Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (544)

Search Parameters:
Keywords = nickel loading

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 21430 KB  
Article
Comparative Analysis of Microstructure, Phase Composition, and Wear Characterization of Fe-Cr-C, Fe-Mn-Mo-B, and Ni-WC Hardfacing Alloys
by Jan Pawlik, Pavlo Prysyazhnyuk, Vasyl Vytvytskyi, Iuliia Medvid and Michał Bembenek
Coatings 2026, 16(2), 178; https://doi.org/10.3390/coatings16020178 - 30 Jan 2026
Viewed by 237
Abstract
Wear resistance of hardfaced or cladded protective layers is commonly assessed through hardness measurements. Traditionally, this involves single-point diamond indenter tests. However, in complex cladding alloys, such methods often yield inconsistent results due to significant differences between the hardness of the metallic matrix [...] Read more.
Wear resistance of hardfaced or cladded protective layers is commonly assessed through hardness measurements. Traditionally, this involves single-point diamond indenter tests. However, in complex cladding alloys, such methods often yield inconsistent results due to significant differences between the hardness of the metallic matrix and harder constituents, such as carbides or nitrides. To address this, the authors performed a series of scratch tests on four wear-resistant hardfacing materials. The method involves producing a scratch under constant load on a polished bead surface and measuring the resulting groove width as an indirect measure of hardness and wear behavior. The study focuses on four FCAW hardfacing wires: a Cr-Si-C-Mn solid cored wire (Alloy A), a Cr-Mo-C-Si-Mn cored wire (Alloy B), a nickel-sheathed macrocrystalline tungsten carbide cored wire (Alloy C), and an original Fe(Mn)-Mo-B-C hardfacing alloy (Alloy D) developed by one of the authors. All materials were deposited on C45 steel substrates. Comparative analysis included scratch tests, abrasion wear tests, and thermodynamic modeling. The scratch test approach proved effective in evaluating and optimizing deposition parameters to achieve improved wear resistance of the investigated Fe–Cr–C, Ni–WC, and Fe–Mo–Mn–B hardfacing systems. Full article
Show Figures

Figure 1

24 pages, 9109 KB  
Article
Influence of Deposition Conditions, Powder Feedstock, and Heat Treatment on the Properties of LP-DED NiTi Shape Memory Alloys
by Pavel Salvetr, Jakub Fousek, Kristýna Kubášová, Jaroslav Fojt, Michal Brázda, Veronika Drátovská, Adam Kratochvíl, Monika Losertová, Vojtěch Havlas, Matej Daniel and Ján Džugan
Crystals 2026, 16(2), 98; https://doi.org/10.3390/cryst16020098 - 29 Jan 2026
Viewed by 86
Abstract
This work investigates the NiTi shape memory alloys fabricated via laser powder-directed energy deposition (LP-DED). The properties of NiTi alloys produced by powder metallurgy or additive manufacturing routes are strongly influenced by the type of feedstock material employed. Two powder feedstocks were used [...] Read more.
This work investigates the NiTi shape memory alloys fabricated via laser powder-directed energy deposition (LP-DED). The properties of NiTi alloys produced by powder metallurgy or additive manufacturing routes are strongly influenced by the type of feedstock material employed. Two powder feedstocks were used for DED fabrication: a blended mixture of elemental nickel and titanium powders with a nominal chemical composition of Ni56Ti44 (wt.%) and a pre-alloyed NiTi powder containing 55.75 wt.% Ni. Samples fabricated from both types of powders were subjected to microstructural characterization, phase composition analysis, and mechanical and corrosion testing. It was found that DED processing on a non-preheated CP-Ti substrate is prone to warping and that samples deposited from the elemental Ni and Ti powder mixture exhibited pronounced inhomogeneity of microstructure and mechanical properties along the build direction, accompanied by the formation of the Ti2Ni secondary phase. The absence of a superelastic plateau was observed in the corresponding stress–strain response. On the contrary, the samples deposited from the pre-alloyed NiTi powder exhibited a microstructure composed of B2 and B19′ phases and already demonstrated a clear superelastic response in the as-built condition during tensile loading. Based on the tensile test results, this NiTi material was used only for superelasticity testing. The superelastic behavior was further enhanced by post-deposition heat treatment, which significantly increased the recovery rate from 53% to 89%. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

