Friction and Wear of Extrusion Dies Under Extreme Transient High-Temperature Conditions in the Extrusion of a Novel Nickel-Based High-Temperature Powder Alloy
Abstract
1. Introduction
2. Experimental
2.1. Materials and Specimens
2.2. Test Equipment
2.3. Experimental Procedure
3. Finite Element Simulation

4. Results and Discussion
4.1. Finite Element Simulation Results of the Extrusion Process
4.2. Friction Coefficient and Friction Curves
4.3. Wear Mechanisms
4.4. Effect of Friction on Die Grain Structure
5. Conclusions
- (1)
- Simulation results indicate that the die exit is the primary wear and failure location in the extrusion system due to the combined effects of contact pressure, relative sliding, and thermal load. Localized stress concentrations in the die holder, bolster plate, container liner, and extrusion stem suggest that targeted improvements in material selection, surface treatment, and lubrication should be considered.
- (2)
- Under high-temperature friction at 1000 °C, both H13 and 5CrNiMo tool steels exhibit a general decrease in friction coefficient with increasing load; however, significant differences are observed in their fluctuation behavior. This is attributed to differences in high-temperature oxidation behavior, the formation and compaction efficiency of the third-body layer, and the high-temperature plasticity of the substrate. Overall, at high loads, the increased real contact area and the compaction of debris and oxides contribute to a reduction in the friction coefficient.
- (3)
- Under high-temperature friction and wear at 1000 °C, H13 and 5CrNiMo tool steels exhibit distinctly different subsurface evolution paths. In H13 steel, the brittle Cr-rich oxide film formed at high temperature frequently cracks and spalls during friction, leading to repeated exposure of the surface and localized strain concentration, which inhibits continuous recrystallization and results in prolonged frictional instability and severe wear. In contrast, for 5CrNiMo steel, increasing the load drives continuous recrystallization, rapidly transforming the surface layer through plastic deformation and recrystallization into a low-dislocation-density, equiaxed mechanically mixed layer. At high temperature, this layer exhibits compliance and combines with oxide debris, promoting the formation and maintenance of a dense third-body layer.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Jia, Z.; Ji, J.; Wei, B.; Heng, Y.; Liu, D. Determining the wear behavior of H13 steel die during the extrusion process of pure nickel. Eng. Fail. Anal. 2022, 134, 106053. [Google Scholar] [CrossRef]
- Yang, X.; Li, C.; Zhang, Z.; Zhang, X.; Gu, J. Effect of cobalt-based coating microstructure on the thermal fatigue performance of AISI H13 hot work die steel. Appl. Surf. Sci. 2020, 521, 146360. [Google Scholar] [CrossRef]
- Pedroso da Silva, S.; Abrão, A.M.; Rodrigues da Silva, E.; Câmara, M.A. Surface modification of AISI H13 steel by die-sinking electrical discharge machining and TiAlN coating: A promising hybrid technique to improve wear resistance. Wear 2020, 462, 203509. [Google Scholar] [CrossRef]
- Heinrichs, J.; Jacobson, S. The influence from shape and size of tool surface defects on the occurrence of galling in cold forming of aluminium. Wear 2011, 271, 2517–2524. [Google Scholar] [CrossRef]
