Volcanic Ash–Alkaline (Soda) Lake Water Interactions: Biogeochemical Effects in Lake Van as a Model System
Abstract
1. Introduction
2. Materials and Methods
2.1. Water Samples from Lake Van
2.2. Volcanic Ash Samples
2.3. Water Measurements
2.4. Leaching Experiments with Volcanic Ash
3. Results
3.1. Composition of Lake Van Surface Water
3.2. Volcanic Ash Composition
3.3. Leaching Experiments
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Time | pH | Nitrate | Phosphate | Silica | Na | K | Ca | Mg | Sr | S | B | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(h) | µmol/L | µmol/L | µmol/L | mmol/L | mmol/L | mmol/L | mmol/L | µmol/L | mmol/L | mmol/L | ||
Lake Van onboard | 9.73 ± 0.001 | 0.38 | 6.21 | 10.49 | 336.37 | 11.41 | 0.40 | 5.31 | 0.18 | 27.29 | 9.86 | |
Hekla | ||||||||||||
Initial t = 0 | 0 | 9.42 | 0.38 | 6.21 | 10.49 | 336.37 | 11.41 | 0.40 | 5.31 | 0.18 | 27.29 | 9.86 |
Hekla 1 h 1 g/L | 1 | 9.77 | 0.16 | 4.11 | 14.31 | 336.37 | 11.59 | 0.37 | 5.14 | 0.21 | 27.72 | 9.90 |
Hekla 3 h 1 g/L | 3 | 9.76 | 0.27 | 5.26 | 17.48 | 336.41 | 11.61 | 0.39 | 5.14 | 0.24 | 28.07 | 9.97 |
Hekla 6 h 1 g/L | 6 | 9.77 | 0.27 | 7.16 | 16.31 | 336.76 | 11.64 | 0.38 | 5.14 | 0.24 | 28.07 | 9.90 |
Hekla 24 h 1 g/L | 24 | 9.79 | 0.27 | 10.67 | 14.31 | 337.50 | 11.54 | 0.38 | 5.06 | 0.21 | 27.69 | 9.87 |
Arenal | ||||||||||||
İnitial exps. | 0 | 9.42 | 0.38 | 6.21 | 10.49 | 336.37 | 11.41 | 0.40 | 5.31 | 0.18 | 27.29 | 9.86 |
Arenal 1 h 1 g/L | 1 | 9.77 | 0.22 | 3.47 | 18.64 | 341.46 | 11.82 | 0.37 | 5.02 | 0.21 | 27.69 | 9.71 |
Arenal 3 h 1 g/L | 3 | 9.76 | 0.28 | 1.81 | 23.80 | 340.72 | 11.87 | 0.37 | 4.98 | 0.22 | 27.82 | 9.73 |
Arenal 6 h 1 g/L | 6 | 9.77 | 0.40 | 6.84 | 20.47 | 340.07 | 11.84 | 0.36 | 4.94 | 0.21 | 27.91 | 9.60 |
Arenal 24 h 1 g/L | 24 | 9.77 | 0.52 | 22.05 | 16.64 | 337.76 | 11.82 | 0.33 | 4.90 | 0.21 | 27.57 | 10.24 |
Rabaul | ||||||||||||
İnitial exps. | 0 | 9.42 | 0.38 | 6.21 | 10.49 | 336.37 | 11.41 | 0.40 | 5.31 | 0.18 | 27.29 | 9.86 |
Rabaul 1 h 1 g/L | 1 | 9.78 | 0.16 | 4.07 | 12.32 | 337.11 | 11.77 | 0.55 | 5.14 | 0.25 | 27.79 | 9.86 |
Rabaul 3 h 1 g/L | 3 | 9.77 | 0.27 | 1.90 | 13.81 | 336.80 | 11.66 | 0.60 | 5.10 | 0.29 | 27.97 | 9.81 |
Rabaul 6 h 1 g/L | 6 | 9.77 | 0.32 | 4.74 | 12.98 | 336.46 | 11.69 | 0.63 | 5.06 | 0.27 | 28.07 | 9.81 |
Rabaul 24 h 1 g/L | 24 | 9.79 | 0.32 | 19.09 | 12.52 | 336.67 | 11.64 | 0.67 | 5.06 | 0.26 | 27.76 | 9.83 |
Sakura | ||||||||||||
İnitial exps. | 0 | 9.42 | 0.38 | 6.21 | 10.49 | 336.37 | 11.41 | 0.40 | 5.31 | 0.18 | 27.29 | 9.86 |
Sakura 1 h 1 g/L | 1 | 9.78 | 0.22 | 3.47 | 14.63 | 340.54 | 11.61 | 1.47 | 5.10 | 0.46 | 28.19 | 9.91 |
Sakura 3 h 1 g/L | 3 | 9.77 | 0.27 | 5.05 | 19.47 | 339.85 | 11.64 | 1.59 | 5.10 | 0.48 | 28.38 | 9.92 |
Sakura 6 h 1 g/L | 6 | 9.79 | 0.30 | 7.20 | 17.11 | 339.06 | 11.59 | 1.50 | 5.06 | 0.45 | 28.32 | 9.86 |
