Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,443)

Search Parameters:
Keywords = nitrate nitrogen (NO3-N)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5123 KiB  
Article
Tailored Effects of Plasma-Activated Water on Hair Structure Through Comparative Analysis of Nitrate-Rich and Peroxide-Rich Formulations Across Different Hair Types
by Antonia de Souza Leal, Michaela Shiotani Marcondes, Ariane Leite, Douglas Leite, Clodomiro Alves Junior, Laurita dos Santos and Rodrigo Pessoa
Appl. Sci. 2025, 15(15), 8573; https://doi.org/10.3390/app15158573 (registering DOI) - 1 Aug 2025
Viewed by 228
Abstract
Plasma-activated water (PAW), enriched with reactive oxygen and nitrogen species (RONS), presents oxidative and antimicrobial characteristics with potential in cosmetic applications. This study examined the effects of two PAW formulations—nitrate-rich (PAW-N) and peroxide-rich (PAW-P)—on human hair types classified as straight (Type 1), wavy [...] Read more.
Plasma-activated water (PAW), enriched with reactive oxygen and nitrogen species (RONS), presents oxidative and antimicrobial characteristics with potential in cosmetic applications. This study examined the effects of two PAW formulations—nitrate-rich (PAW-N) and peroxide-rich (PAW-P)—on human hair types classified as straight (Type 1), wavy (Type 2), and coily/kinky (Type 4). The impact of PAW on hair structure and chemistry was evaluated using Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), UV–Vis spectrophotometry, and physicochemical analyses of the liquids (pH, ORP, conductivity, and TDS). PAW-N, with high nitrate content (~500 mg/L), low pH (2.15), and elevated conductivity (6244 µS/cm), induced significant damage to porous hair types, including disulfide bond cleavage, protein oxidation, and lipid degradation, as indicated by FTIR and EDS data. SEM confirmed severe cuticle disruption. In contrast, PAW-P, containing >25 mg/L of hydrogen peroxide and exhibiting milder acidity and lower ionic strength, caused more localized and controlled oxidation with minimal morphological damage. Straight hair showed greater resistance to both treatments, while coily and wavy hair were more susceptible, particularly to PAW-N. These findings suggest that the formulation and ionic profile of PAW should be matched to hair porosity for safe oxidative treatments, supporting the use of PAW-P as a gentler alternative in hair care technologies. Full article
Show Figures

Figure 1

21 pages, 4076 KiB  
Article
Tissue Paper-Based Hydrogels for Soil Water Maintenance and Nitrogen Release
by Ana Carla Kuneski, Hima Haridevan, Elena Ninkovic, Ena McLeary, Darren Martin and Gunnar Kirchhof
Gels 2025, 11(8), 599; https://doi.org/10.3390/gels11080599 - 1 Aug 2025
Viewed by 199
Abstract
Hydrogels are widely known for their ability to increase soil water retention and for their potential slow nutrient release mechanism. They have been constantly improved to meet the growing demand for sustainability in agriculture. Research focused on the development of biodegradable hydrogels, produced [...] Read more.
Hydrogels are widely known for their ability to increase soil water retention and for their potential slow nutrient release mechanism. They have been constantly improved to meet the growing demand for sustainability in agriculture. Research focused on the development of biodegradable hydrogels, produced from industrial cellulose waste, are an ecological and efficient alternative soil ameliorant for the improvement of agricultural land. The objective of this study was to evaluate the impacts of two types of hydrogel (processed in a glass reactor versus a twin-screw extruder) on soils with different textures (clay and sandy loam), testing their water retention capacity, nitrogen leaching, and effects on seed germination. The methodology included the evaluation of water retention capacity at different pressures with different hydrogel addition rates in the soil, leaching tests in columns filled with soil and hydrogel layers, and germination tests of sorghum and corn. The results indicated that the addition of hydrogel significantly improved water retention, especially in sandy loam soils. The hydrogels also reduced nitrogen leaching, acting as nitrification inhibitors and limiting the conversion of ammonium to nitrate, with greater effectiveness in clayey soils. In the tested formulations, it was observed that the hydrogel doses applied to the columns favored nitrogen retention in the region close to the roots, directly influencing the initial stages of germination. This behavior highlights the potential of hydrogels as tools for directing nutrients in the soil profile, indicating that adjustments to the C:N ratio, nutrient release rate, and applied doses can optimize their application for different crops. Full article
Show Figures