- Jia, Z.; Sun, X.; Ji, J.; Wang, Y.; Wei, B.; Yu, L. Effect of Glass Lubricant on the Hot Extrusion of Inconel 625 Alloy. Trans. Indian Inst. Met. 2020, 73, 2795–2805. [Google Scholar] [CrossRef]
- Menezes, P.L.; Kishore, N.; Kailas, S.V. On the effect of surface texture on friction and transfer layer formation—A study using Al and steel pair. Wear 2008, 265, 1655–1669. [Google Scholar] [CrossRef]
- König, T.; Wolf, E.; Daum, P.; Kürten, D.; Kailer, A.; Dienwiebel, M. Influencing factors on high temperature tribology. Wear 2025, 566, 205758. [Google Scholar] [CrossRef]
- Anandakrishnan, V.; Sathish, S.; Dillibabu, V.; Balamuralikrishnan, N. Dry sliding wear behavior of Inconel 718 additively manufactured by DMLS technique. Ind. Lubr. Tribol. 2020, 72, 491–496. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, X.; Gao, Y.; Xu, J.; Ding, Y. Numerical Simulation of Effect of Glass Lubricant on Hot Extrusion of Inconel 625 Alloy Tubes. Procedia Manuf. 2019, 37, 119–126. [Google Scholar] [CrossRef]
- Björk, T.; Westergård, R.; Hogmark, S. Wear of surface treated dies for aluminium extrusion—A case study. Wear 2001, 249, 316–323. [Google Scholar] [CrossRef]
- Gutovskaya, J.; Solberg, J.K.; Lange, H.I.; Andersen, L.H. Wear of Inconel 718 die during aluminium extrusion—A case study. Wear 2004, 256, 126–132. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, K.; Tang, D.; Wang, H.; Li, D.; Peng, Y. Experimental and Numerical Study on Friction and Wear Performance of Hot Extrusion Die Materials. Materials 2022, 15, 1798. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, W. Effect of sliding speed on elevated-temperature wear behavior of AISI H13 steel. J. Iron Steel Res. Int. 2021, 28, 1180–1189. [Google Scholar] [CrossRef]
- Li, S.; Wu, X.; Chen, S.; Li, J. Wear Resistance of H13 and a New Hot-Work Die Steel at High temperature. J. Mater. Eng. Perform. 2016, 25, 2993–3006. [Google Scholar] [CrossRef]
- Müller, K.B. Deposition of hard films on hot-working steel dies for aluminium. J. Mater. Process. Technol. 2002, 130, 432–437. [Google Scholar] [CrossRef]
- List, G.; Nouari, M.; Géhin, D.; Gomez, S.; Manaud, J.P.; Le Petitcorps, Y.; Girot, F. Wear behaviour of cemented carbide tools in dry machining of aluminium alloy. Wear 2005, 259, 1177–1189. [Google Scholar] [CrossRef]
- Birol, Y.; İsler, D. Response to thermal cycling of CAPVD (Al,Cr)N-coated hot work tool steel. Surf. Coat. Technol. 2010, 205, 275–280. [Google Scholar] [CrossRef]
- Srivastava, A.; Joshi, V.; Shivpuri, R.; Bhattacharya, R.; Dixit, S. A multilayer coating architecture to reduce heat checking of die surfaces. Surf. Coat. Technol. 2003, 163–164, 631–636. [Google Scholar] [CrossRef]
- Wang, Y. A study of PVD coatings and die materials for extended die-casting die life. Surf. Coat. Technol. 1997, 94–95, 60–63. [Google Scholar] [CrossRef]
- Bobzin, K.; Brögelmann, T.; Brugnara, R.H.; Kruppe, N.C. CrN/AlN and CrN/AlN/Al2O3 coatings deposited by pulsed cathodic arc for aluminum die casting applications. Surf. Coat. Technol. 2015, 284, 222–229. [Google Scholar] [CrossRef]