19 pages, 13479 KB  
Article
Friction and Wear of Extrusion Dies Under Extreme Transient High-Temperature Conditions in the Extrusion of a Novel Nickel-Based High-Temperature Powder Alloy
by Baizhi Sun, Jinhui Wang, Yanzhuo Liu, Kongyan Zhang, Yuhua Zhang, Zifeng Liu, Falin Zhang, Guangyun Duan, Hongqiang Du, Yongsheng Wei, Yingnan Shi and Xinmei Hou
Lubricants 2026, 14(2), 55; https://doi.org/10.3390/lubricants14020055 - 27 Jan 2026
Viewed by 219
Abstract
During the extrusion of novel nickel-based powder superalloy bars, the die is subjected to elevated temperatures, high pressures, and severe friction, which readily lead to abrasive wear and thermal-fatigue damage. These failures deteriorate the quality of the extruded products and significantly shorten the [...] Read more.
During the extrusion of novel nickel-based powder superalloy bars, the die is subjected to elevated temperatures, high pressures, and severe friction, which readily lead to abrasive wear and thermal-fatigue damage. These failures deteriorate the quality of the extruded products and significantly shorten the service life of the die. Frequent repair and replacement of the tooling ultimately increase the overall manufacturing cost. This study investigates the friction and wear behavior of H13 and 5CrNiMo hot-work tool steels under extreme transient high-temperature conditions by combining finite element simulation with tribological testing. The temperature and stress distributions of the billet and key tooling components during extrusion were analyzed using DEFORM-3D. In addition, pin-on-disk friction and wear tests were conducted at 1000 °C to examine the friction coefficient, wear morphology, and subsurface grain structural evolution under various loading conditions. The results show that the extrusion die and die holder experience the highest loads and most severe wear during the extrusion process. For 5CrNiMo tool steel, the wear mechanism under low loads is dominated by mild abrasive wear and oxidative wear, whereas increasing the load causes a transition toward adhesive wear and severe oxidative wear. In contrast, H13 tool steel exhibits a transition from abrasive wear to severe oxidative wear. In 5CrNiMo steel, friction-induced recrystallization, grain refinement, and softening lead to the formation of a mechanically mixed layer, which, together with a stable third-body layer, markedly reduces and stabilizes the friction coefficient. H13 steel, however, undergoes surface strain localization and spalling, resulting in persistent fluctuations in the friction coefficient. The toughness and adhesion of the oxide film govern the differences in wear mechanisms between the two steels. Owing to its higher Cr, V, and Mo contents, H13 forms a dense but highly brittle oxide scale dominated by Cr and Fe oxides at 1000 °C. This oxide layer readily cracks and delaminates under frictional shear and thermal cycling. The repeated spalling exposes the fresh surface to further oxidation, accompanied by recurrent adhesion–delamination cycles. Consequently, the subsurface undergoes alternating intense shear and transient load variations, leading to localized dislocation accumulation and cracking, which suppresses the progression of continuous recrystallization. Full article
(This article belongs to the Special Issue Friction and Wear Mechanism Under Extreme Environments)
Show Figures

Figure 1

14 pages, 1779 KB  
Article
Electro-Reforming of Biomass Gasification Tar with Simultaneous Hydrogen Evolution
by Umberto Calice, Francesco Zimbardi, Nadia Cerone and Vito Valerio
Processes 2026, 14(3), 444; https://doi.org/10.3390/pr14030444 - 27 Jan 2026
Viewed by 110
Abstract
In this study, an electrochemical valorization strategy on liquid byproducts from hazelnut shell gasification was developed to couple waste remediation with energy-efficient hydrogen production. The aqueous phase, rich in organic compounds, is processed in an anion exchange membrane (AEM) cell, where pure hydrogen [...] Read more.
In this study, an electrochemical valorization strategy on liquid byproducts from hazelnut shell gasification was developed to couple waste remediation with energy-efficient hydrogen production. The aqueous phase, rich in organic compounds, is processed in an anion exchange membrane (AEM) cell, where pure hydrogen evolved at the cathode while organic pollutants are oxidized at the anode. First, the feedstock is thoroughly characterized using gas chromatography–mass spectrometry (GC-MS), identifying a complex matrix of water-soluble aromatic compounds such as phenols, catechols, and other aromatics compounds, with concentrations reaching up to 2.9 g/kg for catechols. Then, the electro-reforming process is optimized using Nickel oxide–hydroxide (Ni(O)OH) electrodes with a loading of 0.75 mg/cm2. This methodology relies on the favorable thermodynamics of organic oxidation, which requires a lower onset potential (0.4 V) compared to the oxygen evolution reaction (OER) observed in the alkaline control (0.52 V), and the low overpotential of the Nickel oxide–hydroxide electrode towards the oxidized species. Consequently, the organic load undergoes progressive oxidation into hydrophilic and less bioaccumulating species and carbon dioxide, allowing for the simultaneous generation of pure hydrogen at the cathode at a reduced cell voltage. Elevated stability was observed, with a substantial abatement—78% of the initial organic load—of organic compounds achieved over 80 h at a fixed cell voltage of 0.5 V, and a specific energy consumption for hydrogen production of 38.5 MJkgH21. This represents a step forward in the development of technologies that reduce the energy intensity of hydrogen generation while valorizing biomass gasification residues. Full article
(This article belongs to the Topic Advances in Hydrogen Energy)
Show Figures