Figure 1

19 pages, 3489 KiB  
Article
Impact of Nitrogen Fertilisation and Inoculation on Soybean Nodulation, Nitrogen Status, and Yield in a Central European Climate
by Waldemar Helios, Magdalena Serafin-Andrzejewska, Marcin Kozak and Sylwia Lewandowska
Agriculture 2025, 15(15), 1654; https://doi.org/10.3390/agriculture15151654 - 1 Aug 2025
Viewed by 215
Abstract
Soybean (Glycine max [L.] Merr.) cultivation is expanding in Central Europe due to the development of early-maturing cultivars and growing demand for plant-based protein produced without the use of genetically modified organisms. However, nitrogen (N) management remains a major challenge in temperate [...] Read more.
Soybean (Glycine max [L.] Merr.) cultivation is expanding in Central Europe due to the development of early-maturing cultivars and growing demand for plant-based protein produced without the use of genetically modified organisms. However, nitrogen (N) management remains a major challenge in temperate climates, where variable weather conditions can significantly affect nodulation and yield. This study evaluated the effects of three nitrogen fertilisation doses (0, 30, and 60 kg N·ha−1), applied in the form of ammonium nitrate (34% N) and two commercial rhizobial inoculants—HiStick Soy (containing Bradyrhizobium japonicum strain 532C) and Nitragina (including a Polish strain of B. japonicum)—on nodulation, nitrogen uptake, and seed yield. A three-year field experiment (2017–2019) was conducted in southwestern Poland using a two-factor randomized complete block design. Nodulation varied significantly across years, with the highest values recorded under favourable early-season moisture and reduced during drought. In the first year, inoculation with HiStick Soy significantly increased nodule number and seed yield compared to Nitragina and the uninoculated control. Nitrogen fertilisation consistently improved seed yield, although it had no significant effect on nodulation. The highest nitrogen use efficiency was observed with moderate nitrogen input (30 kg N·ha−1) combined with inoculation. These findings highlight the importance of integrating effective rhizobial inoculants with optimized nitrogen fertilisation to improve soybean productivity and nitrogen efficiency under variable temperate climate conditions. Full article
(This article belongs to the Special Issue Strategies to Enhance Nutrient Use Efficiency and Crop Nutrition)
Show Figures

Figure 1

17 pages, 7928 KiB  
Article
Light–Nutrient Optimization Enhances Cherry Tomato Yield and Quality in Greenhouses
by Jianglong Li, Zhenbin Xie, Tiejun Zhao, Hongjun Li, Riyuan Chen, Shiwei Song and Yiting Zhang
Horticulturae 2025, 11(8), 874; https://doi.org/10.3390/horticulturae11080874 - 25 Jul 2025
Viewed by 387
Abstract
To ensure the year-round efficient production of high-quality cherry tomatoes, this study evaluated how four cherry tomato cultivars can enhance yield and quality through optimized nutrient solution and supplementary lighting. Nutrient solutions (N1 and N2) were adjusted, with EC at 1.6 dS/m (N1: [...] Read more.
To ensure the year-round efficient production of high-quality cherry tomatoes, this study evaluated how four cherry tomato cultivars can enhance yield and quality through optimized nutrient solution and supplementary lighting. Nutrient solutions (N1 and N2) were adjusted, with EC at 1.6 dS/m (N1: nitrogen 10.7 me/L, phosphorus 2.7 me/L, potassium 5.3 me/L) during flowering stage, and 2.4 dS/m (N1: nitrogen 16 me/L, phosphorus 4 me/L, potassium 8 me/L; N2: nitrogen 10.7 me/L, phosphorus 5.4 me/L, potassium 10.8 me/L) from fruit setting to harvest. N1 used standard adjustments, while N2 was optimized by adding solely with KCl and KH2PO4. Lighting treatments included L1 (natural light) and L2 (supplemental red/blue light). The application of N2 effectively decreased nitrate levels while it significantly enhanced the content of soluble sugars, flavor, and overall palatability, especially fruit coloring in cherry tomatoes, irrespective of supplementary lighting conditions. However, such optimization also increased sourness or altered the sugar–acid ratio. Supplementary lighting generally promoted the accumulation of soluble sugars, sweetness, and tomato flavor, although its effects varied markedly among different fruit clusters. The combination of optimized nutrient solutions and supplementary lighting exhibited synergistic effects, improving the content of soluble sugars, vitamin C, proteins, and flavor. N1 combined with L2 achieved the highest plant yield. Among the cultivars, ‘Linglong’ showed the greatest overall quality improvement, followed by ‘Baiyu’, ‘Miying’, and ‘Moka’. In conclusion, supplementary lighting can enhance the effect of nitrogen on yield and amplify the influence of phosphorus and potassium on fruit quality improvement in cherry tomatoes. The findings of this study may serve as a theoretical basis for the development of year-round production techniques for high-quality cherry tomatoes. Full article
Show Figures

