Comprehensive Assessment of Nitrosamine Formation in Meat Products Using UHPLC-HRMS: Analytical Challenges and Potential Dietary Implications
Abstract
1. Introduction
2. Results and Discussion
2.1. Method Validation
2.1.1. Sample Extraction
2.1.2. Online SPE Concentration
2.1.3. Chromatographic Separation
2.1.4. APCI vs. HESI
2.2. NA Formation
2.2.1. NA Formation in Raw Meat
2.2.2. NA Formation in Digested Raw Meat
2.2.3. NA Formation in Cooked Meat
2.2.4. NA Formation in Cooked Digested Meat
2.3. Statistical and Dietary Considerations
3. Materials and Methods
3.1. Chemical and Solvent
3.2. Nitrosamine Standards
3.3. Sample Preparation
3.3.1. In Vitro Digestion Process (Stomach Simulation)
3.3.2. Cooking Process
3.4. Extraction Method
3.5. LC-HRMS Analysis
3.5.1. Method Validation
3.5.2. Chromatographic Separation
3.5.3. HESI (Heated-Electrospray Ionization) Source Settings
3.5.4. APCI (Atmospheric Pressure Chemical Ionization) Source Settings
3.5.5. Detection Conditions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| NA | Nitrosamine |
| FWHM | full width at half-maximum |
| HRMS | High-Resolution Mass Spectrometry |
| NDBA | N-nitrosodi-n-butylamine |
| NDEA | N-nitrosodiethylamine |
| NDMA | N-nitrosodimethylamine |
| NDPA | N-nitrosodi-n-propylamine |
| NDPhA | N-nitrosodiphenylamine |
| NNK | 4-(N-nitrosomethylamino)-1-(3-pyridyl)-1-butanone |
| NMEA | N-nitroso-N-methylethylamine |
| NMOR | N-nitrosomorpholine |
| NMTCA | N-nitroso-2-methylthiazolidine-4-carboxylic acid |
| NNN | N-nitrosonornicotine |
| NPIP | N-nitrosopiperidine |
| NPRO | N-nitroso-L-proline |
| NPYR | N-nitrosopyrrolidine |
| NSAR | N-nitrososarcosine |
| NTCA | 3-nitrosothiazolidine-4-carboxylic acid |
| NVNA | non-volatile nitrosamine |
| UHPLC | Ultra-High Performance Liquid Chromatography |
| VNA | Volatile nitrosamine |
References
- Beard, J.C.; Swager, T.M. An Organic Chemist’s Guide to N-Nitrosamines: Their Structure, Reactivity, and Role as Contaminants. J. Org. Chem. 2021, 86, 2037–2057. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. Red Meat and Processed Meat. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2018; ISBN 9789283201526. [Google Scholar]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer; World Health Organization. Smokeless Tobacco and Some Tobacco-Specific N-Nitrosamines. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; World Health Organization: Geneva, Switzerland, 2007; ISBN 9789283212898. [Google Scholar]
- Deveci, G.; Tek, N.A. N-Nitrosamines: A Potential Hazard in Processed Meat Products. J. Sci. Food Agric. 2024, 104, 2551–2560. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.-E.; Park, J.-E.; Lee, Y.; Do, B.; Lee, J.-Y.; Kwon, H. Effect of Cooking Method on the Concentrations of Volatile N-Nitrosamines in Various Food Products. J. Food Process. Preserv. 2022, 46, e16590. [Google Scholar] [CrossRef]
