Sublethal Nitrite Exposure Alters Redox Status and Metabolic Functions in Adult Zebrafish
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Treatment and Experimental Protocols
2.2.1. In Vivo Measurements and Blood Analysis
2.2.2. Muscle Tissue Analysis
2.2.3. Western Blot Analysis
2.3. Routine Oxygen Consumption (rMO2) and Spontaneous Activity
2.4. Blood Sample Collection, Hemoglobin Spectral Deconvolution, and Blood Nitrite Content Determination
2.5. Muscle Nitrite, Lactate, and Urea Content, and Arginase Activity
2.6. Tissue Aerobic Capacity Evaluation
2.7. Western Blot Analysis of Cytochrome c, Dynamin, and Mitofusin
2.8. Redox Homeostasis Evaluation (ROS Content, Lipid Oxidative Damage, Susceptibility to Oxidants, and Total Antioxidant Capacity)
2.9. Statistical Analysis
3. Results
3.1. Effect of Nitrite Exposure on the Oxygen-Carrying Capacity of Blood, Spontaneous Activity and rMO2, and on Blood and Tissue Nitrite Levels
3.2. Tissue Aerobic Capacity and Mitochondrial Dynamics
3.3. Redox Homeostasis
3.4. Muscle Arginase Activity, and Urea and Lactate Content
4. Discussion
4.1. Effects on Hemoglobin
4.2. Effects on In Vivo Metabolism and Activity
4.3. Accumulation of Nitrite in Muscle Tissue
4.4. Nitrite Stimulates Arginase Activity
4.5. Effects of Nitrite on Muscle NO Homeostasis, Redox State, and Mitochondrial Function
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Philips, S.; Laanbroek, H.J.; Verstraete, W. Origin, Causes and Effects of Increased Nitrite Concentrations in Aquatic Environments. Rev. Environ. Sci. Bio./Technol. 2002, 1, 115–141. [Google Scholar] [CrossRef]
- Yu, B.; Lyu, K.; Li, J.; Yang, Z.; Sun, Y. Combined Toxic Effects of Nitrite and Ammonia on Life History Traits of Daphnia Pulex. Front. Environ. Sci. 2022, 10, 1019483. [Google Scholar] [CrossRef]
- Bian, D.-D.; Shi, Y.-X.; Zhang, X.; Liu, X.; Jiang, J.-J.; Zhu, X.-R.; Zhang, D.-Z.; Liu, Q.-N.; Zhu, B.-J.; Tang, B.-P. Nitrite Toxicity in Shrimp Aquaculture: Mechanisms, Health Impacts, and Sustainable Mitigation Strategies. Rev. Aquac. 2025, 17, e70062. [Google Scholar] [CrossRef]
- Locascio, A.; Annona, G.; Caccavale, F.; D’Aniello, S.; Agnisola, C.; Palumbo, A. Nitric Oxide Function and Nitric Oxide Synthase Evolution in Aquatic Chordates. Int. J. Mol. Sci. 2023, 24, 11182. [Google Scholar] [CrossRef]
- Shiva, S. Nitrite: A Physiological Store of Nitric Oxide and Modulator of Mitochondrial Function. Redox Biol. 2013, 1, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Kapil, V.; Khambata, R.S.; Jones, D.A.; Rathod, K.; Primus, C.; Massimo, G.; Fukuto, J.M.; Ahluwalia, A. The Noncanonical Pathway for In Vivo Nitric Oxide Generation: The Nitrate-Nitrite-Nitric Oxide Pathway. Pharmacol. Rev. 2020, 72, 692–766. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, A. Quantitative Aspects of Nitric Oxide Production from Nitrate and Nitrite. EXCLI J. 2022, 21, 470–486. [Google Scholar] [CrossRef]
- Piknova, B.; Park, J.W.; Tunau-Spencer, K.J.; Jenkins, A.; Hellinga, D.G.; Walter, P.J.; Cai, H.; Schechter, A.N. Skeletal Muscle, Skin, and Bone as Three Major Nitrate Reservoirs in Mammals: Chemiluminescence and 15N-Tracer Studies in Yorkshire Pigs. Nutrients 2024, 16, 2674. [Google Scholar] [CrossRef]