Figure 1

21 pages, 1980 KiB  
Article
Organic Manure with Chemical Fertilizers Improves Rice Productivity and Decreases N2O Emissions by Increasing Soil Nitrogen Sequestration
by Yiren Liu, Jingshang Xiao, Xianjin Lan, Jianhua Ji, Hongqian Hou, Liumeng Chen and Zhenzhen Lv
Agronomy 2025, 15(8), 1783; https://doi.org/10.3390/agronomy15081783 - 24 Jul 2025
Viewed by 233
Abstract
Soil organic nitrogen (SON) positively influences crop productivity, greenhouse gas (GHG) emissions, and sustained nitrogen (N) supply. Herein, we observed the effect of different treatments; no fertilizers (CK), chemical fertilizers (nitrogen, phosphorus, and potassium (NPK)), organic manure, and NPK + OM (NPKOM). This [...] Read more.
Soil organic nitrogen (SON) positively influences crop productivity, greenhouse gas (GHG) emissions, and sustained nitrogen (N) supply. Herein, we observed the effect of different treatments; no fertilizers (CK), chemical fertilizers (nitrogen, phosphorus, and potassium (NPK)), organic manure, and NPK + OM (NPKOM). This study was performed in a randomized complete block design (RCBD) with three replications. The results indicated that NPKOM treatment significantly decreased the nitrous oxide (N2O) emissions by 19.97% and 17.47% compared to NPK in both years. This was linked with improved soil nutrient availability, soil organic carbon, soil organic nitrogen (SON) storage (10.06% and 12.38%), SON sequestration (150% and 140%), increased soil particulate (44.11% and 44%), and mineral-associated organic N (26.98% and 26.47%) availability. Furthermore, NPKOM also enhanced nitrate reductase (NR: 130% and 112%), glutamine synthetase (GS: 93% and 88%), sucrose phosphate synthase (SPS: 79% and 98%), SSs (synthetic direction; 57% and 50%), and decreased SSs activity in the decomposition direction (18% and 21%). This, in turn, inhibited the decomposition of sucrase and enhanced starch conversion into carbohydrates, thus leading to an increase in rice yield and a decrease in N2O emissions. All fertilizations, particularly NPKOM, significantly enhanced grain protein contents by increasing N uptake and its availability. Therefore, NPKOM is an effective practice to enhance rice productivity, and SON sequestration and mitigate the N2O emissions and subsequent climate change. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

15 pages, 2997 KiB  
Article
Volcanic Ash–Alkaline (Soda) Lake Water Interactions: Biogeochemical Effects in Lake Van as a Model System
by Nazlı Olgun
Water 2025, 17(15), 2171; https://doi.org/10.3390/w17152171 - 22 Jul 2025
Viewed by 494
Abstract
Volcanic ash from explosive eruptions can significantly alter lake water chemistry through ash–water interactions, potentially influencing primary productivity. Alkaline (soda) lakes, mostly found in volcanic regions, are particularly sensitive due to their unique geochemical properties. However, the effects of volcanic ash on the [...] Read more.
Volcanic ash from explosive eruptions can significantly alter lake water chemistry through ash–water interactions, potentially influencing primary productivity. Alkaline (soda) lakes, mostly found in volcanic regions, are particularly sensitive due to their unique geochemical properties. However, the effects of volcanic ash on the biogeochemistry and phytoplankton dynamics of soda lakes remain poorly understood. This study presents the first nutrient release experiments using natural alkaline water from Lake Van (Türkiye) and volcanic ash from four volcanoes (Hekla, Arenal, Sakurajima, Rabaul-Tavurvur) with different compositions. Sixteen abiotic leaching experiments were conducted over contact durations ranging from 1 to 24 h. Results show rapid increases in pH (~0.4–0.5 units), enhanced silica and phosphate concentrations, and elevated levels of Na, K, Ca, Sr, and S. Nitrate and Mg were generally depleted. The low N:P ratio (~0.06) in Lake Van water indicated nitrogen limitation, partially mitigated by ash-derived inputs. Cyanobacteria dominated the phytoplankton community (95%), consistent with nitrogen fixation under low-nitrate conditions. Elevated silica may promote diatom growth, while changes in Mg/Ca ratios suggest possible impacts on carbonate precipitation and microbialite development. These findings highlight the biogeochemical and ecological relevance of volcanic ash inputs to soda lakes. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