- Tao, Q.; Wu, Y.; Pang, H.; Lv, P.; Li, W.; Nie, X.; Han, F.Y. Effect of Administration Routes on the Efficacy of Human Umbilical Cord Mesenchymal Stem Cells in Type 2 Diabetic Rats. Front. Endocrinol. 2025, 16, 1536655. [Google Scholar] [CrossRef]
- Herrmann, S.S.; Duedahl-Olesen, L.; Granby, K. Occurrence of Volatile and Non-Volatile N-Nitrosamines in Processed Meat Products and the Role of Heat Treatment. Food Control 2015, 48, 163–169. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (EFSA CONTAM Panel); Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; Del Mazo, J.; Hogstrand, C.; Ron Hoogenboom, L.; Leblanc, J.-C.; Nebbia, C.S.; et al. Risk Assessment of Nitrosamines in Food. EFSA J. 2023, 21, e07884. [Google Scholar] [CrossRef]
- Wichitnithad, W.; Nantaphol, S.; Noppakhunsomboon, K.; Thitikornpong, W.; Rojsitthisak, P. Current Status and Prospects of Development of Analytical Methods for Determining Nitrosamine and N-Nitroso Impurities in Pharmaceuticals. Talanta 2023, 254, 124102. [Google Scholar] [CrossRef]
- Kim, H.; Sung, D.; Yu, H.; Jang, D.; Koo, Y.; Lee, S.; Lim, K.; Choi, D. Comparison of EI-GC-MS/MS, APCI-LC-MS/MS, and ESI-LC-MS/MS for the Simultaneous Analysis of Nine Nitrosamines Eluted from Synthetic Resins into Artificial Saliva and Health Risk Assessment. Toxics 2021, 9, 230. [Google Scholar] [CrossRef]
- Liu, J.; Xie, B.; Mai, B.; Cai, Q.; He, R.; Guo, D.; Zhang, Z.; Fan, J.; Zhang, W. Development of a Sensitive and Stable GC-MS/MS Method for Simultaneous Determination of Four N-Nitrosamine Genotoxic Impurities in Sartan Substances. J. Anal. Sci. Technol. 2021, 12, 3. [Google Scholar] [CrossRef]
- Luo, F.; Liu, Y.; Xie, Y.; Hou, W.; Zhang, L.; Zhang, Z. Simultaneous Determination of 13 Nitrosamine Impurities in Biological Medicines Using Salting-out Liquid-Liquid Extraction Coupled with Liquid Chromatography Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2022, 218, 114867. [Google Scholar] [CrossRef]
- Ngongang, A.D.; Duy, S.V.; Sauvé, S. Analysis of Nine N-Nitrosamines Using Liquid Chromatography-Accurate Mass High Resolution-Mass Spectrometry on a Q-Exactive Instrument. Anal. Methods 2015, 7, 5748–5759. [Google Scholar] [CrossRef]
- Seo, J.-E.; Park, J.-E.; Lee, J.-Y.; Kwon, H. Determination of Seven N-Nitrosamines in Agricultural Food Matrices Using GC-PCI-MS/MS. Food Anal. Methods 2015, 9, 1595–1605. [Google Scholar] [CrossRef]
- Raoul, S.; Gremaud, E.; Biaudet, H.; Turesky, R.J. Rapid Solid-Phase Extraction Method for the Detection of Volatile Nitrosamines in Food. J. Agric. Food Chem. 2025, 9, 1595–1605. [Google Scholar] [CrossRef]
