Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (160)

Search Parameters:
Keywords = nickel ferrites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3586 KiB  
Article
Enhanced NiFe2O4 Catalyst Performance and Stability in Anion Exchange Membrane Water Electrolysis: Influence of Iron Content and Membrane Selection
by Khaja Wahab Ahmed, Aidan Dobson, Saeed Habibpour and Michael Fowler
Molecules 2025, 30(15), 3228; https://doi.org/10.3390/molecules30153228 - 1 Aug 2025
Viewed by 197
Abstract
Anion exchange membrane (AEM) water electrolysis is a potentially inexpensive and efficient source of hydrogen production as it uses effective low-cost catalysts. The catalytic activity and performance of nickel iron oxide (NiFeOx) catalysts for hydrogen production in AEM water electrolyzers were [...] Read more.
Anion exchange membrane (AEM) water electrolysis is a potentially inexpensive and efficient source of hydrogen production as it uses effective low-cost catalysts. The catalytic activity and performance of nickel iron oxide (NiFeOx) catalysts for hydrogen production in AEM water electrolyzers were investigated. The NiFeOx catalysts were synthesized with various iron content weight percentages, and at the stoichiometric ratio for nickel ferrite (NiFe2O4). The catalytic activity of NiFeOx catalyst was evaluated by linear sweep voltammetry (LSV) and chronoamperometry for the oxygen evolution reaction (OER). NiFe2O4 showed the highest activity for the OER in a three-electrode system, with 320 mA cm−2 at 2 V in 1 M KOH solution. NiFe2O4 displayed strong stability over a 600 h period at 50 mA cm−2 in a three-electrode setup, with a degradation rate of 15 μV/h. In single-cell electrolysis using a X-37 T membrane, at 2.2 V in 1 M KOH, the NiFe2O4 catalyst had the highest activity of 1100 mA cm−2 at 45 °C, which increased with the temperature to 1503 mA cm−2 at 55 °C. The performance of various membranes was examined, and the highest performance of the tested membranes was determined to be that of the Fumatech FAA-3-50 and FAS-50 membranes, implying that membrane performance is strongly correlated with membrane conductivity. The obtained Nyquist plots and equivalent circuit analysis were used to determine cell resistances. It was found that ohmic resistance decreases with an increase in temperature from 45 °C to 55 °C, implying the positive effect of temperature on AEM electrolysis. The FAA-3-50 and FAS-50 membranes were determined to have lower activation and ohmic resistances, indicative of higher conductivity and faster membrane charge transfer. NiFe2O4 in an AEM water electrolyzer displayed strong stability, with a voltage degradation rate of 0.833 mV/h over the 12 h durability test. Full article
(This article belongs to the Special Issue Water Electrolysis)
Show Figures

Figure 1

16 pages, 4823 KiB  
Article
Magnetic Behavior of Co2+-Doped NiFe2O4 Nanoparticles with Single-Phase Spinel Structure
by Fatemeh Vahedrouz, Mehdi Alizadeh, Abbas Bahrami and Farnaz Heidari Laybidi
Crystals 2025, 15(7), 624; https://doi.org/10.3390/cryst15070624 - 4 Jul 2025
Viewed by 333
Abstract
This study reports the synthesis and characterization of CoxNi1−xFe2O4 (x = 0, 0.2, 0.4, 0.6, 0.8, 1) nanoparticles using a co-precipitation method. In this approach, metal ions are precipitated in the presence of a stabilizing agent, [...] Read more.
This study reports the synthesis and characterization of CoxNi1−xFe2O4 (x = 0, 0.2, 0.4, 0.6, 0.8, 1) nanoparticles using a co-precipitation method. In this approach, metal ions are precipitated in the presence of a stabilizing agent, which is a common and effective method for nanoparticle preparation. The microstructure and magnetic properties were studied after calcination at 600 °C and heat treatment at 1000 °C. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy confirmed the formation of a single-phase spinel structure. The average crystallite size, calculated using the (311) diffraction peak and the Scherrer equation, ranged from 13 to 19 nm. Scanning electron microscopy (SEM) showed that the nanoparticles had a spherical morphology. Thermogravimetric and differential thermal analysis (TG-DTA) revealed a three-step weight loss process. Magnetic measurements, including remanent magnetization, saturation magnetization, and coercivity, were performed using a vibrating sample magnetometer (VSM) at room temperature. The replacement of Ni2+ with Co2+ enhanced the magnetic properties, resulting in increased magnetic moment and anisotropy. These effects are attributed to changes in cation distribution, exchange interactions, surface effects, and magnetocrystalline anisotropy. Overall, Co2+ doping improved the magnetic behavior of nickel ferrite, indicating its potential for application in memory devices and magnetic recording media. Full article
Show Figures