19 pages, 1578 KiB  
Article
Decreased Nitrogen and Carbohydrate Metabolism Activity Leads to Grain Yield Reduction in Qingke Under Continuous Cropping
by Zhiqi Ma, Chaochao He, Jianxin Tan, Tao Jin and Shuijin Hua
Plants 2025, 14(14), 2235; https://doi.org/10.3390/plants14142235 - 19 Jul 2025
Viewed by 254
Abstract
Qingke (Hordeum vulgare L. var. nudum Hook. f.), a staple crop in the Tibetan Plateau, suffers from severe yield reduction under continuous cropping (by 38.67%), yet the underlying mechanisms remain unclear. This study systematically investigated the effects of 23-year continuous cropping (23y-CC) [...] Read more.
Qingke (Hordeum vulgare L. var. nudum Hook. f.), a staple crop in the Tibetan Plateau, suffers from severe yield reduction under continuous cropping (by 38.67%), yet the underlying mechanisms remain unclear. This study systematically investigated the effects of 23-year continuous cropping (23y-CC) on the nutrient dynamics, carbohydrate metabolism, and enzymatic activities in Qingke leaves across five developmental stages (T1: seedling; T2: tillering; T3: jointing; T4: flowering; T5: filling). Compared to the control (first-year planting), 23y-CC significantly reduced leaf nitrogen (N), phosphorus (P), and potassium (K) contents by 60.94%, 47.96%, and 60.82%, respectively, at early growth stages. Key nitrogen-metabolizing enzymes, including glutamate synthase (GOGAT), glutamine synthase (GS), and nitrate reductase (NR), exhibited reduced activities under 23y-CC, indicating impaired nitrogen assimilation. Carbohydrate profiling revealed lower starch and glucose contents but higher sucrose accumulation in later stages (T4–T5) under 23y-CC, accompanied by the dysregulation of sucrose synthase (SS) and invertase activities. These findings elucidate how continuous cropping disrupts nutrient homeostasis and carbon allocation, ultimately compromising Qingke productivity. This study provides novel insights into agronomic strategies for mitigating continuous cropping obstacles in Qingke. Full article
(This article belongs to the Special Issue Influence of Management Practices on Plant Growth)
Show Figures

Figure 1

20 pages, 3002 KiB  
Review
Nitrate–Nitrite Interplay in the Nitrogen Biocycle
by Biplab K. Maiti, Isabel Moura and José J. G. Moura
Molecules 2025, 30(14), 3023; https://doi.org/10.3390/molecules30143023 - 18 Jul 2025
Viewed by 285
Abstract
The nitrogen cycle (N-cycle) is a cornerstone of global biogeochemistry, regulating nitrogen availability and affecting atmospheric chemistry, agricultural productivity, and ecological balance. Central to this cycle is the reversible interplay between nitrate (NO3) and nitrite (NO2), mediated [...] Read more.
The nitrogen cycle (N-cycle) is a cornerstone of global biogeochemistry, regulating nitrogen availability and affecting atmospheric chemistry, agricultural productivity, and ecological balance. Central to this cycle is the reversible interplay between nitrate (NO3) and nitrite (NO2), mediated by molybdenum-dependent enzymes—Nitrate reductases (NARs) and Nitrite oxidoreductases (NXRs). Despite catalyzing opposite reactions, these enzymes exhibit remarkable structural and mechanistic similarities. This review aims to elucidate the molecular underpinnings of nitrate reduction and nitrite oxidation by dissecting their enzymatic architectures, redox mechanisms, and evolutionary relationships. By focusing on recent structural, spectroscopic, and thermodynamic data, we explore how these two enzyme families represent “two sides of the same coin” in microbial nitrogen metabolism. Special emphasis is placed on the role of oxygen atom transfer (OAT) as a unifying mechanistic principle, the influence of environmental redox conditions, and the emerging evidence of bidirectional catalytic potential. Understanding this dynamic enzymatic interconversion provides insight into the flexibility and resilience of nitrogen-transforming pathways, with implications for environmental management, biotechnology, and synthetic biology. Full article
Show Figures