- Yurchenko, S.; Mölder, U. The Occurrence of Volatile N-Nitrosamines in Estonian Meat Products. Food Chem. 2007, 100, 1713–1721. [Google Scholar] [CrossRef]
- Scheeren, M.B.; Sabik, H.; Gariépy, C.; Terra, N.N.; Arul, J. Determination of N-Nitrosamines in Processed Meats by Liquid Extraction Combined with Gas Chromatography-Methanol Chemical Ionisation/mass Spectrometry. Food Addit. Contam. Part A 2015, 32, 1436–1447. [Google Scholar] [CrossRef]
- Krauss, M.; Hollender, J. Analysis of Nitrosamines in Wastewater: Exploring the Trace Level Quantification Capabilities of a Hybrid Linear Ion Trap/Orbitrap Mass Spectrometer. Anal. Chem. 2008, 80, 834–842. [Google Scholar] [CrossRef]
- Thurman, E.M.; Ferrer, I.; Barceló, D. Choosing between Atmospheric Pressure Chemical Ionization and Electrospray Ionization Interfaces for the HPLC/MS Analysis of Pesticides. Anal. Chem. 2001, 73, 5441–5449. [Google Scholar] [CrossRef]
- Herrmann, S.S.; Granby, K.; Duedahl-Olesen, L. Formation and Mitigation of N-Nitrosamines in Nitrite Preserved Cooked Sausages. Food Chem. 2015, 174, 516–526. [Google Scholar] [CrossRef]
- Roasa, J.; Liu, H.; Shao, S. An Optimised HS-SPME-GC-MS Method for the Detection of Volatile Nitrosamines in Meat Samples. Food Addit. Contam. Part A 2019, 36, 396–404. [Google Scholar] [CrossRef]
- Honikel, K.-O. The Use and Control of Nitrate and Nitrite for the Processing of Meat Products. Meat Sci. 2008, 78, 68–76. [Google Scholar] [CrossRef]
- Bruce, W.R. Gastrointestinal Cancer, Endogenous Factors, Banbury Report; Cold Spring Harbor Laboratory: New York, NY, USA, 1981; Volume 1. [Google Scholar]
- Kuhnle, G.G.C.; Story, G.W.; Reda, T.; Mani, A.R.; Moore, K.P.; Lunn, J.C.; Bingham, S.A. Diet-Induced Endogenous Formation of Nitroso Compounds in the GI Tract. Free Radic. Biol. Med. 2007, 43, 1040–1047. [Google Scholar] [CrossRef]
- Kuhnle, G.G.C.; Bingham, S.A. Dietary Meat, Endogenous Nitrosation and Colorectal Cancer. Biochem. Soc. Trans. 2007, 35, 1355–1357. [Google Scholar] [CrossRef]
- Combet, E.; Paterson, S.; Iijima, K.; Winter, J.; Mullen, W.; Crozier, A.; Preston, T.; McColl, K.E.L. Fat Transforms Ascorbic Acid from Inhibiting to Promoting Acid-Catalysed N-Nitrosation. Gut 2007, 56, 1678–1684. [Google Scholar] [CrossRef]
- Tannenbaum, S.R.; Wishnok, J.S.; Leaf, C.D. Inhibition of Nitrosamine Formation by Ascorbic Acid. Am. J. Clin. Nutr. 1991, 53, 247S–250S. [Google Scholar] [CrossRef] [PubMed]
- Scanlan, R.A. Formation and Occurrence of Nitrosamines in Food. Cancer Res. 1983, 43, 2435s–2440s. [Google Scholar] [PubMed]