- Piknova, B.; Park, J.W.; Schechter, A.N. Nitrate as Warden of Nitric Oxide Homeostasis in Mammals. Nutrients 2025, 17, 1544. [Google Scholar] [CrossRef]
- Bryan, N.S.; Fernandez, B.O.; Bauer, S.M.; Garcia-Saura, M.F.; Milsom, A.B.; Rassaf, T.; Maloney, R.E.; Bharti, A.; Rodriguez, J.; Feelisch, M. Nitrite Is a Signaling Molecule and Regulator of Gene Expression in Mammalian Tissues. Nat. Chem. Biol. 2005, 1, 290–297. [Google Scholar] [CrossRef]
- Pellegrino, D.; Parisella, M.L. Nitrite as a Physiological Source of Nitric Oxide and a Signalling Molecule in the Regulation of the Cardiovascular System in Both Mammalian and Non-Mammalian Vertebrates. Recent Pat. Cardiovasc. Drug Discov. 2010, 5, 91–96. [Google Scholar] [CrossRef] [PubMed]
- DeMartino, A.W.; Kim-Shapiro, D.B.; Patel, R.P.; Gladwin, M.T. Nitrite and Nitrate Chemical Biology and Signalling. Br. J. Pharmacol. 2019, 176, 228–245. [Google Scholar] [CrossRef]
- Diaz, R.J. Overview of Hypoxia around the World. J. Environ. Qual. 2001, 30, 275. [Google Scholar] [CrossRef]
- Steckbauer, A.; Duarte, C.M.; Carstensen, J.; Vaquer-Sunyer, R.; Conley, D.J. Ecosystem Impacts of Hypoxia: Thresholds of Hypoxia and Pathways to Recovery. Environ. Res. Lett. 2011, 6, 025003. [Google Scholar] [CrossRef]
- Fusi, M.; Stephenson, F.; Navarrete, S.A.; Tapia, F.J.; Largier, J.L.; Marasco, R.; Rueger, T.; MacDonald, C.; Daffonchio, D.; Fernandez, M.; et al. The Ecology of the Oxyscape in Coastal Ecosystems. Trends Ecol. Evol. 2025, 40, 791–804. [Google Scholar] [CrossRef]
- Jensen, F.B. The Role of Nitrite in Nitric Oxide Homeostasis: A Comparative Perspective. Biochim. Biophys. Acta (BBA) Bioenerg. 2009, 1787, 841–848. [Google Scholar] [CrossRef]
- Pedersen, C.L.; Faggiano, S.; Helbo, S.; Gesser, H.; Fago, A. Roles of Nitric Oxide, Nitrite and Myoglobin on Myocardial Efficiency in Trout (Oncorhynchus mykiss) and Goldfish (Carassius auratus): Implications for Hypoxia Tolerance. J. Exp. Biol. 2010, 213, 2755–2762. [Google Scholar] [CrossRef]
- Corti, P.; Xue, J.; Tejero, J.; Wajih, N.; Sun, M.; Stolz, D.B.; Tsang, M.; Kim-Shapiro, D.B.; Gladwin, M.T. Globin X Is a Six-Coordinate Globin That Reduces Nitrite to Nitric Oxide in Fish Red Blood Cells. Proc. Natl. Acad. Sci. USA 2016, 113, 8538–8543. [Google Scholar] [CrossRef]
- Fago, A.; Jensen, F.B. Hypoxia Tolerance, Nitric Oxide, and Nitrite: Lessons From Extreme Animals. Physiology 2015, 30, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Filice, M.; Imbrogno, S.; Gattuso, A.; Cerra, M.C. Hypoxic and Thermal Stress: Many Ways Leading to the NOS/NO System in the Fish Heart. Antioxidants 2021, 10, 1401. [Google Scholar] [CrossRef]
- Hansen, M.N.; Gerber, L.; Jensen, F.B. Nitric Oxide Availability in Deeply Hypoxic Crucian Carp: Acute and Chronic Changes and Utilization of Ambient Nitrite Reservoirs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 310, R532–R540. [Google Scholar] [CrossRef]
- Lewis, W.M., Jr.; Morris, D.P. Toxicity of Nitrite to Fish: A Review. Trans. Am. Fish. Soc. 1986, 115, 183–195. [Google Scholar] [CrossRef]
- Jensen, F.B. Nitrite Disrupts Multiple Physiological Functions in Aquatic Animals. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2003, 135, 9–24. [Google Scholar] [CrossRef]
- Kroupová, H.K.; Valentová, O.; Svobodová, Z.; Šauer, P.; Máchová, J. Toxic Effects of Nitrite on Freshwater Organisms: A Review. Rev. Aquac. 2018, 10, 525–542. [Google Scholar] [CrossRef]