Figure 1

22 pages, 4146 KB  
Article
Machine Learning-Guided Inverse Analysis for Optimal Catalytic Pyrolysis Parameters in Hydrogen Production from Biomass
by Vishal V. Persaud, Abderrachid Hamrani, Medeba Uzzi and Norman D. H. Munroe
Catalysts 2026, 16(1), 105; https://doi.org/10.3390/catal16010105 - 21 Jan 2026
Viewed by 210
Abstract
Catalytic pyrolysis (CP) of biomass is a promising method for producing sustainable hydrogen because lignocellulosic biomass is widely available, renewable, and approximately carbon-neutral. CP of biomass is influenced by complex, interdependent process parameters, making optimization challenging and time-consuming using traditional methods. This study [...] Read more.
Catalytic pyrolysis (CP) of biomass is a promising method for producing sustainable hydrogen because lignocellulosic biomass is widely available, renewable, and approximately carbon-neutral. CP of biomass is influenced by complex, interdependent process parameters, making optimization challenging and time-consuming using traditional methods. This study investigated a two-stage machine learning (ML) framework fortified with Bayesian optimization to enhance hydrogen production from CP. The ML models were used to classify and predict hydrogen yield using a dataset of 306 points with 14 input features. The classification stage identified conditions favorable for good hydrogen yield, while the regression model (second stage) quantitatively predicted hydrogen yield. The random forest classifier and regressor demonstrated superior capabilities, achieving R2 scores of 1.0 and 0.8, respectively. The model demonstrated strong agreement with experimental data and effectively captured the key factors driving hydrogen production. Shapley Additive exPlanation (SHAP) identified temperature and catalyst properties (nickel loading) as the most influential parameters. The inverse analysis framework validated the model’s ability to determine optimal conditions for predicting targeted hydrogen yields by comparing it to experimental data reported in the literature. This AI-driven approach provides a scalable and data-efficient tool for optimizing processes in sustainable hydrogen production. Full article
Show Figures

Graphical abstract

17 pages, 4796 KB  
Article
Design and Wind-Induced Fatigue Analysis of a Dynamic Movable Sculpture in Coastal Environments: A Case Study of the Welcome Tower
by Leming Gu, Haixia Liu, Mingzhuo Rui, Laizhu Jiang, Jie Chen, Dagen Dong, Hai Wang and Jianguo Cai
Buildings 2026, 16(2), 350; https://doi.org/10.3390/buildings16020350 - 14 Jan 2026
Viewed by 237
Abstract
This study focuses on the design, material selection, and wind-induced fatigue analysis of a dynamic movable sculpture atop the Welcome Tower at Yazhou Bay Bougainvillea Park in Sanya. The sculpture, consisting of eight movable leaves, is driven by a hydraulic system enabling it [...] Read more.
This study focuses on the design, material selection, and wind-induced fatigue analysis of a dynamic movable sculpture atop the Welcome Tower at Yazhou Bay Bougainvillea Park in Sanya. The sculpture, consisting of eight movable leaves, is driven by a hydraulic system enabling it to assume five distinct shapes. Nickel-saving stainless steel (S22152/S32001) was chosen as the primary material due to its excellent corrosion resistance and strength, ensuring durability in the harsh coastal environment. The mechanical system is designed with a two-level lifting device, rotation system, and push-rod mechanism, allowing the leaves to perform functions such as rising, opening, closing, and rotating while minimizing mechanical load. Wind tunnel tests and numerical simulations were conducted to analyze the sculpture’s performance under wind loads. Using the rain-flow counting method and Miner’s linear fatigue accumulation theory, the study calculated stress amplitude and fatigue damage, finding that the most unfavorable fatigue life of the sculpture’s components is 380 years. This analysis demonstrates that the sculpture will not experience fatigue damage over its expected lifespan, providing valuable insights for the design of dynamic sculptures in coastal environments. The research integrates mechanical design, material selection, and fatigue analysis, ensuring the sculpture’s long-term stability and resistance to wind-induced fatigue. Full article
Show Figures