Figure 1

16 pages, 2268 KiB  
Article
Epichloë Endophyte Alters Bacterial Nitrogen-Cycling Gene Abundance in the Rhizosphere Soil of Perennial Ryegrass
by Munire Maimaitiyiming, Yanxiang Huang, Letian Jia, Mofan Wu and Zhenjiang Chen
Biology 2025, 14(7), 879; https://doi.org/10.3390/biology14070879 - 18 Jul 2025
Viewed by 262
Abstract
Perennial ryegrass (Lolium perenne), an important forage and turfgrass species, can establish a mutualistic symbiosis with the fungal endophyte Epichloë festucae var. lolii. Although the physiological and ecological impacts of endophyte infection on ryegrass have been extensively investigated, the response of [...] Read more.
Perennial ryegrass (Lolium perenne), an important forage and turfgrass species, can establish a mutualistic symbiosis with the fungal endophyte Epichloë festucae var. lolii. Although the physiological and ecological impacts of endophyte infection on ryegrass have been extensively investigated, the response of the soil microbial community and nitrogen-cycling gene to this relationship has received much less attention. The present study emphasized abundance and diversity variation in the AOB-amoA, nirK and nosZ functional genes in the rhizosphere soil of the endophyte–ryegrass symbiosis following litter addition. We sampled four times: at T0 (prior to first litter addition), T1 (post 120 d of 1st litter addition), T2 (post 120 d of 2nd litter addition) and T3 (post 120 d of 3rd litter addition) times. Real-time fluorescence quantitative PCR (qPCR) and PCR amplification and sequencing were used to characterize the abundance and diversity of the AOB-amoA, nirK and nosZ genes in rhizosphere soils of endophyte-infected (E+) plants and endophyte-free (E−) plants. A significant enhancement of total Phosphorus (P), Soil Organic Carbon (SOC), Ammonium ion (NH4+) and Nitrate ion (NO3) contents in the rhizosphere soil was recorded in endophyte-infected plants at different sampling times compared to endophyte-free plants (p ≤ 0.05). The absolute abundance of the AOB-amoA gene at T0 and T1 times was higher, as was the absolute abundance of the nosZ gene at T0, T1 and T3 times in the E+ plant rhizophere soils relative to E− plant rhizosphere soils. A significant change in relative abundance of the AOB-amoA and nosZ genes in the host rhizophere soils of endophyte-infected plants at T1 and T3 times was observed. The experiment failed to show any significant alteration in abundance and diversity of the nirK gene, and diversity of the AOB-amoA and nosZ genes. Analysis of the abundance and diversity of the nirK gene indicated that changes in soil properties accounted for approximately 70.38% of the variation along the first axis and 16.69% along the second axis, and soil NH4+ (p = 0.002, 50.4%) and soil C/P ratio (p = 0.012, 15.8%) had a strong effect. The changes in community abundance and diversity of the AOB-amoA and nosZ genes were mainly related to soil pH, N/P ratio and NH4+ content. The results demonstrate that the existence of tripartite interactions among the foliar endophyte E. festucae var. Lolii, L. perenne and soil nitrogen-cycling gene has important implications for reducing soil losses on N. Full article
(This article belongs to the Collection Plant Growth-Promoting Bacteria: Mechanisms and Applications)
Show Figures

