor XIII was higher in pre-COVID-19 Dengue. In contrast, antithrombin (an anticoagulant) and plasminogen (a profibrinolytic factor) were more elevated in pre-COVID-19 Dengue than in post-COVID-19 cases. In vitro, DENV-2-infected platelets exposed to plasma of Dengue patients before and after COVID-19 showed decreased nitrite production in relation to DENV-2 alone. These findings suggest that prior COVID-19 exposure may influence hemostatic responses in Dengue, potentially modulating disease pathophysiology and opening new avenues for research and therapeutic strategies. Full article
(This article belongs to the Special Issue Current Trends in Arbovirus Outbreaks and Research)
Show Figures

Figure 1

18 pages, 1835 KB  
Article
Comprehensive Assessment of Nitrosamine Formation in Meat Products Using UHPLC-HRMS: Analytical Challenges and Potential Dietary Implications
by Tiziana Nardin, Jakob Franceschini, Francesca Martinelli, Elena Franciosi and Roberto Larcher
Molecules 2025, 30(20), 4107; https://doi.org/10.3390/molecules30204107 - 16 Oct 2025
Viewed by 1762
Abstract
Nitrosamines (NAs) pose a risk due to their carcinogenic properties, especially in processed and cured meats where nitrites and nitrates are widely used. The objective of this study was to develop an integrated Ultra-High-Performance Liquid Chromatography–High-Resolution Mass Spectrometry (UHPLC–HRMS) workflow for detecting both [...] Read more.
Nitrosamines (NAs) pose a risk due to their carcinogenic properties, especially in processed and cured meats where nitrites and nitrates are widely used. The objective of this study was to develop an integrated Ultra-High-Performance Liquid Chromatography–High-Resolution Mass Spectrometry (UHPLC–HRMS) workflow for detecting both volatile (VNAs) and non-volatile (NVNAs) nitrosamines in meat matrices. Comparison of two ionization techniques showed that heated electrospray ionization (HESI) and atmospheric pressure chemical ionization (APCI) provided complementary coverage and sensitivity. Extraction and cleanup were optimized for meat, although recovery rates remained variable, underscoring the analytical complexity. The method was applied to raw, cooked, cured, and grilled meats, as well as to in vitro gastric digestion and co-digestion with spinach. Results revealed that some NAs were present even in untreated raw meat (≈3.0 µg/kg, N-nitrosodi-n-butylamine), while the addition of nitrites and nitrates significantly increased their levels (more than 10 µg/kg, N-nitrosodiethylamine, N-nitrosodimethylamine, N-nitrosodi-n-butylamine). Gastric digestion was the most critical condition, further promoting nitrosamine formation, particularly for N-nitrosodiethylamine, N-nitrosodi-n-butylamine, and N-nitrosopiperidine. Ascorbate exhibited a dual role, acting as an inhibitor at low nitrite concentrations but becoming pro-oxidant at high levels (300 mg/kg). Cooking alone had limited impact, whereas cooking combined with digestion yielded the highest and most consistent nitrosamine concentrations. The inclusion of spinach during digestion modestly altered nitrosamine levels, reflecting both its nitrate content and polyphenolic profile. Nonparametric ANOVA (aligned rank transform) confirmed that preservative treatment, rather than processing or interaction effects, was the main driver of variability (total nitrosamines: H = 24.15, p = 2.33 × 10−5), with the combination of preservative ascorbate plus nitrite producing significantly higher levels than other treatments (q = 0.000656). N-nitrosodimethylamine consistently emerged as the most relevant marker for dietary exposure, in agreement with EFSA guidance. Overall, this study underscores both the analytical and biochemical complexity of nitrosamine detection and formation in meat products, while highlighting the importance of preservative formulation and the potential role of dietary antioxidants in mitigating exposure. Full article
Show Figures