Sakura 24 h 1 g/L | 24 | 9.76 | 0.38 | 11.14 | 17.01 | 338.54 | 11.56 | 1.42 | 4.94 | 0.40 | 28.13 | 9.85 |
References
- Frogner, P.; Gislason, S.R.; Óskarsson, N. Fertilizing potential of volcanic ash in ocean surface water. Geology 2001, 29, 487–490. [Google Scholar] [CrossRef]
- Frogner Kockum, P.C. A diverse ecosystem response to volcanic aerosols. Chem. Geol. 2006, 231, 57–66. [Google Scholar] [CrossRef]
- Duggen, S.; Croot, P.; Schacht, U.; Hoffmann, L. Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: Evidence from biogeochemical experiments and satellite data. Geophys. Res. Lett. 2007, 34, L01612. [Google Scholar] [CrossRef]
- Olgun, N.; Duggen, S.; Croot, P.L.; Delmelle, P.; Dietze, H.; Schacht, U.; Óskarsson, N.; Siebe, C.; Auer, A. Surface ocean iron fertilization: The role of airborne volcanic ash from subduction zone and hotspot volcanoes and related iron-fluxes into the Pacific Ocean. Glob. Biogeochem. Cycles 2011, 25, GB4001. [Google Scholar] [CrossRef]
- Hoffmann, L.; Breitbarth, E.; Ardelan, M.V.; Duggen, S.; Olgun, N.; Hassellöv, M.; Wanberg, S.A. Influence of trace metal release from volcanic ash on growth of Thalassiosira pseudonana and Emiliania huxleyi. Mar. Chem. 2012, 132–133, 28–33. [Google Scholar] [CrossRef]
- Jones, M.T.; Gislason, S.R. Rapid releases of metal salts and nutrients following the deposition of volcanic ash into aqueous environments. Geochim. Cosmochim. Acta 2008, 72, 3661–3680. [Google Scholar] [CrossRef]
- Stewart, C.; Johnston, D.M.; Leonard, G.S.; Horwell, C.J.; Thordarson, T.; Cronin, S.J. Contamination of water supplies by volcanic ashfall: A literature review and simple impact modelling. J. Volcanol. Geotherm. Res. 2006, 158, 296–306. [Google Scholar] [CrossRef]
- Wall-Palmer, D.; Jones, M.T.; Hart, M.B.; Fisher, J.K.; Smart, C.W.; Hembury, D.J.; Palmer, M.R.; Fones, G.R. Explosive volcanism as a cause for mass mortality of pteropods. Mar. Geol. 2011, 282, 231–239. [Google Scholar] [CrossRef]
- Sarmiento, J.L. Atmospheric CO2 stalled. Nature 1993, 365, 697–698. [Google Scholar] [CrossRef]
- Watson, A.J. Volcanic Fe, CO2, ocean productivity and climate. Nature 1997, 385, 587–588. [Google Scholar] [CrossRef]
- Spirakis, C.S. Iron fertilization with volcanic ash. Eos Trans. Am. Geophys. Union 1991, 72, 525. [Google Scholar] [CrossRef]
- Hoffmann, L.; Breitbarth, E.; Ardelan, M.V.; Duggen, S.; Olgun, N.; Hasselhö, M.; Wängberg, S.A. Influence of volcanic ash and pumice on phytoplankton growth and Cu ligand production of Thalassiosira pseudonana and Emiliania huxleyi. Mar. Chem. 2012, 132–133, 28–33. [Google Scholar]
- Hamme, R.C.; Webley, P.W.; Crawford, W.R.; Whitney, F.A.; DeGrandpre, M.D.; Emerson, S.R.; Eriksen, C.C.; Giesbrecht, K.E.; Gower, J.F.R.; Kavanaugh, M.T.; et al. Volcanic ash fuels anomalous plankton bloom in subarctic northeast Pacific. Geophys. Res. Lett. 2010, 37, L19604. [Google Scholar] [CrossRef]