Figure 1

15 pages, 3183 KiB  
Article
Platinum-Functionalized Hierarchically Structured Flower-like Nickel Ferrite Sheets for High-Performance Acetone Sensing
by Ziwen Yang, Zhen Sun, Yuhao Su, Caixuan Sun, Peishuo Wang, Shaobin Yang, Xueli Yang and Guofeng Pan
Chemosensors 2025, 13(7), 234; https://doi.org/10.3390/chemosensors13070234 - 26 Jun 2025
Viewed by 533
Abstract
Acetone detection is crucial for non-invasive health monitoring and environmental safety, so there is an urgent demand to develop high-performance gas sensors. Here, platinum (Pt)-functionalized layered flower-like nickel ferrite (NiFe2O4) sheets were efficiently fabricated via facile hydrothermal synthesis and [...] Read more.
Acetone detection is crucial for non-invasive health monitoring and environmental safety, so there is an urgent demand to develop high-performance gas sensors. Here, platinum (Pt)-functionalized layered flower-like nickel ferrite (NiFe2O4) sheets were efficiently fabricated via facile hydrothermal synthesis and wet chemical reduction processes. When the Ni/Fe molar ratio is 1:1, the sensing material forms a Ni/NiO/NiFe2O4 composite, with performance further optimized by tuning Pt loading. At 1.5% Pt mass fraction, the sensor shows a high acetone response (Rg/Ra = 58.33 at 100 ppm), a 100 ppb detection limit, fast response/recovery times (7/245 s at 100 ppm), and excellent selectivity. The enhancement in performance originates from the synergistic effect of the structure and Pt loading: the layered flower-like morphology facilitates gas diffusion and charge transport, while Pt nanoparticles serve as active sites to lower the activation energy of acetone redox reactions. This work presents a novel strategy for designing high-performance volatile organic compound (VOC) sensors by combining hierarchical nanostructured transition metal ferrites with noble metal modifications. Full article
(This article belongs to the Special Issue Recent Progress in Nano Material-Based Gas Sensors)
Show Figures

Graphical abstract

23 pages, 10696 KiB  
Article
High-Temperature Wear Properties of Laser Powder Directed Energy Deposited Ferritic Stainless Steel 430
by Samsub Byun, Hyun-Ki Kang, Jongyeob Lee, Namhyun Kang and Seunghun Lee
Micromachines 2025, 16(7), 752; https://doi.org/10.3390/mi16070752 - 26 Jun 2025
Viewed by 409
Abstract
Ferritic stainless steels (FSSs) have attracted considerable attention due to their excellent corrosion resistance and significantly lower cost compared with nickel-bearing austenitic stainless steels. However, the high-temperature wear behavior of additively manufactured FSS 430 has not yet been thoroughly investigated. This study aims [...] Read more.
Ferritic stainless steels (FSSs) have attracted considerable attention due to their excellent corrosion resistance and significantly lower cost compared with nickel-bearing austenitic stainless steels. However, the high-temperature wear behavior of additively manufactured FSS 430 has not yet been thoroughly investigated. This study aims to examine the microstructural characteristics and wear properties of laser powder directed energy deposition (LP-DED) FSS 430 fabricated under varying laser powers and hatch distances. Wear testing was conducted at 25 °C and 300 °C after subjecting the samples to solution heat treating at 815 °C and 980 °C for 1 h, followed by forced fan cooling. For comparison, an AISI 430 commercial plate was also tested under the same test conditions. The microstructural evolution and worn surfaces were analyzed using SEM-EDS and EBSD techniques. The wear performance was evaluated based on the friction coefficients and cross-sectional profiles of wear tracks, including wear volume, maximum depth, and scar width. The average friction coefficients (AFCs) of the samples solution heat treated at 980 °C were higher than those treated at 815 °C. Additionally, the AFCs increased with hatch distance at both testing temperatures. A strong correlation was observed between Rockwell hardness and wear resistance, indicating that higher hardness generally results in improved wear performance. Full article
(This article belongs to the Special Issue Laser Additive Manufacturing of Metallic Materials, 2nd Edition)
Show Figures