Figure 1

13 pages, 1099 KB  
Article
Photochemical Methods to Study the Radical-Induced Degradation of Anion-Exchange Membranes
by Panna Solyom, Thomas Nauser and Tamas Nemeth
Membranes 2025, 15(10), 305; https://doi.org/10.3390/membranes15100305 - 7 Oct 2025
Viewed by 1258
Abstract
We adapted two photochemical methods to generate radicals and assess their impact on anion exchange membrane stability, independent of base-induced degradation. Through the exposure of aqueous solutions of potassium nitrite or suspensions of TiO2 to UV light at 365 nm, we generated [...] Read more.
We adapted two photochemical methods to generate radicals and assess their impact on anion exchange membrane stability, independent of base-induced degradation. Through the exposure of aqueous solutions of potassium nitrite or suspensions of TiO2 to UV light at 365 nm, we generated hydroxyl radicals or a combination of hydroxyl and superoxide radicals. The methods’ applicability to anion exchange membranes (AEMs) is demonstrated on three commercial AEMs: PiperION-40, FM-FAA-3-PK-75, and PNB-R45. Changes in ion-exchange capacity, along with FT-IR and NMR analyses, revealed significant degradation in thinner, non-reinforced membranes, while thicker and reinforced membranes showed greater resistance. We attribute this to the limited penetration depth of highly reactive radicals into the membrane. Both methods are practical and inexpensive tools for benchmarking AEM stability against radical attack. Full article
(This article belongs to the Section Membrane Applications for Energy)
Show Figures

Figure 1

14 pages, 1635 KB  
Article
Toxic Effects of Waterborne Nitrite on LC50, Hematological Parameters, and Plasma Biochemistry in Starry Flounder (Platichthys stellatus)
by Bijae Gong, Hyeong Su Kim, Cheol Young Choi, Sung-Pyo Hur and Jun-Hwan Kim
Toxics 2025, 13(9), 748; https://doi.org/10.3390/toxics13090748 - 2 Sep 2025
Cited by 2 | Viewed by 1690
Abstract
Nitrite is a common environmental pollutant in aquaculture systems, where high levels can severely impair fish physiology and survival. This study aimed to evaluate the acute toxicity of waterborne nitrite in starry flounder (Platichthys stellatus). Fish (mean weight 145.69 ± 16.06 [...] Read more.
Nitrite is a common environmental pollutant in aquaculture systems, where high levels can severely impair fish physiology and survival. This study aimed to evaluate the acute toxicity of waterborne nitrite in starry flounder (Platichthys stellatus). Fish (mean weight 145.69 ± 16.06 g, mean total length 22.78 ± 0.70 cm) were exposed to nitrite concentrations of 0, 25, 50, 100, 200, 400, and 800 mg NO2/L for 96 h. The lethal concentration 50 (LC50) of nitrite for P. stellatus was determined to be 574.47 mg NO2/L. Hematological parameters such as red blood cell counts (RBCs), hemoglobin (Hb), and hematocrit (Hct) were significantly decreased by nitrite exposure. Plasma components including calcium (Ca2+), glucose, cholesterol, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were significantly changed by nitrite exposure. The results of this study suggest that acute exposure to waterborne nitrite (>200 mg NO2/L) adversely affects survival rates, hematological parameters, and plasma components in P. stellatus. These findings provide important baseline data for nitrite toxicity assessment in P. stellatus. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Graphical abstract