Figure 1

14 pages, 6095 KB  
Article
Analysis of Off-Design Performance and Thermal–Fluid–Structural Coupling Characteristics of an Adjustable Air Ejector
by Yingwen Zhang, Liru Yan, Jingxian Zhang, Suxia Ma and Wenlong Guo
Materials 2026, 19(2), 294; https://doi.org/10.3390/ma19020294 - 11 Jan 2026
Viewed by 341
Abstract
Systematic investigation into the structural integrity of adjustable ejectors, particularly concerning thermal–fluid–structural (TFS) coupling, is currently lacking. Utilizing the Workbench platform, this study performs unidirectional steady-state TFS coupling numerical simulation of the adjustable air ejector under off-design conditions to systematically analyze its internal [...] Read more.
Systematic investigation into the structural integrity of adjustable ejectors, particularly concerning thermal–fluid–structural (TFS) coupling, is currently lacking. Utilizing the Workbench platform, this study performs unidirectional steady-state TFS coupling numerical simulation of the adjustable air ejector under off-design conditions to systematically analyze its internal flow characteristics and structural mechanical responses across various needle openings. The results show that thermal load is the dominant factor governing the ejector’s structural stress and deformation. The overall deformation is primarily characterized by axial elongation, with the maximum thermal deformation localized at the ejector’s exit section. The nozzle exit is identified as the primary structural weak point, exhibiting the highest local stress, which peaks at 196.8 MPa when the needle opening is minimized. Shock train structures extending from the nozzle’s divergent section into the mixing chamber, coupled with the axial displacement of the needle, significantly influence the ejector’s thermal deformation and thermal stress. Based on the thermally dominated stress mechanism identified, this study proposes a composite nozzle design utilizing a nickel-plated Invar alloy substrate. This material fully leverages Invar alloy’s low thermal expansion to mitigate thermal stress and deformation while the nickel plating ensures corrosion resistance, thereby significantly enhancing the nozzle’s mechanical properties and operational reliability in thermal environments. The findings of this analysis are applicable to off-design evaluations under unidirectional steady-state coupling conditions, providing a valuable reference for the structural design and strength optimization of similar ejectors operating in high-temperature, unsteady environments. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

15 pages, 5279 KB  
Article
High-Density Aviation Fuel or Diesel-Range Naphthenes Are Synthesized from Biomass-Derived Isophorone and Furfural
by Mengze Sun, Xing Zhang, Jiamin Yan, Hui Zhang, Zhipeng Li, Li Huang, Song Jin, Wei Wang and Ning Li
Catalysts 2026, 16(1), 83; https://doi.org/10.3390/catal16010083 - 10 Jan 2026
Viewed by 375
Abstract
High-density aviation fuels and diesel-range cycloalkanes are in high demand for the transportation sector, but the development of sustainable and high-efficiency synthesis routes from biomass-derived platform chemicals remains a key challenge. High-density aviation fuel and diesel-grade cycloalkanes were successfully synthesized from biomass-derived isophorone [...] Read more.
High-density aviation fuels and diesel-range cycloalkanes are in high demand for the transportation sector, but the development of sustainable and high-efficiency synthesis routes from biomass-derived platform chemicals remains a key challenge. High-density aviation fuel and diesel-grade cycloalkanes were successfully synthesized from biomass-derived isophorone and furfural through a continuous process of selective hydrogenation, aldol condensation, and hydrodeoxygenation reaction. (E) 2-(Furan-2-methylene)-3,5,5-trimethylcyclohex-1-one (1A) was obtained by selective hydrogenation of isophorone to obtain 3,3,5-trimethylcyclohexanone (TMCH), which was then subjected to aldol condensation with furfural. The system studied key reaction parameters such as solvent type, temperature, catalyst type, catalyst loading, and reaction time that affect the aldol condensation of TMCH and furfural. The yield of 1A reached 98.69%, under optimized conditions using NaOH as the catalyst at a molar ratio of 3,3,5-trimethylcyclohexanone:furfural = 1:1, NaOH 0.15 g, anhydrous ethanol as the solvent, and a reaction temperature of 313 K for 1 h. A series of nickel-based catalysts supported on porous materials, including SiO2, CeO2, Al2O3, Hβ, and HZSM-5, were prepared and characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). These catalysts were evaluated for the hydrodeoxygenation of 1A. Among them, the 10% Ni-SiO2 catalyst exhibited the highest catalytic activity, affording a C9–C14 cycloalkane yield of 88.32% and a total carbon yield of 99.6%. This work demonstrates a promising and sustainable strategy for producing branched cycloalkanes in the diesel and jet fuel range from lignocellulosic biomass-derived platform chemicals. Full article
(This article belongs to the Section Biomass Catalysis)
Show Figures