- Martinez, M.A.; Mancha, F.; Gomes, A.; Huertas, M. Toxicokinetic of Sublethal Concentrations of Nitrite in Goldfish (Carassius auratus). FASEB J. 2020, 34, 1. [Google Scholar] [CrossRef]
- Margiocco, C.; Arillo, A.; Mensi, P.; Schenone, G. Nitrite Bioaccumulation in Salmo Gairdneri Rich. and Hematological Consequences. Aquat. Toxicol. 1983, 3, 261–270. [Google Scholar] [CrossRef]
- García-Robledo, E.; Corzo, A.; Papaspyrou, S. A Fast and Direct Spectrophotometric Method for the Sequential Determination of Nitrate and Nitrite at Low Concentrations in Small Volumes. Mar. Chem. 2014, 162, 30–36. [Google Scholar] [CrossRef]
- Zhang, F.; Zhu, X.; Jiao, Z.; Liu, X.; Zhang, H. Sensitive Naked Eye Detection and Quantification Assay for Nitrite by a Fluorescence Probe in Various Water Resources. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 200, 275–280. [Google Scholar] [CrossRef]
- Mai, Y.; Debruille, K.; Mikhail, I.; Gupta, V.; Murray, E.; Frantsuzov, R.; Paull, B. Measuring Nitrite and Nitrate in Rain and River Water Samples Using a Portable Ion Chromatograph in Step-Gradient Mode and High Sensitivity Detection Flow Cell. J. Sep. Sci. 2025, 48, e70134. [Google Scholar] [CrossRef]
- Liu, G.; Verdegem, M.; Ye, Z.; Zhao, J.; Xiao, J.; Liu, X.; Liang, Q.; Xiang, K.; Zhu, S. Advancing Aquaculture Sustainability: A Comprehensive Review of Biofloc Technology Trends, Innovative Research Approaches, and Future Prospects. Rev. Aquac. 2025, 17, e12970. [Google Scholar] [CrossRef]
- Jensen, F.B.; Hansen, M.N. Differential Uptake and Metabolism of Nitrite in Normoxic and Hypoxic Goldfish. Aquat. Toxicol. 2011, 101, 318–325. [Google Scholar] [CrossRef]
- Napolitano, G.; Fasciolo, G.; Agnisola, C.; Venditti, P. Urea Excretion and Arginase Activity as New Biomarkers for Nitrite Stress in Freshwater Aquatic Animals. Water 2021, 13, 3521. [Google Scholar] [CrossRef]
- Tengan, C.H.; Rodrigues, G.S.; Godinho, R.O. Nitric Oxide in Skeletal Muscle: Role on Mitochondrial Biogenesis and Function. Int. J. Mol. Sci. 2012, 13, 17160–17184. [Google Scholar] [CrossRef]
- Poderoso, J.J.; Helfenberger, K.; Poderoso, C. The Effect of Nitric Oxide on Mitochondrial Respiration. Nitric Oxide 2019, 88, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, G.; Fasciolo, G.; Venditti, P. Mitochondrial Management of Reactive Oxygen Species. Antioxidants 2021, 10, 1824. [Google Scholar] [CrossRef]
- Benamar, A.; Rolletschek, H.; Borisjuk, L.; Avelange-Macherel, M.-H.; Curien, G.; Mostefai, H.A.; Andriantsitohaina, R.; Macherel, D. Nitrite–Nitric Oxide Control of Mitochondrial Respiration at the Frontier of Anoxia. Biochim. Biophys. Acta (BBA) Bioenerg. 2008, 1777, 1268–1275. [Google Scholar] [CrossRef]
- Piacenza, L.; Zeida, A.; Trujillo, M.; Radi, R. The Superoxide Radical Switch in the Biology of Nitric Oxide and Peroxynitrite. Physiol. Rev. 2022, 102, 1881–1906. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.; Han, C.; Lei, J.-L.; Liu, B.-L.; Huang, B.; Huo, H.-H.; Yin, S.-T. Effects of Nitrite Exposure on Haematological Parameters, Oxidative Stress and Apoptosis in Juvenile Turbot (Scophthalmus maximus). Aquat. Toxicol. 2015, 169, 1–9. [Google Scholar] [CrossRef]