25 pages, 1697 KB  
Article
Evaluation of Quality Parameters in Canned Pork Enriched with 1% Freeze-Dried Cell-Free Supernatant of Lacticaseibacillus paracasei B1 and Reduced Sodium Nitrite Content
by Paulina Kęska, Miroslava Kačániová, Joanna Stadnik, Karolina Wójciak and Dorota Zielińska
Foods 2025, 14(17), 3080; https://doi.org/10.3390/foods14173080 - 1 Sep 2025
Viewed by 1130
Abstract
The search for natural alternatives to sodium nitrite in meat products is driven by concerns about consumer health and the need to maintain product quality and safety. In this study, the effect of sodium nitrite reduction on the quality parameters of canned pork [...] Read more.
The search for natural alternatives to sodium nitrite in meat products is driven by concerns about consumer health and the need to maintain product quality and safety. In this study, the effect of sodium nitrite reduction on the quality parameters of canned pork meat with 1% lyophilized cell-free supernatant (CFS) from L. paracasei B1, during 30 days of storage, was assessed. Reduction of sodium nitrite content led to measurable changes in the color, texture, and oxidative stability of canned pork; however, the presence of 1% CFS helped preserve color, alleviated the negative impact on textural parameters, and limited lipid oxidation, thereby counteracting the typical consequences of nitrite reduction. Among the tested variants, S_75, containing 75% of the standard nitrite dose, showed the best overall balance between color retention, textural integrity, and oxidative stability. Samples without nitrite (S_0) exhibited a noticeable increase in lightness (L*) and decrease in redness (a*) over time, accompanied by a shift towards yellow-brown hues (b*, C*, H°). Importantly, the total color difference (ΔE) was least pronounced in the S_75 variant, with values of approximately 2.5 after 1 day and 2.7 after 30 days, which was markedly lower than in S_50 (ΔE ≈ 6.0 and 3.9) and S_0 (ΔE ≈ 7.9 and 8.5), thereby confirming superior color retention and overall stability during storage. Texture analysis showed that initial hardness and chewiness were higher in nitrite-free samples (S_0), suggesting that the complete omission of nitrite may negatively affect product structure. Nevertheless, all variants softened during storage, and samples with higher nitrite content, particularly S_75, retained better elasticity and cohesiveness. Lipid oxidation, expressed as TBARS values, progressed fastest in samples completely depleted of nitrite (S_0), increasing from 0.31 mg MDA/kg (day 1) to 1.35 mg MDA/kg (day 30), which confirms the antioxidant role of sodium nitrite. Interestingly, the presence of 1% CFS in the variants with reduced nitrite content partially mitigated this effect, as TBARS values in S_75 increased only from 0.29 to 0.46 mg MDA/kg, and, in S_50, from 0.45 to 0.66 mg MDA/kg, compared to the nitrite-free variant. This suggests that CFS may also have contributed to antioxidant protection. Fatty acid profiles remained relatively consistent across methods. Microbiological analysis revealed no significant differences between groups. These results demonstrate that partial nitrite reduction combined with CFS is effective, highlighting the potential of CFS as a promising functional additive in clean label meat preservation. Furthermore, reducing the sodium nitrite content in canned pork products may contribute to improved consumer health by reducing exposure to potentially harmful nitrosamine precursors. Full article
Show Figures

Figure 1

33 pages, 1400 KB  
Article
Nitrates and Nitrites in Vegetables and the Health Risk
by Ana Maria Dodocioiu, Gilda-Diana Buzatu and Mihai Botu
Foods 2025, 14(17), 3037; https://doi.org/10.3390/foods14173037 - 29 Aug 2025
Cited by 4 | Viewed by 7044
Abstract
The research investigates nitrate and nitrite concentrations in vegetables sold at agri-food markets in Craiova, Dolj County. Vegetable samples were purchased from markets and sourced from the primary agricultural regions of Dolj County, ensuring a representative selection. A total of 300 samples were [...] Read more.
The research investigates nitrate and nitrite concentrations in vegetables sold at agri-food markets in Craiova, Dolj County. Vegetable samples were purchased from markets and sourced from the primary agricultural regions of Dolj County, ensuring a representative selection. A total of 300 samples were collected, with 20 samples taken from each of 15 vegetable species at commercial maturity. This research also aimed to estimate the contribution of each type of vegetable to the intake of nitrates/nitrites ingested through consumption, as well as to carry out an assessment of the risk to human health associated with the consumption of these vegetables. Our analysis showed that only three vegetables (tomatoes, eggplants, and bell peppers) exceeded the maximum permissible nitrate levels (MPL). The MPL for nitrite content was exceeded in several vegetables, including eggplant, green bean, lettuce, cabbage, dill, spinach, and lovage. For nitrates, the Hazard Risk Index (HRI) was consistently below 1 across all samples, with the sole exception of children’s consumption scenario. The HRI for nitrite was also below 1 for all samples, suggesting an absence of exposure risk. The findings from this study suggest that the consumption of vegetable products poses an insignificant risk in terms of nitrate and nitrite intake. Full article
Show Figures