Figure 1

19 pages, 3309 KiB  
Article
Harnessing Microbial Agents to Improve Soil Health and Rice Yield Under Straw Return in Rice–Wheat Agroecosystems
by Yangming Ma, Yanfang Wen, Ruhongji Liu, Zhenglan Peng, Guanzhou Luo, Cheng Wang, Zhonglin Wang, Zhiyuan Yang, Zongkui Chen, Jun Ma and Yongjian Sun
Agriculture 2025, 15(14), 1538; https://doi.org/10.3390/agriculture15141538 - 17 Jul 2025
Viewed by 317
Abstract
We clarified the effect of wheat straw return combined with microbial agents on rice yield and soil properties. A field experiment was conducted using hybrid indica rice ‘Chuankangyou 2115’ and five treatments: no wheat straw return (T1), wheat straw [...] Read more.
We clarified the effect of wheat straw return combined with microbial agents on rice yield and soil properties. A field experiment was conducted using hybrid indica rice ‘Chuankangyou 2115’ and five treatments: no wheat straw return (T1), wheat straw return alone (T2), T2+ microbial agent application (Bacillus subtilis/Trichoderma harzianum = 1:1) (T3); T2+ microbial agent application (Bacillus subtilis/Trichoderma harzianum = 3:1) (T4); T2+ microbial agent application (Bacillus subtilis/Trichoderma harzianum = 1:3) (T5). T2–T5 significantly increased dry matter accumulation, soil total N, ammonium N, nitrate N, and organic matter, improving yield by 3.81–26.63%. T3 exhibited the highest yield increases in two consecutive years. At the jointing and heading stages, Penicillium and Saitozyma dominated under T3 and positively correlated with dry matter, yield, and nitrogen levels. Straw return combined with Bacillus subtilis and Trichoderma harzianum (20 g m−2 each) enhanced soil nitrogen availability and dry matter accumulation and translocation. Our findings guide efficient straw utilization, soil microbial regulation, and sustainable high-yield rice production. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Graphical abstract

20 pages, 5507 KiB  
Article
Variable-Rate Nitrogen Application in Wheat Based on UAV-Derived Fertilizer Maps and Precision Agriculture Technologies
by Alexandros Tsitouras, Christos Noulas, Vasilios Liakos, Stamatis Stamatiadis, Miltiadis Tziouvalekas, Ruijun Qin and Eleftherios Evangelou
Agronomy 2025, 15(7), 1714; https://doi.org/10.3390/agronomy15071714 - 16 Jul 2025
Viewed by 1201
Abstract
Variable-rate nitrogen (VR-N) application allows farmers to optimize nitrogen (N) input site-specifically within field boundaries, enhancing both economic efficiency and environmental sustainability. In this study, VR-N technology was applied to durum wheat in two small-scale commercial fields (3–4 ha each) located in distinct [...] Read more.
Variable-rate nitrogen (VR-N) application allows farmers to optimize nitrogen (N) input site-specifically within field boundaries, enhancing both economic efficiency and environmental sustainability. In this study, VR-N technology was applied to durum wheat in two small-scale commercial fields (3–4 ha each) located in distinct agro-climatic zones of Thessaly, central Greece. A real-time VR-N application algorithm was used to calculate N rates based on easily obtainable near-real-time data from unmanned aerial vehicle (UAV) imagery, tailored to the crop’s actual needs. VR-N implementation was carried out using conventional fertilizer spreaders equipped to read prescription maps. Results showed that VR-N reduced N input by up to 49.6% compared to the conventional uniform-rate N (UR-N) application, with no significant impact on wheat yield or grain quality. In one of the fields, the improved gain of VR-N when compared to UR-N was 7.2%, corresponding to an economic gain of EUR 163.8 ha−1, while in the second field—where growing conditions were less favorable—no considerable VR-N economic gain was observed. Environmental benefits were also notable. The carbon footprint (CF) of the wheat crop was reduced by 6.4% to 22.0%, and residual soil nitrate (NO3) levels at harvest were 13.6% to 36.1% lower in VR-N zones compared to UR-N zones. These findings suggest a decreased risk of NO3 leaching and ground water contamination. Overall, the study supports the viability of VR-N as a practical and scalable approach to improve N use efficiency (NUE) and reduce the environmental impact of wheat cultivation which could be readily adopted by farmers. Full article
Show Figures