Graphical abstract

15 pages, 2531 KB  
Article
Amorphous Anodized Porous Titania as IrO2 Substrate for the Electrochemical Oxygen Evolution Reaction
by Effrosyni Mitrousi, Triantafyllia Kokkinou, Maria Zografaki, Maria Nikopoulou, Angeliki Banti, Dimitra A. Lambropoulou and Sotiris Sotiropoulos
Sustain. Chem. 2026, 7(1), 2; https://doi.org/10.3390/suschem7010002 - 6 Jan 2026
Viewed by 333
Abstract
This study investigates amorphous anodized porous TiO2 (a-TiO2) as a substrate for iridium-based oxygen evolution catalysts. The substrates were prepared via anodization of Ti foil in a glycerol-based solution for 15 min @ 60 V. Nickel was subsequently electrodeposited to [...] Read more.
This study investigates amorphous anodized porous TiO2 (a-TiO2) as a substrate for iridium-based oxygen evolution catalysts. The substrates were prepared via anodization of Ti foil in a glycerol-based solution for 15 min @ 60 V. Nickel was subsequently electrodeposited to act both as a conductive and sacrificial layer for the galvanic deposition of iridium from an Ir(IV) chloro-complex solution. Electrochemical anodization resulted in a uniform IrOx layer on the a-TiO2 substrate, featuring Ir aggregates ~250 nm in size and an Ir:Ni atomic ratio of ca. 7, as determined by EDS analysis. The quantity of Ni determined by ICP-MS bulk analysis indicated that Ni resided also within the porous matrix. Varying the Ni deposition charge density (qNi) revealed that an intermediate loading (1463 mC cm−2) provided the best balance between Ir accessibility during the galvanic replacement step and electronic continuity. The optimized IrOx/Ir-Ni/a-TiO2 electrode achieved excellent OER performance (η = 344 mV @ 10 mA cm−2; 1.68 mA μgIr−1 @ η = 300 mV) at an ultra-low Ir loading of 2.15 μgIr cm−2 and demonstrated good short-term stability, with only a 20 mV potential increase over 4 h of continuous operation at 5.5 mA cm−2. Overall, this strategy offers a scalable pathway for producing efficient OER electrodes with minimal noble metal loading. Full article
Show Figures

Figure 1

21 pages, 10391 KB  
Article
Comparison of Microstructure and Fatigue Life of Laser Powder Bed Fusion and Forging/Rolling Inconel 718 Alloy After Solution Heat Treatment and Double Aging
by Rafael Eringer Cubi, Rodolfo Luiz Prazeres Gonçalves, Marcos Massi, Gleicy de Lima Xavier Ribeiro, Luis Reis and Antonio Augusto Couto
Metals 2026, 16(1), 57; https://doi.org/10.3390/met16010057 - 1 Jan 2026
Viewed by 382
Abstract
Nickel superalloy Inconel 718 (IN718) is widely employed in harsh environments with prolonged cyclic stresses in the aerospace and energy sectors, due to its corrosion/oxidation resistance and mechanical strength obtained by precipitation hardening. This work investigates the mechanical behavior in fatigue of IN718 [...] Read more.
Nickel superalloy Inconel 718 (IN718) is widely employed in harsh environments with prolonged cyclic stresses in the aerospace and energy sectors, due to its corrosion/oxidation resistance and mechanical strength obtained by precipitation hardening. This work investigates the mechanical behavior in fatigue of IN718 manufactured by Additive Manufacturing (AM), specifically by Laser Powder Bed Fusion (PBF-LB), and compares its results with the material produced by forging and rolling. Samples from both processes were subjected to heat treatments of solution and double aging to increase their mechanical strength. Then, tensile, microhardness, microstructural characterization, and uniaxial fatigue tests were performed (with loading ratio R = −1). The results showed that, although the IN718 produced by AM had higher microhardness and a higher tensile strength limit than the forged and rolled material, its fatigue performance was lower. The S–N curve (stress vs. number of cycles) for the material obtained by PBF-LB demonstrated shorter fatigue life, especially under low and medium stresses. The analysis of the fracture surfaces revealed differences in the regions where the crack initiated and propagated. The shorter fatigue life of the material obtained by PBF-LB was attributed to typical process defects and microstructural differences, such as the shape of the grains, which act as points of crack nucleation. Full article
Show Figures