- Langmann, B.; Zaksek, K.; Hort, M.; Duggen, S. Volcanic ash as fertiliser for the surface ocean. Atmos. Chem. Phys. 2010, 10, 3891–3899. [Google Scholar] [CrossRef]
- Lin, I.I.; Hu, C.; Li, Y.H.; Ho, T.Y.; Fischer, T.P.; Wong, G.T.F.; Wu, J.; Huang, C.W.; Chu, D.A.; Ko, D.S.; et al. Fertilization potential of volcanic dust in the low-nutrient low-chlorophyll western North Pacific subtropical gyre: Satellite evidence and laboratory study. Glob. Biogeochem. Cycles 2011, 25, GB1006. [Google Scholar] [CrossRef]
- Uematsu, M.; Toratani, M.; Kajino, M.; Narita, Y.; Senga, Y.; Kimoto, T. Enhancement of primary productivity in the western North Pacific caused by the eruption of the Miyake-jima volcano. Geophys. Res. Lett. 2004, 31, L06106. [Google Scholar] [CrossRef]
- Censi, P.; Randazzo, L.A.; Zuddas, P.; Saiano, F.; Aricò, P.; Andò, S. Trace element behaviour in seawater during Etna’s pyroclastic activity in 2001: Concurrent effects of nutrients and formation of alteration minerals. J. Volcanol. Geotherm. Res. 2010, 193, 106–116. [Google Scholar] [CrossRef]
- Bisson, K.M.; Gassó, S.; Mahowald, N.; Wagner, S.; Koffman, B.; Carn, S.A.; Wilson, C. Observing ocean ecosystem responses to volcanic ash. Remote Sens. Environ. 2023, 296, 113749. [Google Scholar] [CrossRef]
- Carrillo, U.; Díaz-Villanueva, V. Impacts of volcanic eruptions and early recovery in freshwater environments and organisms. Biol. Rev. 2021, 96, 2546–2560. [Google Scholar] [CrossRef] [PubMed]
- Kempe, S.; Karmierczak, J. Biogenesis and Early Life on Earth and Europa: Favored by an Alkaline Ocean? Astrobiology 2002, 2, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Sigurdsson, H.; Houghton, B.; McNutt, S.R.; Rymer, H.; Stix, J. (Eds.) Encyclopedia of Volcanoes; Academic Press: San Diego, CA, USA, 2000. [Google Scholar]
- Eicher, G.J.; Rousefell, G.A. Effects of lake fertilization by volcanic activity on abundance of salmon. Adv. Sci. Limnol. Oceanogr. 1957, 2, 70–76. [Google Scholar] [CrossRef]
- Smith, M.A.; White, M. Observations on lakes near Mount St. Helens: Phytoplankton. J. Arch. Hydrobiol. 1985, 104, 345–363. [Google Scholar] [CrossRef]
- Birks, H.J.B.; Lotter, A.F. The impact of the Laacher See Volcano (11000 yr B.P.) on terrestrial vegetation and diatoms. J. Paleolimnol. 1994, 11, 313–322. [Google Scholar] [CrossRef]
- Witham, C.S.; Oppenheimer, C.; Horwell, C.J. Volcanic ash-leachates: A review and recommendations for sampling methods. J. Volcanol. Geotherm. Res. 2005, 141, 299–326. [Google Scholar] [CrossRef]