- Suzuki, H.; Iijima, K.; Moriya, A.; McElroy, K.; Scobie, G.; Fyfe, V.; McColl, K.E.L. Conditions for Acid Catalysed Luminal N-Nitrosation Are Maximal at the Gastric Cardia. Gut 2003, 52, 1095–1101. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, P.; Xu, X.; Zhou, G. Influence of Various Cooking Methods on the Concentrations of Volatile N-Nitrosamines and Biogenic Amines in Dry-Cured Sausages. J. Food Sci. 2012, 77, C560–C565. [Google Scholar] [CrossRef]
- Grosse, Y.; Baan, R.; Straif, K.; Secretan, B.; El Ghissassi, F.; Cogliano, V.; WHO International Agency for Research on Cancer Monograph Working Group. Carcinogenicity of Nitrate, Nitrite, and Cyanobacterial Peptide Toxins. Lancet Oncol. 2006, 7, 628–629. [Google Scholar] [CrossRef]
- Kuenzig, W.; Chau, J.; Norkus, E.; Holowaschenko, H.; Newmark, H.; Mergens, W.; Conney, A.H. Caffeic and Ferulic Acid as Blockers of Nitrosamine Formation. Carcinogenesis 1984, 5, 309–313. [Google Scholar] [CrossRef]
- Wang, Y.; Li, F.; Zhuang, H.; Chen, X.; Li, L.; Qiao, W.; Zhang, J. Effects of Plant Polyphenols and α-Tocopherol on Lipid Oxidation, Residual Nitrites, Biogenic Amines, and N-Nitrosamines Formation during Ripening and Storage of Dry-Cured Bacon. Lebenson. Wiss. Technol. 2015, 60, 199–206. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Q.; Wang, S. Effects of Rosemary Extract, Grape Seed Extract and Green Tea Polyphenol on the Formation of N-nitrosamines and Quality of Western-style Smoked Sausage. J. Food Process. Preserv. 2020, 44, e14459. [Google Scholar] [CrossRef]
- EFSA. Nitrate in Vegetables Scientific Opinion of the Panel on Contaminants in the Food Chain. EFSA J. 2008, 689, 1–79. [Google Scholar]
- Mandalari, G.; Faulks, R.M.; Rich, G.T.; Lo Turco, V.; Picout, D.R.; Lo Curto, R.B.; Bisignano, G.; Dugo, P.; Dugo, G.; Waldron, K.W.; et al. Release of Protein, Lipid, and Vitamin E from Almond Seeds during Digestion. J. Agric. Food Chem. 2008, 56, 3409–3416. [Google Scholar] [CrossRef]
- Nardin, T.; Piasentier, E.; Barnaba, C.; Larcher, R. Targeted and Untargeted Profiling of Alkaloids in Herbal Extracts Using Online Solid-Phase Extraction and High-Resolution Mass Spectrometry (Q-Orbitrap). J. Mass Spectrom. 2016, 51, 729–741. [Google Scholar] [CrossRef]



| Compound | Retention Time (min) | |
|---|---|---|
| DVB | PEP | |
| 4-(N-nitrosomethylamino)-1-(3-pyridyl)-1-butanone | 0.39 | 0.41 |
| N-nitrosomorpholine | 0.39 | 0.4 |
| N-nitrosonornicotine | 0.4 | 0.41 |
| N-nitrosodimethylamine | 0.4 | 0.41 |
| N-nitrosopyrrolidine | 0.4 | 0.4 |
| N-nitroso-N-methylethylamine | 0.43 | 0.43 |
| N-nitrosodiethylamine | 0.45 | 0.45 |
| N-nitrosopiperidine | 0.47 | 0.46 |
| N-nitrosodi-n-propylamine | 0.54 | 0.55 |
| N-nitrosodi-n-butylamine | 0.66 | 0.62 |
| 3-nitrosothiazolidine-4-carboxylic acid | 1.34 | 1.76 |
| N-nitrosodiphenylamine | 2.02 | 0.73 |
| N-nitroso-L-proline | 2.14 | 0.75 |