Figure 1

14 pages, 629 KiB  
Article
In Vitro Evaluation of Enhanced Efficiency Nitrogen Fertilizers Using Two Different Soils
by Samuel Okai, Xinhua Yin, Lori Allison Duncan, Daniel Yoder, Debasish Saha, Forbes Walker, Sydney Logwood, Jones Akuaku and Nutifafa Adotey
Soil Syst. 2025, 9(3), 80; https://doi.org/10.3390/soilsystems9030080 - 16 Jul 2025
Viewed by 240
Abstract
There are discrepancies regarding the effectiveness of enhanced efficiency nitrogen (N) fertilizer (EENF) products on ammonia loss from unincorporated, surface applications of urea-based fertilizers. Soil properties and management practices may account for the differences in the performance of EENF. However, few studies have [...] Read more.
There are discrepancies regarding the effectiveness of enhanced efficiency nitrogen (N) fertilizer (EENF) products on ammonia loss from unincorporated, surface applications of urea-based fertilizers. Soil properties and management practices may account for the differences in the performance of EENF. However, few studies have investigated the performance of urea- and urea ammonium nitrate (UAN)-based EENF on soils with contrasting properties. Controlled-environment incubation experiments were conducted on two soils with different properties to evaluate the efficacy of urea and UAN forms of EENF to minimize ammonia volatilization losses. The experiments were set up as a completely randomized design, with seven treatments replicated four times for 16 days. The N treatments, which were surface-applied at 134 kg N ha−1, included untreated urea, untreated UAN, urea+ANVOLTM (urease inhibitor product), UAN+ANVOLTM, environmentally smart nitrogen (ESN®), SUPERU® (urease and nitrification inhibitor product), and urea+Excelis® (urease and nitrification inhibitor product). In this study, urea was more susceptible to ammonia loss (24.12 and 26.49% of applied N) than UAN (5.24 and 16.17% of applied N), with lower ammonia volatility from soil with a pH of 5.8 when compared to 7.0. Urea-based EENF products performed better in soil with a pH of 5.8 compared to the soil with pH 7.0, except for ESN, which was not influenced by pH. In contrast, the UAN-based EENF was more effective in the high-pH soil (7.0). Across both soils, all EENFs reduced cumulative ammonia loss by 32–91% in urea and 27–70% in UAN, respectively, when compared to their untreated forms. The urea-based EENF formulations containing both nitrification and urease inhibitors were the least effective among the EENF types, performing particularly poorly in high-pH soil (pH 7.0). In conclusion, the efficacy of EENF is dependent on soil pH, N source, and the form of EENF. These findings underscore the importance of tailoring EENF applications to specific soil conditions and N sources to optimize N use efficiency (NUE), enhance economic returns for producers, and minimize environmental impacts. Full article
Show Figures

Figure 1

20 pages, 1779 KiB  
Article
Chloride as a Partial Nitrate Substitute in Hydroponics: Effects on Purslane Yield and Quality
by George P. Spyrou, Ioannis Karavidas, Theodora Ntanasi, Sofia Marka, Evangelos Giannothanasis, Gholamreza Gohari, Enrica Allevato, Leo Sabatino, Dimitrios Savvas and Georgia Ntatsi
Plants 2025, 14(14), 2160; https://doi.org/10.3390/plants14142160 - 13 Jul 2025
Viewed by 329
Abstract
This study examined the effects of both nitrogen (N) rate and form on the growth, nutrient uptake, and quality parameters of hydroponically grown purslane (Portulaca oleracea L.) during a spring cultivation cycle. Purslane was cultivated in a floating hydroponic system under either [...] Read more.
This study examined the effects of both nitrogen (N) rate and form on the growth, nutrient uptake, and quality parameters of hydroponically grown purslane (Portulaca oleracea L.) during a spring cultivation cycle. Purslane was cultivated in a floating hydroponic system under either adequate or limiting N conditions. More specifically, under adequate N conditions, plants were supplied with NS where ammonium nitrogen (NH4-N) accounted for either 7% (Nr7) or 14% (Nr14) of the total-N. The limiting N conditions were achieved through the application of either an NS where 30% of N inputs were compensated with Cl (N30), or an NS where 50% of N inputs were balanced by elevating Cl and S by 30% and 20%, respectively (N50). The results demonstrated that mild N stress enhanced the quality characteristics of purslane without significant yield losses. However, further and more severe N restrictions in the NS resulted in significant yield losses without improving product quality. The highest yield reduction (20%) occurred under high NH4-N supply (Nr14), compared to Nr7-treated plants, which was strongly associated with impaired N assimilation and reduced biomass production. Both N-limiting treatments (N30 and N50) effectively reduced nitrate accumulation in edible tissues by 10% compared to plants grown under adequate N supply (Nr7 and Nr14); however, nitrate levels remained relatively high across all treatments, even though the environmental conditions of the experiment favored nitrate reduction. All applied N regimes and compensation strategies improved the antioxidant and flavonoid content, with the highest antioxidant activity observed in plants grown under high NH4-N application, indirectly revealing the susceptibility of purslane to NH4-N-rich conditions. Overall, the form and rate of N supply significantly influenced both plant performance and biochemical quality. Partial replacement of N with Cl (N30) emerged as the most promising strategy, benefiting quality traits and effectively reducing nitrate content without significantly compromising yield. Full article
Show Figures