- Olgun, N.; Duggen, S.; Langmann, B.; Hort, M.; Waythomas, C.F.; Hoffmann, L.; Croot, P. Geochemical evidence of oceanic iron fertilization by the Kasatochi (2008) volcanic eruption and evaluation of the potential impacts on sockeye salmon population. Mar. Ecol. Prog. Ser. 2013, 488, 81–83. [Google Scholar] [CrossRef]
- Parsons, T.R.; Whitney, F.A. Did volcanic ash from Mt. Kasatochi in 2008 contribute to a phenomenal increase in Fraser River sockeye salmon (Oncorhynchus nerka) in 2010? Fish. Oceanogr. 2012, 21, 374–377. [Google Scholar] [CrossRef]
- Dal Poggetto, G.; Douwe, P.; Stroscio, A.; Kamseu, E.; Lancellotti, I.; Elimbi, A.; Leonelli, C. Dissolution of Volcanic Ash in Alkaline Environment for Cold Consolidation of Inorganic Binders. Materials 2024, 17, 5068. [Google Scholar] [CrossRef] [PubMed]
- Schagerl, M.; Oduor, S.O. Phytoplankton community relationship to environmental variables in three Kenyan Rift Valley saline–alkaline lakes. Mar. Freshw. Res. 2008, 59, 125–136. [Google Scholar] [CrossRef]
- Ballot, A.; Krienitz, L.; Kotut, K.; Wiegand, C.; Metcalf, J.S.; Codd, G.A.; Pflugmacher, S. Cyanobacteria and cyanobacterial toxins in three alkaline Rift Valley lakes of Kenya—Lakes Bogoria, Nakuru and Elmenteita. J. Plankton Res. 2004, 26, 925–935. [Google Scholar] [CrossRef]
- Wagaw, S.; Mengistou, S.; Getahun, A. Phytoplankton community structure in relation to physico-chemical factors in a tropical soda lake, Lake Shala (Ethiopia). Afr. J. Aquat. Sci. 2021, 46, 428–440. [Google Scholar] [CrossRef]
- Kempe, S.; Kazmierczak, J.; Landmann, G.; Konuk, T.; Reimer, A.; Lipp, A. Largest known microbialites discovered in Lake Van, Turkey. Nature 1991, 349, 605–608. [Google Scholar] [CrossRef]
- Hach Company. Water Analysis Handbook; Hach Company: Loveland, CO, USA, 2002. [Google Scholar]
- U.S. Environmental Protection Agency. Method 200.8: Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS); Environmental Monitoring Systems Laboratory, Office of Research and Development: Cincinnati, OH, USA, 1994.
- U.S. Environmental Protection Agency. Method 200.7: Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES); Environmental Monitoring Systems Laboratory, Office of Research and Development: Cincinnati, OH, USA, 1994.
- APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; Clesceri, L.S., Greenberg, A.E., Eaton, A.D., Eds.; American Water Works Association, Water Environment Federation: Denver, CO, USA, 1999. [Google Scholar]
- OECD. Eutrophication of Waters: Monitoring, Assessment and Control; Organisation for Economic Co-operation and Development: Paris, France, 1982. [Google Scholar]
- Utermöhl, H. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. Int. Verein. Theor. Angew. Limnol. 1958, 9, 1–38. [Google Scholar] [CrossRef]
- Guiry, M.D.; Guiry, G.M. AlgaeBase. World-Wide Electronic Publication. 2014. Available online: https://www.algaebase.org (accessed on 1 September 2014).