| Retention Time (min) | K′ | Asymmetry (EP) | Plates (EP) | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Poroshell 120 | APP | Hypersil G | PA2 | Poroshell 120 | APP | Hypersil G | PA2 | Poroshell 120 | APP | Hypersil G | PA2 | Poroshell 120 | APP | Hypersil G | PA2 | |
| 4-(N-nitrosomethylamino)-1-(3-pyridyl)-1-butanone | 6.6 | 10.7 | 8.4 | 10.2 | 64.8 | 106.3 | 83.3 | 101 | 1.0 | 0.7 | n.a. | 0.7 | 440 | 2133 | 2388 | 2530 |
| N-nitrosonornicotine | 1.6 | 3.2 | 2.3 | 2.4 | 14.5 | 31.4 | 21.5 | 23.4 | 0.9 | 1.0 | 1.1 | 0.7 | 99 | 259 | 153 | 227 |
| N-nitrososarcosine | 16.4 | 19.5 | 18.8 | 1.8 | 163 | 194 | 187 | 16.9 | 0.9 | 0.7 | 0.7 | 0.7 | 11,803 | 39,086 | 6135 | 556 |
| N-nitroso-L-proline | 16.6 | 19.5 | n.a. | 2.0 | 165 | 194 | n.a. | 19.3 | 1.0 | 1.0 | n.a. | 1.0 | 34,235 | 319,561 | n.a. | 6602 |
| N-nitrosodimethylamine | 1.3 | 3.1 | 1.9 | 2.5 | 11.8 | 30.5 | 17.6 | 23.7 | 2.1 | 1.4 | 1.5 | 1.3 | 93 | 506 | 155 | 307 |
| 3-nitrosothiazolidine-4-carboxylic acid | 19.2 | 0.5 | 23.4 | 2.2 | 191 | 4 | 233 | 20.9 | 0.6 | 1.4 | 0.8 | 2.5 | 11,523 | 51 | 99,594 | 1275 |
| N-nitrosomorpholine | 1.6 | 3.8 | 2.3 | 3.1 | 14.9 | 36.8 | 22.2 | 29.8 | 1.9 | 1.3 | 1.2 | 1.4 | 136 | 257 | 80 | 176 |
| N-nitroso-2-methylthiazolidine-4-carboxylic acid | 1.1 | 2.9 | 1.6 | 2.1 | 10.2 | 27.5 | 15.1 | 20.5 | 1.2 | 0.8 | 1.2 | 0.8 | 110 | 1111 | 451 | 569 |
| N-nitroso-N-methylethylamine | 2.0 | 4.5 | 2.8 | 3.7 | 18.8 | 44.2 | 27.5 | 35.6 | 1.9 | 1.1 | 1.0 | 1.2 | 159 | 345 | 125 | 251 |
| N-nitrosopyrrolidine | 16.6 | 4.4 | 2.9 | 3.7 | 165 | 43.1 | 27.6 | 35.7 | 0.6 | 1.8 | 1.6 | 2.4 | 1864 | 285 | 108 | 215 |
| N-nitrosodiethylamine | 4.1 | 8.5 | 5.7 | 6.9 | 39.8 | 83.8 | 55.9 | 67.9 | 1.5 | 0.9 | 0.9 | 0.9 | 456 | 637 | 234 | 469 |
| N-nitrosopiperidine | 5.2 | 10.5 | 7.1 | 8.6 | 50.7 | 104 | 69.8 | 85.0 | 2.2 | 1.2 | 1.1 | 1.3 | 420 | 854 | 348 | 600 |
| N-nitrosodi-n-propylamine | 10.4 | 14.1 | 12.6 | 13.4 | 103 | 140 | 125 | 133 | 1.3 | 1.7 | 1.7 | 1.7 | 8806 | 21,756 | 15,996 | 20,242 |
| N-nitrosodi-n-butylamine | 11.5 | 15.2 | 13.7 | 14.5 | 114 | 151 | 136 | 144 | 1.4 | 1.5 | 1.7 | 1.6 | 11,631 | 36,539 | 27,226 | 33,737 |
| N-nitrosodiphenylamine | 11.6 | 15.4 | 13.9 | 14.7 | 115 | 153 | 138 | 146 | 1.2 | 1.3 | 1.4 | 1.3 | 13,317 | 45,797 | 32,130 | 41,320 |
| Compound | RT (min) | [M+H]+ (m/z) | Fragments (m/z) | LOD (µg/kg) | R2 (LOD-50 µg/L) | Recovery (%; 10 µg/L) | RSD (%; N = 2) | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| APCI | HESI | APCI | HESI | APCI | HESI | APCI | HESI | ||||
| N-nitrosodimethylamine | 4.3 | 75.0553 | n.d. | 1.0 | 1.5 | 0.998 | 0.989 | 37 | n.d. | 9 | n.d. |
| N-nitrososarcosine | 4.7 | 119.0451 | 92.050 | 1.0 | 25 | 0.999 | 0.999 | 45 | 40 | 9 | 10 |