Figure 1

20 pages, 4698 KB  
Article
Numerical Analysis of Curvilinear Fatigue Crack Growth and Plastic Zone Evolution in Haynes 230 Superalloy Under Variable Stress Ratios
by Yahya Ali Fageehi and Abdulnaser M. Alshoaibi
Crystals 2026, 16(1), 39; https://doi.org/10.3390/cryst16010039 - 1 Jan 2026
Viewed by 370
Abstract
This paper presents a high-fidelity numerical simulation of curvilinear fatigue crack growth (FCG) through a modified Compact Tension (CT) specimen made of Haynes 230 nickel-based superalloy. The specimen’s design, featuring three extra holes, was intentionally chosen to induce mixed-mode loading and complex, non-linear [...] Read more.
This paper presents a high-fidelity numerical simulation of curvilinear fatigue crack growth (FCG) through a modified Compact Tension (CT) specimen made of Haynes 230 nickel-based superalloy. The specimen’s design, featuring three extra holes, was intentionally chosen to induce mixed-mode loading and complex, non-linear crack paths. Crucially, this configuration allows for a thorough examination of how the specimen’s geometry, restraints, or minor manufacturing discrepancies affect the localized stress state. Experimental data corresponding to three different initial crack patterns were utilized to validate the numerical model implemented within the ANSYS simulation environment. The comparison demonstrated that the present simulated crack trajectory was significantly closer to the experimental results than those obtained from earlier numerical simulations using ZFEM-TERF and FRANC3D. Furthermore, the current study critically examined the validity of Linear Elastic Fracture Mechanics (LEFM) by analyzing the evolution of the Cyclic Plastic Zone (CPZ) size for two distinct stress ratio values: R = 0.5 and R = −1. The findings confirm the full satisfaction of the Small-Scale Yielding (SSY) criterion throughout the crack growth history for the positive stress ratio (R = 0.5). Conversely, the negative stress ratio (R = −1) caused a significant violation of the SSY assumption in the later stages of propagation. This highlights how the applicability of LEFM is largely dependent on the loading regime and underscores the necessity of employing Elastic–Plastic Fracture Mechanics (EPFM) for fully reversed cycles. This research establishes a well-founded and valuable protocol for predicting Fatigue Crack Growth (FCG) in complex superalloy components. Full article
(This article belongs to the Special Issue Fatigue and Fracture of Crystalline Metal Structures)
Show Figures

Figure 1

11 pages, 1373 KB  
Article
Effect of Different Downward Loads and Rotational Speeds on the Removal of Gutta-Percha and Root Canal Sealer Using a Nickel-Titanium Rotary Gutta-Percha Removal System: An Ex Vivo Study
by Koki Toyoda, Shunsuke Kimura, Keiichiro Maki, Satoshi Omori, Keiko Hirano, Arata Ebihara and Takashi Okiji
Appl. Sci. 2026, 16(1), 446; https://doi.org/10.3390/app16010446 - 31 Dec 2025
Viewed by 216
Abstract
Effective gutta-percha/sealer removal is essential for predictable nonsurgical endodontic retreatment, but the effects of key operational parameters on nickel–titanium rotary removal instruments remain insufficiently understood. This study aimed to examine how varying downward loads and rotational speeds affect the removal efficiency and torque/force [...] Read more.
Effective gutta-percha/sealer removal is essential for predictable nonsurgical endodontic retreatment, but the effects of key operational parameters on nickel–titanium rotary removal instruments remain insufficiently understood. This study aimed to examine how varying downward loads and rotational speeds affect the removal efficiency and torque/force generation of the HyFlex Remover. Sixty transparent straight resin canals filled with gutta-percha and AH Plus sealer were prepared using the HyFlex Remover at two rotational speeds (400 and 800 rpm) and three downward loads (2, 3, and 4 N; n = 10/group). The removal rate, calculated using micro-computed tomography, as well as removal time, maximum force, maximum torque, and cumulative torque were recorded and evaluated using two-way analysis of variance with Bonferroni correction (α = 0.05). The removal rate was consistently higher at 400 rpm than at 800 rpm (p < 0.001), while removal time and cumulative torque were greater at 400 rpm (p < 0.001). Maximum torque differed only between the 800-2 N and 800-4 N groups (p = 0.006). Maximum force increased with higher loads (p < 0.001), and at 3 N and 4 N, it was lower at 400 rpm than at 800 rpm (3 N: p = 0.039, 4 N: p < 0.001). Overall, lower downward loads reduced torque but prolonged working time, whereas higher rotational speeds shortened both working time and torque but decreased the removal rate. Full article
(This article belongs to the Special Issue Recent Developments in Endodontics and Dental Materials)
Show Figures