Figure 1

22 pages, 527 KB  
Article
Impact of Chronic Nitrate and Citrulline Malate Supplementation on Performance and Recovery in Spanish Professional Female Soccer Players: A Randomized Controlled Trial
by Marta Ramírez-Munera, Raúl Arcusa, Francisco Javier López-Román, Vicente Ávila-Gandía, Silvia Pérez-Piñero, Juan Carlos Muñoz-Carrillo, Antonio Jesús Luque-Rubia and Javier Marhuenda
Nutrients 2025, 17(14), 2381; https://doi.org/10.3390/nu17142381 - 21 Jul 2025
Cited by 1 | Viewed by 3779
Abstract
Background: Pre-season training is critical for developing tolerance to high physical demands in professional soccer, and nitric oxide (NO) precursors such as dietary nitrate (NO3) and citrulline malate (CM) can support performance and recovery during this demanding phase. This [...] Read more.
Background: Pre-season training is critical for developing tolerance to high physical demands in professional soccer, and nitric oxide (NO) precursors such as dietary nitrate (NO3) and citrulline malate (CM) can support performance and recovery during this demanding phase. This study aimed to examine the effects of a four-week supplementation protocol combining 500 mg of NO3 from amaranth extract and 8 g of CM (NIT + CM) on external training load and post-match recovery in professional female soccer players during pre-season. Methods: A randomized, double-blind, placebo-controlled trial was conducted with 34 female soccer players who received either the NIT + CM product or a placebo for four weeks during pre-season. Global positioning system (GPS)-derived external load was recorded throughout the intervention. Performance tests—a countermovement jump (CMJ) test and the Wingate anaerobic test (WAnT)—and blood sampling for plasma NO3 and nitrite (NO2) concentrations were conducted at baseline and the day after a competitive match. Results: The supplementation with NIT + CM increased maximal speed (Vmax) throughout training and match play. During post-match testing, the NIT + CM group exhibited a significantly smaller decline in mean (Pmean) and minimum (Pmin) power during the WAnT, along with reduced power loss in both the first (0–15 s) and second (15–30 s) intervals. Plasma NO3 concentrations significantly increased from baseline in the NIT + CM group and remained elevated 24 h after the final dose, confirming sustained systemic exposure. Conclusions: Chronic NIT + CM supplementation may enhance Vmax and help preserve anaerobic performance the day after a match. These effects could reflect improved tolerance to high training loads and sustained NO3 availability during recovery. Full article
Show Figures

Graphical abstract

20 pages, 3831 KB  
Article
Effects of Nitrite Stress on Growth, Glycolipid Metabolism, and Hepatic Metabolome in Spotted Seabass (Lateolabrax maculatus) Under High-Temperature Conditions
by Juan Gao, Shi Cao, Chen Shen, Jian Zhang, Ling Wang, Xueshan Li, Kangle Lu, Chunxiao Zhang and Kai Song
Animals 2025, 15(13), 1870; https://doi.org/10.3390/ani15131870 - 24 Jun 2025
Cited by 1 | Viewed by 815
Abstract
Nitrite is a common pollutant in aquaculture systems and can pose serious threats to fish health, especially under high-temperature conditions. This study aimed to investigate the impact of nitrite stress on the growth, glycolipid metabolism, and hepatic metabolomic profiles in the spotted seabass [...] Read more.
Nitrite is a common pollutant in aquaculture systems and can pose serious threats to fish health, especially under high-temperature conditions. This study aimed to investigate the impact of nitrite stress on the growth, glycolipid metabolism, and hepatic metabolomic profiles in the spotted seabass fry (Lateolabrax maculatus) under elevated temperature conditions at 33 °C. A total of 450 fish (28.52 ± 0.84 g) were randomly distributed into nine tanks and exposed to three nitrite concentrations (0, 8, and 16 mg/L), with samples collected on days 1, 3, 7, 14, 21, and 28. Results showed that higher nitrite levels significantly reduced final body weight, weight gain, survival rate, hepatosomatic index, and viscerosomatic index. Blood glucose and triglyceride levels, whole-body crude lipid, liver total cholesterol, and hepatic glycogen content also declined significantly under higher nitrite stress. In contrast, hepatic lactate and lactate dehydrogenase increased in the high-nitrite group. Gene expression analysis revealed suppressed lipid synthesis and enhanced lipolysis under nitrite exposure. Metabolomic analysis further demonstrated disruptions in key energy-related pathways, including the TCA cycle, pentose phosphate pathway, and insulin signaling. These findings indicate that nitrite stress impairs growth and energy metabolism in spotted seabass, which respond by mobilizing energy reserves to cope with combined stress of high temperature and nitrite. Full article
(This article belongs to the Special Issue Novel Insights into Lipid Metabolism in Aquatic Animals)
Show Figures