| N-nitrosonornicotine | 4.9 | 178.0975 | 120.068 | 2.0 | 0.5 | 0.999 | 0.996 | 87 | 62 | 13 | 14 |
| N-nitrosomorpholine | 5.3 | 117.0659 | 87.068 | 2.0 | 0.2 | 0.998 | 0.994 | 10 | 75 | 19 | 5 |
| N-nitroso-L-proline | 5.3 | 145.0608 | 121.966 | 0.5 | 5.0 | 0.998 | 0.996 | 31 | n.d. | 6 | n.d. |
| N-nitroso-N-methylethylamine | 5.5 | 89.0709 | 61.040 | 0.1 | 2.0 | 0.992 | 0.990 | 48 | 50 | 2 | 2 |
| N-nitrosopyrrolidine | 5.5 | 101.0709 | 55.055 | 0.1 | 0.3 | 0.996 | 0.999 | 36 | 49 | 10 | 13 |
| N-nitrosodiethylamine | 7.4 | 103.0866 | 75.056 | 0.1 | 5.0 | 0.999 | 0.999 | 31 | 13 | 4 | 13 |
| 4-(N-nitrosomethylamino)-1-(3-pyridyl)-1-butanone | 7.5 | 208.1081 | 122.060 | 3.0 | 0.5 | 0.985 | 0.989 | 85 | 15 | 8 | 12 |
| N-nitrosopiperidine | 8.0 | 115.0866 | 69.070 | 0.2 | 2.0 | 0.989 | 0.999 | 27 | 37 | 15 | 7 |
| N-nitrosodi-n-propylamine | 10.6 | 131.1179 | 89.071 | 0.5 | 1.0 | 0.998 | 0.999 | 37 | 26 | 10 | 11 |
| N-nitrosodi-n-butylamine | 12.7 | 159.1492 | 103.087 | 1.0 | 3.0 | 0.997 | 0.997 | 35 | 9 | 1 | 10 |
| N-nitrosodiphenylamine | 13.4 | 199.0866 | 169.088 | n.d. | 0.5 | n.d. | 0.995 | n.d. | 35 | n.d. | 4 |
| 3-nitrosothiazolidine-4-carboxylic acid | 6.6 | 161.0026 | 71.025 | 1.0 | 5.0 | 0.999 | 0.999 | 31 | 38 | 3 | 3 |
| N-nitroso-2-methylthiazolidine-4-carboxylic acid | 8.0 | 175.0183 | 71.025 | 1.0 | 5.0 | 0.997 | 0.995 | 155 | 25 | 4 | 10 |
| N-Nitrosodiethylamine | N-Nitrosodimethylamine | N-Nitrosodi-n-Butylamine | N-Nitrosodi-n-Propylamine | N-Nitrosopiperidine | N-Nitrosopyrrolidine | N-Nitrosomorpholine | SUM | ||
|---|---|---|---|---|---|---|---|---|---|
| RAW MEAT | Not Treated | 3.0 | 3.0 | ||||||
| Not Treated | 2.0 | 2.0 | |||||||
| Pr. + ASC | 2.0 | 2.8 | 4.8 | ||||||
| Pr. + ASC | 2.0 | 3.9 | 5.9 | ||||||
| Pr. + NO2 + NO3 | 6.9 | 6.9 | |||||||
| Pr. + NO2 + NO3 | 5.0 | 5.0 | |||||||
| Pr. + ASC + NO2 | 6.0 | 1.2 | 7.2 | ||||||
| Pr. + ASC + NO2 | 23 | 32 | 6.4 | 62 | |||||
| DIGESTED RAW MEAT | Not Treated | ||||||||
| Not Treated | |||||||||
| Pr. + ASC | 0.6 | 0.6 | |||||||
| Pr. + ASC | 1.3 | 1.3 | |||||||
| Pr. + NO2 + NO3 | 1.0 | 8.1 | 4.0 | 13 | |||||
| Pr. + NO2 + NO3 | 4.1 | 2.0 | 6.1 | ||||||
| Pr. + ASC + NO2 | 1.3 | 14 | 1.7 | 31 | 0.3 | 48 | |||
| Pr. + ASC + NO2 | 0.6 | 12 | 1.7 | 55 | 1.4 | 70 | |||
| COOKED | Not Treated | ||||||||
| Not Treated | |||||||||
| Pr. + ASC | |||||||||
| Pr. + ASC | |||||||||
| Pr. + NO2 + NO3 | 2.0 | 1.2 | 3.2 | ||||||
| Pr. + NO2 + NO3 | 1.0 | 0.5 | 1.5 | ||||||
| Pr. + ASC + NO2 | 4.1 | 12 | 4.1 | 10 | 0.8 | 31 | |||
| Pr. + ASC + NO2 | 18 | 14 | 1.4 | 33 | |||||
| COOKED AND DIGESTED | Not Treated | ||||||||
| Not Treated | |||||||||
| Pr. + ASC | 1.0 | 0.6 | 1.5 | ||||||
| Pr. + ASC | 2.0 | 2.0 | |||||||
| Pr. + NO2 + NO3 | |||||||||
| Pr. + NO2 + NO3 | |||||||||