Figure 1

24 pages, 1509 KiB  
Systematic Review
Potential Risks Associated with the Growth of Nitrifying Bacteria in Drinking Water Distribution Lines and Storage Tanks: A Systematic Literature Review
by Amandhi N. Ekanayake, Wasana Gunawardana and Rohan Weerasooriya
Bacteria 2025, 4(3), 33; https://doi.org/10.3390/bacteria4030033 - 12 Jul 2025
Viewed by 201
Abstract
Nitrifying bacteria, including ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), are players in the nitrogen cycle but pose serious health risks when colonizing drinking water distribution networks (DWDNs). While the global impact of these bacteria is increasingly recognized, a significant research gap remains [...] Read more.
Nitrifying bacteria, including ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), are players in the nitrogen cycle but pose serious health risks when colonizing drinking water distribution networks (DWDNs). While the global impact of these bacteria is increasingly recognized, a significant research gap remains concerning their effects in tropical regions, particularly in developing countries. This study aims to bridge that gap by systematically reviewing the existing literature on nitrifying bacteria in DWDNs, their behavior in biofilms, and associated public health risks, particularly in systems reliant on surface water sources in tropical climates. Using the PRISMA guidelines for systematic reviews, 51 relevant studies were selected based on content validity and relevance to the research objective. The findings highlight the critical role of nitrifying bacteria in the formation of nitrogenous disinfection by-products (N-DBPs) and highlight specific challenges faced by developing countries, including insufficient monitoring and low public awareness regarding safe water storage practices. Additionally, this review identifies key surrogate indicators, such as ammonia, nitrite, and nitrate concentrations, that influence the formation of DBPs. Although health risks from nitrifying bacteria are reported in comparable studies, there is a lack of epidemiological data from tropical regions. This underscores the urgent need for localized research, systematic monitoring, and targeted interventions to mitigate the risks associated with nitrifying bacteria in DWDNs. Addressing these challenges is essential for enhancing water safety and supporting sustainable water management in tropical developing countries. Full article
(This article belongs to the Collection Feature Papers in Bacteria)
Show Figures

Figure 1

24 pages, 3795 KiB  
Article
Ecological Effects of Sargassum fusiforme Cultivation on Coastal Phytoplankton Community Structure and Water Quality: A Study Based on Microscopic Analysis
by Yurong Zhang, Rijin Jiang, Qingxi Han, Zimeng Li, Zhen Mao and Haifeng Jiao
Biology 2025, 14(7), 844; https://doi.org/10.3390/biology14070844 - 10 Jul 2025
Viewed by 375
Abstract
This study used microscopy-based quantitative enumeration to investigate the effects of large-scale Sargassum fusiforme cultivation on coastal water quality and phytoplankton communities. Data from April (cultivation period) and June (non-cultivation period) in 2018 and 2019 showed that cultivation increased pH and dissolved oxygen [...] Read more.
This study used microscopy-based quantitative enumeration to investigate the effects of large-scale Sargassum fusiforme cultivation on coastal water quality and phytoplankton communities. Data from April (cultivation period) and June (non-cultivation period) in 2018 and 2019 showed that cultivation increased pH and dissolved oxygen (DO). It also reduced nitrate–nitrogen (NO3–N), nitrite–nitrogen (NO2–N), phosphate–phosphorus (PO4–P), total phosphorus (TP), and silicate–silicon (SiO3–Si) concentrations. These changes indicate improved coastal water quality from S. fusiforme cultivation. Nutrient levels rose again during the non-cultivation period. This suggests that water purification decreased without cultivation. Cultivation also lowered the dominance of Skeletonema costatum. This led to a more diverse and stable phytoplankton community. Microscopic observation is valuable for quantifying larger phytoplankton species, and plays an important role in ecological monitoring. These findings provide insights for sustainable aquaculture and ecological restoration. Full article
Show Figures

Figure 1

Back to TopTop