- Olgun, N.; Duggen, S.; Andronico, D.; Kutterolf, S.; Croot, P.L.; Giammanco, S.; Censi, P.; Randazzo, L. Possible impacts of volcanic ash emissions of Mount Etna on the primary productivity in the oligotrophic Mediterranean Sea: Results from nutrient-release experiments in seawater. Mar. Chem. 2013, 152, 32–42. [Google Scholar] [CrossRef]
- Reimer, A.; Landmann, G.; Kempe, S. Lake Van, Eastern Anatolia, Hydrochemistry and History. Aquat. Geochem. 2009, 15, 195–222. [Google Scholar] [CrossRef]
- Redfield, A.C. The biological control of chemical factors in the environment. Am. Sci. 1958, 46, 205–221. [Google Scholar]
- Redfield, A.C. On the proportions of organic derivatives in sea water and their relation to the composition of plankton. In James Johnston Memorial Volume; Liverpool University Press: Liverpool, UK, 1934; pp. 176–192. [Google Scholar]
- Hecky, R.E.; Campbell, P.; Hendzel, L.L. The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol. Oceanogr. 1993, 38, 709–724. [Google Scholar] [CrossRef]
- Kilham, S.S. Relationship of phytoplankton and nutrients to stoichiometric measures. In Large lakes: Ecological structure and function; Tilzer, M.M., Serruya, C., Eds.; Springer: Berlin/Heidelberg, Germany, 1990; pp. 403–414. [Google Scholar]
- Duggen, S.; Olgun, N.; Croot, P.; Hoffmann, L.; Dietze, H.; Teschner, C. The role of airborne volcanic ash for the surface ocean biogeochemical iron-cycle: A review. Biogeosciences 2010, 7, 827–844. [Google Scholar] [CrossRef]
- Wiesner, M.G.; Wang, Y.; Zheng, L. Fallout of volcanic ash to the deep South China Sea induced by the 1991 eruption of Mount Pinatubo (Philippines). Geology 1995, 23, 885–888. [Google Scholar] [CrossRef]
- Delmelle, P.; Lambert, M.; Dufrene, Y.; Gerin, P.; Oskarsson, N. Gas/aerosol–ash interaction in volcanic plumes: New insights from surface analyses of fine ash particles. Earth Planet. Sci. Lett. 2007, 259, 159–170. [Google Scholar] [CrossRef]
- Kilham, P.; Kilham, S.S.; Hecky, R.E. Hypothesized resource relationships among African planktonic diatoms. Limnol. Oceanogr. 1986, 31, 1169–1181. [Google Scholar] [CrossRef]
- Hecky, R.E.; Kilham, P. Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnol. Oceanogr. 1988, 33, 796–822. [Google Scholar] [CrossRef]
- Balci, N.; Menekşe, M.; Karagüler, N.G.; Sönmez, M.Ş.; Meister, P. Reproducing Authigenic Carbonate Precipitation in the Hypersaline Lake Acıgöl (Turkey) with Microbial Cultures. Geomicrobiol. J. 2016, 33, 758–773. [Google Scholar] [CrossRef]
- Balci, N.; Demirel, C.; Akçer Ön, S.; Gültekin, A.H.; Kurt, M.A. Evaluating abiotic and microbial factors on carbonate precipitation in Lake Acigol, a hypersaline lake in Southwestern Turkey. Quat. Int. 2018, 486, 116–128. [Google Scholar] [CrossRef]
- Müller, G.; Irion, G.; Förstner, U. Formation and diagenesis of inorganic Ca–Mg carbonates in the lacustrine environment. Naturwissenschaften 1972, 59, 158–164. [Google Scholar] [CrossRef]
- Dupraz, C.; Reid, R.P.; Braissant, O.; Decho, A.W.; Norman, R.S.; Visscher, P.T. Processes of carbonate precipitation in modern microbial mats. Earth-Sci. Rev. 2009, 96, 141–162. [Google Scholar] [CrossRef]