- Gao, X.-Q.; Fei, F.; Huo, H.H.; Huang, B.; Meng, X.S.; Zhang, T.; Liu, B.-L. Effect of Acute Exposure to Nitrite on Physiological Parameters, Oxidative Stress, and Apoptosis in Takifugu Rubripes. Ecotoxicol. Environ. Saf. 2020, 188, 109878. [Google Scholar] [CrossRef] [PubMed]
- de Sousa Miranda, D.H.; Maltez, L.C.; Campello, M.E.S.; Córdova, J.F.L.; Rodrigues, R.V.; Sampaio, L.A.; Okamoto, M.H. Acute Toxicity and Sublethal Effects of Nitrite on Oxidative Stress in Early Juvenile Brazilian Flounder, Paralichthys orbignyanus. Aquac. Res. 2022, 53, 1939–1946. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, H.; Guo, M.; Fang, D.; Mei, J.; Xie, J. Analysis of Acute Nitrite Exposure on Physiological Stress Response, Oxidative Stress, Gill Tissue Morphology and Immune Response of Large Yellow Croaker (Larimichthys crocea). Animals 2022, 12, 1791. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kang, Y.J.; Lee, K.M. Effects of Nitrite Exposure on the Hematological Properties, Antioxidant and Stress Responses of Juvenile Hybrid Groupers, Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀. Antioxidants 2022, 11, 545. [Google Scholar] [CrossRef]
- Bourdineaud, J.-P.; Rossignol, R.; Brèthes, D. Zebrafish: A Model Animal for Analyzing the Impact of Environmental Pollutants on Muscle and Brain Mitochondrial Bioenergetics. Int. J. Biochem. Cell Biol. 2013, 45, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Gladwin, M.T.; Schechter, A.N.; Kim-Shapiro, D.B.; Patel, R.P.; Hogg, N.; Shiva, S.; Cannon, R.O.; Kelm, M.; Wink, D.A.; Espey, M.G.; et al. The Emerging Biology of the Nitrite Anion. Nat. Chem. Biol. 2005, 1, 308–314. [Google Scholar] [CrossRef]
- Zotti, F.D.; Lobysheva, I.I.; Balligand, J.-L. Nitrosyl-Hemoglobin Formation in Rodent and Human Venous Erythrocytes Reflects NO Formation from the Vasculature in Vivo. PLoS ONE 2018, 13, e0200352. [Google Scholar] [CrossRef]
- Belcher, R.; Rodriguez-Vazquez, J.A.; Stephen, W.I. A Sensitive Method for the Ultraviolet Spectrophotometric Determination of Chloride. Anal. Chim. Acta 1972, 61, 223–232. [Google Scholar] [CrossRef]
- Shechter, H.; Gruener, N.; Shuval, H.I. A Micromethod for the Determination of Nitrite in Blood. Anal. Chim. Acta 1972, 60, 93–99. [Google Scholar] [CrossRef]
- European Commission. Directorate General for Health and Food Safety. Revision of Annexes III and IV of Directive 2010/63/EU on the Protection of Animals Used for Scientific Purposes Regarding Accommodation Parameters and Methods of Killing for Zebrafish, and Accommodation Parameters for Passerine Birds; Publications Office of the European Union: Luxembourg, 2024. [Google Scholar]
- Uliano, E.; Cataldi, M.; Carella, F.; Migliaccio, O.; Iaccarino, D.; Agnisola, C. Effects of Acute Changes in Salinity and Temperature on Routine Metabolism and Nitrogen Excretion in Gambusia (Gambusia affinis) and Zebrafish (Danio rerio). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2010, 157, 283–290. [Google Scholar] [CrossRef]
- Agnisola, C.; Femiano, S. Studies on Routine Metabolism in Adult Zebrafish, Danio rerio. Acta Physiol. 2006, 187, 49. [Google Scholar]
- Jensen, F.B. Nitric Oxide Formation from Nitrite in Zebrafish. J. Exp. Biol. 2007, 210, 3387–3394. [Google Scholar] [CrossRef]
- Dunn, J.F.; Hochachka, P.W. Metabolic Responses of Trout (Salmo gairdneri) to Acute Environmental Hypoxia. J. Exp. Biol. 1986, 123, 229–242. [Google Scholar] [CrossRef]