| Pr. + ASC + NO2 | 0.6 | 7.0 | 2.9 | 56 | 9.6 | 76 | |||
| Pr. + ASC + NO2 | 0.7 | 2.9 | 5.0 | 2.3 | 33 | 1.7 | 46 | ||
| COOKED AND DIGESTED WITH SPINACH | Not Treated | 1.0 | 1.0 | ||||||
| Not Treated | 1.1 | 1.0 | |||||||
| Pr. + ASC | 8.7 | 8.7 | |||||||
| Pr. + ASC | 6.4 | 6.4 | |||||||
| Pr. + NO2 + NO3 | 0.6 | 0.6 | |||||||
| Pr. + NO2 + NO3 | |||||||||
| Pr. + ASC + NO2 | 1.0 | 4.0 | 8.1 | 4.4 | 17 | ||||
| Pr. + ASC + NO2 | 0.6 | 2.0 | 2.3 | 2.2 | 7.2 |
| Compound | Molecular Formula | IARC Classification | Supplier * |
|---|---|---|---|
| Volatile Nitrosamines | |||
| N-nitrosodimethylamine (NDMA) | C2H6N2O | 2A | a |
| N-nitroso-N-methylethylamine (NMEA) | C3H8N2O | 2B | a |
| N-nitrosopyrrolidine (NPYR) | C4H8N2O | 2B | a |
| N-nitrosopiperidine (NPIP) | C5H10N2O | 2B | a |
| N-nitrosomorpholine (NMOR) | C4H8N2O2 | 2B | a |
| N-nitrosodi-n-propylamine (NDPA) | C6H14N2O | 2B | a |
| N-nitrosodi-n-butylamine (NDBA) | C8H18N2O | 2B | a |
| N-nitrosodiphenylamine (NDPhA) | C12H10N2O | 3 | a |
| N-nitrosodiethylamine (NDEA) | C4H10N2O | 2A | a |
| N-nitrosonornicotine (NNN) | C9H11N3O | 1 | a |
| 4-(N-nitrosomethylamino)-1-(3-pyridyl) -1-butanone (NNK) | C10H13N3O2 | 1 | a |
| Non-Volatile Nitrosamines | |||
| N-nitrososarcosine (NSAR) | C3H6N2O3 | 2B | b |
| N-nitroso-L-proline (NPRO) | C5H8N2O3 | 3 | b |
| N-nitrosothiazolidine-4-carboxylic acid (NTCA) | C4H6N2O3S | - | b |
| N-nitroso-2-methylthiazolidine 4-carboxylic acid (NMTCA) | C5H8N2O3S | - | b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nardin, T.; Franceschini, J.; Martinelli, F.; Franciosi, E.; Larcher, R. Comprehensive Assessment of Nitrosamine Formation in Meat Products Using UHPLC-HRMS: Analytical Challenges and Potential Dietary Implications. Molecules 2025, 30, 4107. https://doi.org/10.3390/molecules30204107
Nardin T, Franceschini J, Martinelli F, Franciosi E, Larcher R. Comprehensive Assessment of Nitrosamine Formation in Meat Products Using UHPLC-HRMS: Analytical Challenges and Potential Dietary Implications. Molecules. 2025; 30(20):4107. https://doi.org/10.3390/molecules30204107
Chicago/Turabian StyleNardin, Tiziana, Jakob Franceschini, Francesca Martinelli, Elena Franciosi, and Roberto Larcher. 2025. "Comprehensive Assessment of Nitrosamine Formation in Meat Products Using UHPLC-HRMS: Analytical Challenges and Potential Dietary Implications" Molecules 30, no. 20: 4107. https://doi.org/10.3390/molecules30204107
APA StyleNardin, T., Franceschini, J., Martinelli, F., Franciosi, E., & Larcher, R. (2025). Comprehensive Assessment of Nitrosamine Formation in Meat Products Using UHPLC-HRMS: Analytical Challenges and Potential Dietary Implications. Molecules, 30(20), 4107. https://doi.org/10.3390/molecules30204107