Figure 1

12 pages, 1499 KB  
Article
Impact of Downward Load and Rotational Kinematics on Root Canal Instrumentation with a Heat-Treated Nickel–Titanium Rotary Instrument
by Risako Yamamoto, Keiichiro Maki, Shunsuke Kimura, Satoshi Omori, Keiko Hirano, Arata Ebihara, Yoshio Yahata and Takashi Okiji
Materials 2026, 19(1), 108; https://doi.org/10.3390/ma19010108 - 28 Dec 2025
Viewed by 551
Abstract
This study analyzed how different downward loads and rotational kinematics influence NiTi rotary instrumentation outcomes. Heat-treated NiTi instruments were used to prepare extracted human single-rooted premolars with a moderate canal curvature. Instrumentation was performed using an automated endodontic instrumentation device with controlled downward [...] Read more.
This study analyzed how different downward loads and rotational kinematics influence NiTi rotary instrumentation outcomes. Heat-treated NiTi instruments were used to prepare extracted human single-rooted premolars with a moderate canal curvature. Instrumentation was performed using an automated endodontic instrumentation device with controlled downward loading and torque/force sensing, under different downward load settings (1, 2, and 3 N), employing either continuous rotation (CR) or optimum torque reverse (OTR) motion, which is a torque-sensitive reciprocation. Instrumentation was completed without instrument fracture or ledge formation in all six groups. OTR-3N specimens displayed a significantly lower upward force (i.e., screw-in force) than OTR-2N specimens (p < 0.05). OTR-1N specimens required a significantly longer instrumentation time than CR-1N specimens and the other OTR specimens (p < 0.05). At 1 mm from the apex, CR-2N specimens showed a significantly larger canal-centering ratio (i.e., larger deviation) than OTR-2N specimens (p < 0.05). Overall, applying a downward load of 2–3 N in OTR mode provided shaping efficiency similar to CR, but with a reduced screw-in force and enhanced canal-centering in the apical region, supporting the use of OTR as a promising alternative to CR for curved canal preparation using heat-treated NiTi instruments. Full article
(This article belongs to the Topic Advances in Dental Materials)
Show Figures