- Rahmatullah, M.; Boyde, T.R.C. Improvements in the Determination of Urea Using Diacetyl Monoxime; Methods with and without Deproteinisation. Clin. Chim. Acta 1980, 107, 3–9. [Google Scholar] [CrossRef]
- Romero, M.J.; Platt, D.H.; Tawfik, H.E.; Labazi, M.; El-Remessy, A.B.; Bartoli, M.; Caldwell, R.B.; Caldwell, R.W. Diabetes-Induced Coronary Vascular Dysfunction Involves Increased Arginase Activity. Circ. Res. 2008, 102, 95–102. [Google Scholar] [CrossRef]
- Rees, B.B.; Boily, P.; Williamson, A.C. Exercise- and Hypoxia-Induced Anaerobic Metabolism and Recovery: A Student Laboratory Exercise Using Teleost Fish. Adv. Physiol. Edu. 2009, 33, 72–77. [Google Scholar] [CrossRef]
- Villani, G.; Greco, M.; Papa, S.; Attardi, G. Low Reserve of Cytochrome c Oxidase Capacity in Vivo in the Respiratory Chain of a Variety of Human Cell Types. J. Biol. Chem. 1998, 273, 31829–31836. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, G.; Fasciolo, G.; Magnacca, N.; Goglia, F.; Lombardi, A.; Venditti, P. Oxidative Damage and Mitochondrial Functionality in Hearts from KO UCP3 Mice Housed at Thermoneutrality. J. Physiol. Biochem. 2022, 78, 415–425. [Google Scholar] [CrossRef]
- Acin-Perez, R.; Benador, I.Y.; Petcherski, A.; Veliova, M.; Benavides, G.A.; Lagarrigue, S.; Caudal, A.; Vergnes, L.; Murphy, A.N.; Karamanlidis, G.; et al. A Novel Approach to Measure Mitochondrial Respiration in Frozen Biological Samples. EMBO J. 2020, 39, e104073. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, G.; Fasciolo, G.; Muscari Tomajoli, M.T.; Venditti, P. Changes in the Mitochondria in the Aging Process—Can α-Tocopherol Affect Them? Int. J. Mol. Sci. 2023, 24, 12453. [Google Scholar] [CrossRef]
- Fasciolo, G.; Napolitano, G.; Aprile, M.; Cataldi, S.; Costa, V.; Ciccodicola, A.; Di Meo, S.; Venditti, P. Hepatic Insulin Resistance in Hyperthyroid Rat Liver: Vitamin E Supplementation Highlights a Possible Role of ROS. Antioxidants 2022, 11, 1295. [Google Scholar] [CrossRef] [PubMed]
- Heath, R.L.; Tappel, A.L. A New Sensitive Assay for the Measurement of Hydroperoxides. Anal. Biochem. 1976, 76, 184–191. [Google Scholar] [CrossRef]
- La Pietra, A.; Fasciolo, G.; Lucariello, D.; Motta, C.M.; Venditti, P.; Ferrandino, I. Polystyrene Microplastics Effects on Zebrafish Embryological Development: Comparison of Two Different Sizes. Environ. Toxicol. Pharmacol. 2024, 106, 104371. [Google Scholar] [CrossRef]
- Neurohr, J.M.; Paulson, E.T.; Kinsey, S.T. A Higher Mitochondrial Content Is Associated with Greater Oxidative Damage, Oxidative Defenses, Protein Synthesis and ATP Turnover in Resting Skeletal Muscle. J. Exp. Biol. 2021, 224, jeb242462. [Google Scholar] [CrossRef]
- Rostad, K.O.; Trognitz, T.; Frøyset, A.K.; Bifulco, E.; Fladmark, K.E. Accelerated Sarcopenia Phenotype in the DJ-1/Park7-Knockout Zebrafish. Antioxidants 2024, 13, 1509. [Google Scholar] [CrossRef]
- Lu, Z.; Li, Q.; Yongo, E.; Xiao, J.; Guo, Z. Comparative Energy Metabolism in Red and White Muscles of Juvenile Yellowfin Tuna, Thunnus albacore. Front. Mar. Sci. 2025, 12, 1585044. [Google Scholar] [CrossRef]