- Miller, T.; Lin, J.-M.; Pirolli, L.; Coquilleau, L.; Luharuka, R.; Teplyakov, A.V. Investigation of thin titanium carbonitride coatings deposited onto stainless steel. Thin Solid Films 2012, 522, 193–198. [Google Scholar] [CrossRef]
- Devia, D.M.; Restrepo-Parra, E.; Arango, P.J. Comparative study of titanium carbide and nitride coatings grown by cathodic vacuum arc technique. Appl. Surf. Sci. 2011, 258, 1164–1174. [Google Scholar] [CrossRef]
- Kainz, C.; Schalk, N.; Tkadletz, M.; Mitterer, C.; Czettl, C. Microstructure and mechanical properties of CVD TiN/TiBN multilayer coatings. Surf. Coat. Technol. 2019, 370, 311–319. [Google Scholar] [CrossRef]
- Salgueiredo, E.; Amaral, M.; Almeida, F.A.; Fernandes, A.J.S.; Oliveira, F.J.; Silva, R.F. Mechanical performance upgrading of CVD diamond using the multilayer strategy. Surf. Coat. Technol. 2013, 236, 380–387. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, X.; Nie, Z.; Tan, C.; Wang, F.; Cai, H.; Li, Y.; Wang, F.; Cai, H. Microstructure and growth mechanism of tungsten carbide coatings by atmospheric CVD. Surf. Coat. Technol. 2018, 344, 85–92. [Google Scholar] [CrossRef]
- Sun, Y.; Kandan, K.; Shivareddy, S.; Farukh, F.; Bailey, R. Effect of sliding conditions on the macroscale lubricity of multilayer graphene coatings grown on nickel by CVD. Surf. Coat. Technol. 2019, 358, 247–255. [Google Scholar] [CrossRef]
- Garg, R.; Rajagopalan, N.; Pyeon, M.; Gönüllü, Y.; Fischer, T.; Khanna, A.S.; Mathur, S. Plasma CVD grown Al2O3 and MgAl2O4 coatings for corrosion protection applications. Surf. Coat. Technol. 2018, 356, 49–55. [Google Scholar] [CrossRef]
- Lee, J.S.; Son, H.T.; Oh, I.H.; Kang, C.S.; Yun, C.H.; Lim, S.C.; Kwon, H.C. Fabrication and characterization of Ti–Cu clad materials by indirect extrusion. J. Mater. Process. Technol. 2007, 187–188, 653–656. [Google Scholar] [CrossRef]
- Halak, R.M.; Rath, L.; Suhuddin, U.F.H.R.; dos Santos, J.F.; Klusemann, B. Changes in processing characteristics and microstructural evolution during friction extrusion of aluminum. Int. J. Mater. Form. 2022, 15, 24. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, J.; Duszczyk, J.; Katgerman, L. Identification of a friction model for the bearing channel of hot aluminium extrusion dies by using ball-on-disc tests. Tribol. Int. 2012, 50, 66–75. [Google Scholar] [CrossRef]
- Dohda, K.; Boher, C.; Rezai-Aria, F.; Mahayotsanun, N. Tribology in metal forming at elevated temperatures. Friction 2015, 3, 1–27. [Google Scholar] [CrossRef]
- So, H.; Yu, D.S.; Chuang, C.Y. Formation and wear mechanism of tribo-oxides and the regime of oxidational wear of steel. Wear 2002, 253, 1004–1015. [Google Scholar] [CrossRef]
- Ding, K.; Duarte, M.J.; Shen, X.; Zhang, S.; Li, J.; Kostka, A.; Bruder, E.; Li, J.; Song, W.; Durst, K.; et al. Microstructural and micromechanical characterization of intergranular oxidation in Fe-15Cr alloy. Corros. Sci. 2023, 225, 111613. [Google Scholar] [CrossRef]
- Wang, S.; Li, Z.; Yao, B.; Zhai, H.; Jiang, J.; Ma, X.; Dang, W.-A.; Fan, W.; Wang, Z. Exploring the enhancement mechanism of crack and oxidation resistances of annealed Cr-coated Zr-4 alloy. J. Nucl. Mater. 2025, 616, 156018. [Google Scholar] [CrossRef]
- Zhao, T.; Wang, Q.; Chen, R.; Wang, X.; Su, Y.; Fu, H. Optimization of Zr and Mo element on room-temperature fracture toughness and the integrity of oxide film. J. Mater. Res. Technol. 2023, 26, 5683–5695. [Google Scholar] [CrossRef]