Graphical abstract

25 pages, 4798 KB  
Article
Hepatoprotection by Naringin Nanoliposomes Against Nickel Toxicity Involves Antioxidant Reinforcement and Modulation of Nrf2, NF-κB, PI3K/mTOR, JAK/STAT, and Apoptotic Pathways
by Hussein Abdelaziz Abdalla, Ekramy M. Elmorsy, Najlaa M. M. Jawad, Nora Hosny, Ahmed S. Shams, Hamada S. Salem, Manal S. Fawzy and Mai A. Salem
Pharmaceuticals 2026, 19(1), 51; https://doi.org/10.3390/ph19010051 - 25 Dec 2025
Viewed by 468
Abstract
Background/Objectives: Nickel exposure is a significant environmental and occupational risk factor associated with the onset and progression of chronic liver diseases due to its capacity to induce persistent oxidative stress, inflammation, and hepatocellular injury. This study aimed to evaluate the enhanced hepatoprotective and [...] Read more.
Background/Objectives: Nickel exposure is a significant environmental and occupational risk factor associated with the onset and progression of chronic liver diseases due to its capacity to induce persistent oxidative stress, inflammation, and hepatocellular injury. This study aimed to evaluate the enhanced hepatoprotective and antioxidant/anti-inflammatory effects of naringin-loaded nanoliposomes (NRG-NLPs), a novel nanoformulation designed to improve the bioavailability of naringin, a citrus-derived flavonoid phytochemical, against nickel sulfate (NiSO4)-induced hepatotoxicity in male Wistar rats. Methods: Ninety rats were allocated into six groups (n = 15 each): control, NRG, NRG-NLPs, NiSO4, NiSO4 + NRG, and NiSO4 + NRG-NLPs. Treatments consisted of oral administration of NRG or NRG-NLPs (80 mg/kg/day) and intraperitoneal injections of NiSO4 (20 mg/kg/day) for three weeks. Endpoints included assessment of growth performance, serum biochemistry, hepatic antioxidant status, inflammatory mediators, apoptotic gene expression, nickel tissue accumulation, and histopathological and ultrastructural liver changes. Results: NiSO4 exposure induced marked hepatic injury, evidenced by reduced body weight, adverse serum biochemical profiles, increased hepatic enzymes and bilirubin, elevated oxidative damage markers (MDA, protein carbonyls), increased proinflammatory cytokines, and upregulation of HMGB1, PI3K, mTOR, JAK/STAT, and proapoptotic genes, accompanied by aberrant nickel accumulation and severe histopathological alterations. Co-treatment with NRG-NLPs significantly ameliorated biochemical and histological disturbances, restored antioxidant defense systems (SOD, CAT, GPx, GSH, Nrf2, HO-1), and modulated key pathways of inflammation (NF-κB, TNF-α, IL-6), fibrosis (TGF-β), cell survival, and apoptosis more effectively than crude naringin. NRG-NLPs also substantially reduced hepatic nickel deposition and preserved near-normal liver architecture. Conclusions: These findings demonstrate that nanoformulated naringin confers superior hepatoprotective benefits against nickel-induced liver injury through enhanced bioavailability and multi-pathway modulation, supporting its translational potential as a citrus-derived medicinal phytochemical and dietary bioactive for the prevention and therapeutic intervention of oxidative and inflammatory chronic liver disease. Full article
Show Figures

Graphical abstract

23 pages, 7325 KB  
Article
3D Multilayered DDM-Modified Nickel Foam Electrode for Advanced Alkaline Water Electrolysis
by Elitsa Petkucheva, Galin Borisov, Jordan Iliev, Elefteria Lefterova and Evelina Slavcheva
Molecules 2026, 31(1), 69; https://doi.org/10.3390/molecules31010069 - 24 Dec 2025
Viewed by 572
Abstract
Advanced alkaline water electrolysis (AWE) in “zero-gap” configuration is a promising approach for low-temperature hydrogen production, but its efficiency strongly depends on the design and surface chemistry of nickel-based electrodes. Here, we present a simple dip-and-drying method (DDM) to modify commercial nickel foam [...] Read more.
Advanced alkaline water electrolysis (AWE) in “zero-gap” configuration is a promising approach for low-temperature hydrogen production, but its efficiency strongly depends on the design and surface chemistry of nickel-based electrodes. Here, we present a simple dip-and-drying method (DDM) to modify commercial nickel foam with a Ni–FeOOH/PTFE microporous catalytic layer and evaluate its electrochemical performance in 1 M KOH and in a laboratory zero-gap cell with a Zirfon® Perl 500 UTP diaphragm, through circulating 25 wt.% KOH. The FeSO4-assisted DDM treatment generates mixed Ni–Fe oxyhydroxide surface species, while PTFE imparts control hydrophobicity, enhancing both catalytic activity and gas-release behavior. Annealing the electrode (DDM-NF-CAT-A) results in a cell voltage of 2.45 V at 1 A·cm−2 and 80 °C, demonstrating moderate performance comparable to other Ni-based electrodes prepared via low-complexity methods, though below that of optimized state-of-the-art zero-gap systems. Short-term durability tests (80 h at 0.5 A·cm−2) indicate stable operation, but long-term industrial performance was not assessed. These findings illustrate the potential of the DDM approach as a simple, low-cost route to structured nickel foam electrodes and provide a foundation for further optimization of catalyst loading, microstructure, and long-term stability for practical AWE applications. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Electrochemistry)
Show Figures

Figure 1

Back to TopTop