- Hasumura, T.; Meguro, S. Exercise Quantity-Dependent Muscle Hypertrophy in Adult Zebrafish (Danio rerio). J. Comp. Physiol. B 2016, 186, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.; Garcia, T.; Aniqa, M.; Ali, S.; Ally, A.; Nauli, S.M. Endothelial Nitric Oxide Synthase (eNOS) and the Cardiovascular System: In Physiology and in Disease States. Am. J. Biomed. Sci. Res. 2022, 15, 155. [Google Scholar]
- Kim-Shapiro, D.B.; Gladwin, M.T.; Patel, R.P.; Hogg, N. The Reaction between Nitrite and Hemoglobin: The Role of Nitrite in Hemoglobin-Mediated Hypoxic Vasodilation. J. Inorg. Biochem. 2005, 99, 237–246. [Google Scholar] [CrossRef]
- Beleslin-Cokic, B.B.; Cokic, V.P.; Yu, X.; Weksler, B.B.; Schechter, A.N.; Noguchi, C.T. Erythropoietin and Hypoxia Stimulate Erythropoietin Receptor and Nitric Oxide Production by Endothelial Cells. Blood 2004, 104, 2073–2080. [Google Scholar] [CrossRef]
- Leo, F.; Suvorava, T.; Heuser, S.K.; Li, J.; LoBue, A.; Barbarino, F.; Piragine, E.; Schneckmann, R.; Hutzler, B.; Good, M.E.; et al. Red Blood Cell and Endothelial eNOS Independently Regulate Circulating Nitric Oxide Metabolites and Blood Pressure. Circulation 2021, 144, 870–889. [Google Scholar] [CrossRef]
- García-Jaramillo, M.; Beaver, L.M.; Truong, L.; Axton, E.R.; Keller, R.M.; Prater, M.C.; Magnusson, K.R.; Tanguay, R.L.; Stevens, J.F.; Hord, N.G. Nitrate and Nitrite Exposure Leads to Mild Anxiogenic-like Behavior and Alters Brain Metabolomic Profile in Zebrafish. PLoS ONE 2020, 15, e0240070. [Google Scholar] [CrossRef]
- Wang, X.; Tang, Y.; Yang, H.; He, Y.; Ou-Yang, K.; Wang, L.; Zhang, Q.; Li, D.; Li, L. Increased CO2 Concentration Mitigates the Impact of Nitrite on Zebrafish (Danio rerio) Liver and Gills. Fishes 2025, 10, 205. [Google Scholar] [CrossRef]
- Wylie, L.J.; Park, J.W.; Vanhatalo, A.; Kadach, S.; Black, M.I.; Stoyanov, Z.; Schechter, A.N.; Jones, A.M.; Piknova, B. Human Skeletal Muscle Nitrate Store: Influence of Dietary Nitrate Supplementation and Exercise. J. Physiol. 2019, 597, 5565–5576. [Google Scholar] [CrossRef]
- Srihirun, S.; Park, J.W.; Teng, R.; Sawaengdee, W.; Piknova, B.; Schechter, A.N. Nitrate Uptake and Metabolism in Human Skeletal Muscle Cell Cultures. Nitric Oxide 2020, 94, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Majerczak, J.; Kij, A.; Drzymala-Celichowska, H.; Kus, K.; Karasinski, J.; Nieckarz, Z.; Grandys, M.; Celichowski, J.; Szkutnik, Z.; Hendgen-Cotta, U.B.; et al. Nitrite Concentration in the Striated Muscles Is Reversely Related to Myoglobin and Mitochondrial Proteins Content in Rats. Int. J. Mol. Sci. 2022, 23, 2686. [Google Scholar] [CrossRef]
- Ha, N.T.K.; Huong, D.T.T.; Phuong, N.T.; Bayley, M.; Jensen, F.B. Impact and Tissue Metabolism of Nitrite at Two Acclimation Temperatures in Striped Catfish (Pangasianodon hypophthalmus). Aquat. Toxicol. 2019, 212, 154–161. [Google Scholar] [CrossRef]
- Rath, M.; Müller, I.; Kropf, P.; Closs, E.I.; Munder, M. Metabolism via Arginase or Nitric Oxide Synthase: Two Competing Arginine Pathways in Macrophages. Front. Immunol. 2014, 5, 532. [Google Scholar] [CrossRef]