- Kusumoto, K.; Shimizu, K.; Yaer, X.; Zhang, Y.; Ota, Y.; Ito, J. Abrasive wear characteristics of Fe-2C-5Cr-5Mo-5W-5Nb multi-component white cast iron. Wear 2017, 376–377, 22–29. [Google Scholar] [CrossRef]
- Wang, F.; Xu, L.; Zong, L.; Luo, C.; Wei, S. Microstructure and abrasive wear properties of high-vanadium-chromium wear resistant alloy. Mater. Res. Express 2021, 8, 026501. [Google Scholar] [CrossRef]
- Boas, M.; Rosen, A. Effect of load on the adhesive wear of steels. Wear 1977, 44, 213–222. [Google Scholar] [CrossRef]
- Feng, K.; Shao, T. Tribo-induced surface structure of Nickel-based superalloy at elevated temperature. Appl. Surf. Sci. 2021, 571, 151290. [Google Scholar] [CrossRef]
- Sakai, T. Dynamic recrystallization microstructures under hot working conditions. J. Mater. Process. Technol. 1995, 53, 349–361. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Zhang, X.; Pu, J. Investigation on High-Temperature Wear Resistance of Co-Based Superalloys Modified by Chromium-Aluminizing Coatings. Materials 2025, 18, 1229. [Google Scholar] [CrossRef] [PubMed]












| Material | Fe | C | Si | Mn | Cr | V | Mo | Ni |
|---|---|---|---|---|---|---|---|---|
| 5CrNiMo | Bal. | 0.45 | 0.4 | 0.5 | 1.2 | -- | 0.2 | 1.0 |
| AISI H13 | Bal. | 0.4 | 0.9 | 0.35 | 5.2 | 0.9 | 1.2 | 0.3 |
| Fe | C | Si | Mn | P | S | Cr | Ni | N |
|---|---|---|---|---|---|---|---|---|
| Bal. | 0.07 | 0.8 | 1.7 | 0.04 | 0.03 | 18 | 8.5 | 0.07 |
| Parameter | Value/Condition |
|---|---|
| Counter face material | AISI 304 |
| Disk material | AISI H13/5CrNiMo |
| Load (N) | 10, 50, 100 |
| Sliding speed (mm/s) | 15 |
| Rotation radius/mm | 11 |
| Temperature/°C | 1000 |
| Lubrication | Dry friction |
| Atmosphere | Air |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sun, B.; Wang, J.; Liu, Y.; Zhang, K.; Zhang, Y.; Liu, Z.; Zhang, F.; Duan, G.; Du, H.; Wei, Y.; et al. Friction and Wear of Extrusion Dies Under Extreme Transient High-Temperature Conditions in the Extrusion of a Novel Nickel-Based High-Temperature Powder Alloy. Lubricants 2026, 14, 55. https://doi.org/10.3390/lubricants14020055
Sun B, Wang J, Liu Y, Zhang K, Zhang Y, Liu Z, Zhang F, Duan G, Du H, Wei Y, et al. Friction and Wear of Extrusion Dies Under Extreme Transient High-Temperature Conditions in the Extrusion of a Novel Nickel-Based High-Temperature Powder Alloy. Lubricants. 2026; 14(2):55. https://doi.org/10.3390/lubricants14020055
Chicago/Turabian StyleSun, Baizhi, Jinhui Wang, Yanzhuo Liu, Kongyan Zhang, Yuhua Zhang, Zifeng Liu, Falin Zhang, Guangyun Duan, Hongqiang Du, Yongsheng Wei, and et al. 2026. "Friction and Wear of Extrusion Dies Under Extreme Transient High-Temperature Conditions in the Extrusion of a Novel Nickel-Based High-Temperature Powder Alloy" Lubricants 14, no. 2: 55. https://doi.org/10.3390/lubricants14020055
APA StyleSun, B., Wang, J., Liu, Y., Zhang, K., Zhang, Y., Liu, Z., Zhang, F., Duan, G., Du, H., Wei, Y., Shi, Y., & Hou, X. (2026). Friction and Wear of Extrusion Dies Under Extreme Transient High-Temperature Conditions in the Extrusion of a Novel Nickel-Based High-Temperature Powder Alloy. Lubricants, 14(2), 55. https://doi.org/10.3390/lubricants14020055