Figure 1

19 pages, 1349 KB  
Review
N-Nitrosamines in Meat Products: Formation, Detection and Regulatory Challenges
by Tomislav Rot, Dragan Kovačević, Kristina Habschied and Krešimir Mastanjević
Processes 2025, 13(5), 1555; https://doi.org/10.3390/pr13051555 - 17 May 2025
Cited by 5 | Viewed by 10474
Abstract
Nitrosamines (NAs) are a class of chemical compounds predominantly formed during the processing, curing, and storage of meat products through the reaction of nitrites with amines. Decades of toxicological and epidemiological evidence have unequivocally established several NAs as potent human carcinogens, with strong [...] Read more.
Nitrosamines (NAs) are a class of chemical compounds predominantly formed during the processing, curing, and storage of meat products through the reaction of nitrites with amines. Decades of toxicological and epidemiological evidence have unequivocally established several NAs as potent human carcinogens, with strong associations with gastrointestinal, pancreatic, and liver cancers. This review critically examines the pathways of NA formation in meat, the influence of processing conditions, and the factors contributing to their variability in food products. It also outlines state-of-the-art analytical techniques for their detection and summarizes recent scientific efforts to reduce their formation. Despite scientific consensus on the health hazards posed by dietary exposure to NAs, regulatory control remains fragmented and insufficient. Therefore, this review highlights the pressing need for coordinated international action and the development of a harmonized regulatory framework to mitigate public health risks. Full article
(This article belongs to the Special Issue Food Biochemistry and Health: Recent Developments and Perspectives)
22 pages, 9500 KB  
Article
Increased CO2 Concentration Mitigates the Impact of Nitrite on Zebrafish (Danio rerio) Liver and Gills
by Xinyu Wang, Yao Tang, Hui Yang, Ya He, Kang Ou-Yang, Liangmou Wang, Qian Zhang, Dapeng Li and Li Li
Fishes 2025, 10(5), 205; https://doi.org/10.3390/fishes10050205 - 1 May 2025
Cited by 1 | Viewed by 1376
Abstract
Nitrite and carbon dioxide (CO2) are common environmental substances in intensive aquaculture ponds. However, the effects and mechanisms of their combined exposure on aquatic animals remain unclear. In this study, we investigated the toxic effects of 2.5, 5, and 10 mg/L [...] Read more.
Nitrite and carbon dioxide (CO2) are common environmental substances in intensive aquaculture ponds. However, the effects and mechanisms of their combined exposure on aquatic animals remain unclear. In this study, we investigated the toxic effects of 2.5, 5, and 10 mg/L CO2 in the presence of 2 mg/L nitrite on hematological, blood gas parameters, and liver physiological and pathological changes in zebrafish (Danio rerio) over 14 days and 28 days. Our results demonstrated a reduced nitrite uptake and accumulation in the gills and liver of zebrafish exposed to nitrite and varying levels of CO2. Increased CO2 levels also led to a decrease in the expression of gill ae1, whereas the transcriptional levels of nhe1 and nhe3b, nkcc and nbc1 were notably upregulated. Moreover, there was a decrease in Cl and Na+ concentrations, along with an increase in K+ concentrations. These changes suggested that zebrafish responded to increased CO2 stress by reducing their absorption of chloride-dependent nitrite, excreting H+ and maintaining their internal pH. Exposure to higher CO2 levels in the presence of nitrite resulted in lower blood MetHb levels and liver oxidative stress compared to the nitrite single-exposure treatment. Furthermore, co-treatment with CO2 and nitrite attenuated the nitrite-induced damage to genes related to mitochondrial respiratory chain function (ndufs1, mtnd5, mtycb, atp5f1b, mtatp8), leading to elevated ATP levels. Exposure to nitrite alone increased the expression of lipolytic genes (hsla, cpt1aa, atgl) and decreased the expression of lipid synthesis genes (fasn, acaca), resulting in a decrease in TG and TC content in zebrafish liver. However, co-treatment with CO2 and nitrite prevented the nitrite-induced disruption of lipid metabolism, as evidenced by the improvement in TG and TC levels, as well as transcriptional levels of lipid metabolism-related genes. In conclusion, our study suggests that in the presence of 2 mg/L nitrite, increased CO2 (2.5–10 mg/L) may modulate ion transporter genes to reduce the chloride-dependent nitrite uptake and maintain pH homeostasis, concurrently alleviating oxidative stress, restoring mitochondrial respiratory function, and improving lipid metabolism in a dose-dependent manner. These changes may be related to the increase in the concentration of bicarbonate ions in the water as the CO2 level rises. These findings shed light on the potential protective effects of CO2 in mitigating the harmful effects of nitrite exposure in aquatic animals. Full article
(This article belongs to the Section Physiology and Biochemistry)
Show Figures