- Gallagher, K.L.; Kading, T.J.; Braissant, O.; Dupraz, C. Inside the alkalinity engine: The role of electron donors in the organomineralization potential of sulfate-reducing bacteria. Geobiology 2013, 11, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Zeyen, N.; Daval, D.; Lopez-Garcia, P.; Moreira, D.; Gaillardet, J.; Benzerara, K. Geochemical conditions allowing the formation of modern lacustrine microbialites. Procedia Earth Planet. Sci. 2017, 17, 380–383. [Google Scholar] [CrossRef]
- Semkin, P.; Pavlova, G.; Lobanov, V.; Barabanshchikov, Y.; Kukla, S.; Sagalaev, S.; Shvetsova, M.; Shkirnikova, E.; Tishchenko, P.; Tibenko, E.; et al. Nutrient Flux under the Influence of Melt Water Runoff from Volcanic Territories and Ecosystem Response of Vilyuchinskaya and Avachinskaya Bays in Southeastern Kamchatka. J. Mar. Sci. Eng. 2023, 11, 1299. [Google Scholar] [CrossRef]
- Schacht, U.; Wallmann, K.; Kutterolf, S.; Schmidt, M. Volcanogenic sediment-seawater interactions and the geochemistry of pore waters. Chem. Geol. 2008, 249, 321–338. [Google Scholar] [CrossRef]
- Schacht, U. Alteration of Volcanic Glasses in Marine Sediments: Laboratory Experiments and Field Studies. Ph.D. Thesis, University of Kiel, Kiel, Germany, 2005. [Google Scholar]
Volcanic Ash | Eruption Year | Location | Composition |
---|---|---|---|
Hekla | 2000 | Iceland | Basaltic Andesite |
Arenal | 1993 | Costa Rica | Dacite |
Sakurajima | 2007 | Japan | Rhyolite |
Rabaul-Tavurvur | 2002 | Papa New Guinea | Trachy-Dacite to Rhyolite |
Temp | pH | NO3 | PO4 | SiO2 | Na | K | Ca | Mg | Sr | SO4 | B | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(°C) | (µmol/L) | (µmol/L) | (µmol/L) | (mmol/L) | (mmol/L) | (mmol/L) | (mmol/L) | (mmol/L) | (mmol/L) | (mmol/L) | ||
Lake Van | 22.7 | 9.73 ± 0.001 | 0.38 | 6.21 | 10.49 | 336.37 | 11.41 | 0.40 | 5.31 | 0.18 | 27.29 | 9.86 |
SiO2 | Al2O3 | FeO | MgO | CaO | Na2O | K2O | TiO2 | P2O5 | MnO | Cl | SO3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
wt.% | wt.% | wt.% | wt.% | wt.% | wt.% | wt.% | wt.% | wt.% | wt.% | wt.% | wt.% | |
Hekla | 55.68 | 13.66 | 11.88 | 2.87 | 6.60 | 3.98 | 1.43 | 2.29 | 0.99 | 0.31 | 0.04 | 0.06 |
Arenal | 67.54 | 12.23 | 6.39 | 1.10 | 3.42 | 4.27 | 2.42 | 1.03 | 0.42 | 0.16 | 0.13 | 0.01 |
Sakurajima | 72.74 | 13.17 | 3.87 | 0.30 | 2.34 | 3.41 | 3.50 | 0.93 | 0.27 | 0.06 | 0.04 | 0.01 |
Rabaul-Tavurvur | 68.70 | 13.67 | 3.55 | 0.36 | 1.93 | 4.91 | 3.96 | 0.82 | 0.14 | 0.10 | 0.28 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olgun, N. Volcanic Ash–Alkaline (Soda) Lake Water Interactions: Biogeochemical Effects in Lake Van as a Model System. Water 2025, 17, 2171. https://doi.org/10.3390/w17152171
Olgun N. Volcanic Ash–Alkaline (Soda) Lake Water Interactions: Biogeochemical Effects in Lake Van as a Model System. Water. 2025; 17(15):2171. https://doi.org/10.3390/w17152171
Chicago/Turabian StyleOlgun, Nazlı. 2025. "Volcanic Ash–Alkaline (Soda) Lake Water Interactions: Biogeochemical Effects in Lake Van as a Model System" Water 17, no. 15: 2171. https://doi.org/10.3390/w17152171
APA StyleOlgun, N. (2025). Volcanic Ash–Alkaline (Soda) Lake Water Interactions: Biogeochemical Effects in Lake Van as a Model System. Water, 17(15), 2171. https://doi.org/10.3390/w17152171