- Thacher, T.N.; Gambillara, V.; Riche, F.; Silacci, P.; Stergiopulos, N.; da Silva, R.F. Regulation of Arginase Pathway in Response to Wall Shear Stress. Atherosclerosis 2010, 210, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Iyamu, E.W.; Perdew, H.; Woods, G.M. Cysteine–Iron Promotes Arginase Activity by Driving the Fenton Reaction. Biochem. Biophys. Res. Commun. 2008, 376, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Benedicenti, O.; Wang, T.; Wangkahart, E.; Milne, D.J.; Holland, J.W.; Collins, C.; Secombes, C.J. Characterisation of Arginase Paralogues in Salmonids and Their Modulation by Immune Stimulation/Infection. Fish Shellfish. Immunol. 2017, 61, 138–151. [Google Scholar] [CrossRef]
- Banerjee, B.; Khrystoforova, I.; Polis, B.; Zvi, I.B.; Karasik, D. Acute Hypoxia Elevates Arginase 2 and Induces Polyamine Stress Response in Zebrafish via Evolutionarily Conserved Mechanism. Cell. Mol. Life Sci. 2021, 79, 41. [Google Scholar] [CrossRef]
- Braun, M.H.; Steele, S.L.; Ekker, M.; Perry, S.F. Nitrogen Excretion in Developing Zebrafish (Danio rerio): A Role for Rh Proteins and Urea Transporters. Am. J. Physiol. Ren. Physiol. 2009, 296, F994–F1005. [Google Scholar] [CrossRef]
- Basu, S.; Azarova, N.A.; Font, M.D.; King, S.B.; Hogg, N.; Gladwin, M.T.; Shiva, S.; Kim-Shapiro, D.B. Nitrite Reductase Activity of Cytochrome C. J. Biol. Chem. 2008, 283, 32590–32597. [Google Scholar] [CrossRef] [PubMed]
- Pearson, T.; McArdle, A.; Jackson, M.J. Nitric Oxide Availability Is Increased in Contracting Skeletal Muscle from Aged Mice, but Does Not Differentially Decrease Muscle Superoxide. Free Radic. Biol. Med. 2015, 78, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Wynne, A.G.; Affourtit, C. Nitrite Lowers the Oxygen Cost of ATP Supply in Cultured Skeletal Muscle Cells by Stimulating the Rate of Glycolytic ATP Synthesis. PLoS ONE 2022, 17, e0266905. [Google Scholar] [CrossRef]
- Sun, S.; Ge, X.; Zhu, J.; Xuan, F.; Jiang, X. Identification and mRNA Expression of Antioxidant Enzyme Genes Associated with the Oxidative Stress Response in the Wuchang Bream (Megalobrama amblycephala Yih) in Response to Acute Nitrite Exposure. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2014, 159, 69–77. [Google Scholar] [CrossRef]
- Sartori, R.; Romanello, V.; Sandri, M. Mechanisms of Muscle Atrophy and Hypertrophy: Implications in Health and Disease. Nat. Commun. 2021, 12, 330. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Fasciolo, G.; Geremia, E.; Gravato, C.; Petito, A.; Muscari Tomajoli, M.T.; Agnisola, C.; Venditti, P.; Napolitano, G. Sublethal Nitrite Exposure Alters Redox Status and Metabolic Functions in Adult Zebrafish. Environments 2026, 13, 49. https://doi.org/10.3390/environments13010049
Fasciolo G, Geremia E, Gravato C, Petito A, Muscari Tomajoli MT, Agnisola C, Venditti P, Napolitano G. Sublethal Nitrite Exposure Alters Redox Status and Metabolic Functions in Adult Zebrafish. Environments. 2026; 13(1):49. https://doi.org/10.3390/environments13010049
Chicago/Turabian StyleFasciolo, Gianluca, Eugenio Geremia, Carlos Gravato, Adriana Petito, Maria Teresa Muscari Tomajoli, Claudio Agnisola, Paola Venditti, and Gaetana Napolitano. 2026. "Sublethal Nitrite Exposure Alters Redox Status and Metabolic Functions in Adult Zebrafish" Environments 13, no. 1: 49. https://doi.org/10.3390/environments13010049
APA StyleFasciolo, G., Geremia, E., Gravato, C., Petito, A., Muscari Tomajoli, M. T., Agnisola, C., Venditti, P., & Napolitano, G. (2026). Sublethal Nitrite Exposure Alters Redox Status and Metabolic Functions in Adult Zebrafish. Environments, 13(1), 49. https://doi.org/10.3390/environments13010049