Graphical abstract

24 pages, 22656 KB  
Article
Influence of High Temperature and Ammonia and Nitrite Accumulation on the Physiological, Structural, and Genetic Aspects of the Biology of Largemouth Bass (Micropterus salmoides)
by Yuexing Zhang, Hui Qiao, Leyang Peng, Yujie Meng, Guili Song, Cheng Luo and Yong Long
Antioxidants 2025, 14(4), 495; https://doi.org/10.3390/antiox14040495 - 20 Apr 2025
Cited by 2 | Viewed by 2185
Abstract
Hyperthermia and nitrogenous pollutants like ammonia and nitrite are common risk factors that adversely affect fish health and pose significant threats to the aquaculture industry. However, the impacts of high temperatures on the accumulation of nitrogenous pollutants in the water of the aquaculture [...] Read more.
Hyperthermia and nitrogenous pollutants like ammonia and nitrite are common risk factors that adversely affect fish health and pose significant threats to the aquaculture industry. However, the impacts of high temperatures on the accumulation of nitrogenous pollutants in the water of the aquaculture systems and their toxicity to farmed fish are not well understood. In this study, juvenile largemouth bass (Micropterus salmoides, LMB) were kept at 28 °C and 34 °C in a closed aquatic system to investigate the effects of higher temperatures on ammonia and nitrite accumulation. The fish were fed 2% of their body weight daily for a 14-day experiment. Ammonia levels gradually increased, peaking on day 7 at 34 °C and on day 9 at 28 °C, then decreased to near zero. Nitrite levels remained low initially and increased rapidly along with the reduction in ammonia levels at both temperatures. The 34 °C high temperature accelerated the accumulation of ammonia and its transformation into nitrite compared to 28 °C. Fish were sampled on day 1 (low ammonia and low nitrite, LALN), day 8 (high ammonia and low nitrite, HALN), and day 14 (low ammonia and high nitrite, LAHN) to explore toxic effects. Successive exposure to high levels of ammonia and nitrite caused oxidative stress in the liver and significant pathogenic changes in the liver and spleen, with more pronounced impacts observed at 34 °C. Significant changes in gene expression were detected in the liver and spleen of fish sampled at HALN and LAHN, compared to those at LALN, with upregulated genes primarily associated with extracellular matrix (ECM) and cytoskeleton organization. A second experiment was conducted at the same temperatures but without ammonia/nitrite accumulation. The results of this experiment confirmed the combined effects of hyperthermia and ammonia/nitrite toxicity on the expression of genes involved in ECM–receptor interaction and TGF-beta signaling. These findings are valuable for optimizing cultivation environments and promoting the health of farmed LMB. Full article
Show Figures

Figure 1

Back to TopTop