Figure 1

18 pages, 2233 KiB  
Article
Structure and Electrochemical Behavior of ZnLaFeO4 Alloy as a Negative Electrode in Ni-MH Batteries
by Houyem Gharbi, Wissem Zayani, Youssef Dabaki, Chokri Khaldi, Omar ElKedim, Nouredine Fenineche and Jilani Lamloumi
Energies 2025, 18(13), 3251; https://doi.org/10.3390/en18133251 - 21 Jun 2025
Viewed by 274
Abstract
This study focuses on the structural and electrochemical behavior of the compound ZnLaFeO4 as a negative electrode material for nickel–metal hydride (Ni-MH) batteries. The material was synthesized by a sol–gel hydrothermal method to assess the influence of lanthanum doping on the ZnFe [...] Read more.
This study focuses on the structural and electrochemical behavior of the compound ZnLaFeO4 as a negative electrode material for nickel–metal hydride (Ni-MH) batteries. The material was synthesized by a sol–gel hydrothermal method to assess the influence of lanthanum doping on the ZnFe2O4 spinel structure. X-ray diffraction revealed the formation of a dominant LaFeO3 perovskite phase, with ZnFe2O4 and La2O3 as secondary phases. SEM analysis showed agglomerated grains with an irregular morphology. Electrochemical characterization at room temperature and a discharge rate of C/10 (full charge in 10 h) revealed a maximum discharge capacity of 106 mAhg−1. Although La3+ doping modified the microstructure and slowed the activation process, the electrode exhibited stable cycling with moderate polarization behavior. The decrease in capacity during cycling is due mainly to higher internal resistance. These results highlight the potential and limitations of La-doped spinel ferrites as alternative negative electrodes for Ni-MH systems. Full article
Show Figures

Figure 1

17 pages, 6448 KiB  
Article
Development of NiZn Ferrites Doped with Co for Low Power Losses at High Frequencies (10 MHz) and High Temperatures (>80 °C)
by Stefanos Zaspalis, Georgios Kogias, Vassilios Zaspalis, Eustathios Kikkinides, Elisabeth Rauchenwald, Christoph Vogler and Kevin Ouda
Magnetochemistry 2025, 11(5), 44; https://doi.org/10.3390/magnetochemistry11050044 - 17 May 2025
Viewed by 619
Abstract
Polycrystalline nickel–zinc (NiZn) ferrites are widely used in high-frequency applications due to their excellent magnetic properties such as low power losses, high magnetic permeability, and adequate saturation induction. However, data on their power loss behavior at 10 MHz, particularly at elevated temperatures, remain [...] Read more.
Polycrystalline nickel–zinc (NiZn) ferrites are widely used in high-frequency applications due to their excellent magnetic properties such as low power losses, high magnetic permeability, and adequate saturation induction. However, data on their power loss behavior at 10 MHz, particularly at elevated temperatures, remain limited in the literature. This study investigates the magnetic performance of Co-doped NiZn ferrites at 10 MHz, under varying induction fields (3–10 mT) and temperatures (20–120 °C), with a focus on reducing high-temperature losses. Ferrite samples were synthesized using the conventional mixed oxide method and systematically varied in composition (Fe, Co content and Ni/Zn molar ratio). Key findings reveal that the incorporation of cobalt significantly enhances high-temperature performance by shifting resonance frequencies, attributed to increased domain wall pinning. Samples with optimized compositions and processing demonstrated power losses at 10 MHz, 10 mT and 25 °C, 100 °C and 120 °C as low as 310 mW cm−3, 1233 mW cm−3 and 1400 mW cm−3, respectively, with relative initial permeabilities exceeding 80 at these temperatures. These results provide insights into the design of high-frequency magnetic components and highlight strategies to minimize high-temperature losses. Full article
Show Figures

Figure 1

16 pages, 6592 KiB  
Article
Hydrogen Embrittlement Resistance of Ferritic–Pearlitic Pipeline Steel with Non-Electrochemically Deposited Copper- or Nickel–Phosphorus-Based Coating
by Ladislav Falat, Lucia Čiripová, František Kromka, Viera Homolová, Róbert Džunda and Marcela Motýľová
Coatings 2025, 15(5), 585; https://doi.org/10.3390/coatings15050585 - 15 May 2025
Cited by 1 | Viewed by 918
Abstract
This work deals with the effects of a non-electrochemically deposited copper- or nickel–phosphorus-based coating on the resulting resistance of traditional X42 grade pipeline steel against hydrogen embrittlement (HE). The susceptibility to HE was determined by the evaluation of the hydrogen embrittlement index (HEI) [...] Read more.
This work deals with the effects of a non-electrochemically deposited copper- or nickel–phosphorus-based coating on the resulting resistance of traditional X42 grade pipeline steel against hydrogen embrittlement (HE). The susceptibility to HE was determined by the evaluation of the hydrogen embrittlement index (HEI) from the results of conventional room-temperature tensile tests using cylindrical tensile specimens. Altogether, three individual material systems were studied, namely uncoated steel (X42) and two coated steels, specifically with either a copper-based coating (X42_Cu) or a nickel–phosphorus-based coating (X42_Ni-P). The HEI values were calculated as relative changes in individual mechanical properties corresponding to the non-hydrogenated and electrochemically hydrogen-precharged tensile test conditions. Both applied coatings considerably improved the hydrogen embrittlement resistance of the investigated steel in terms of decreasing the HEI values related to the changes in the yield stress, ultimate tensile strength, and reduction of area. In contrast, the hydrogenation of both coated systems had detrimental effects on the value of total elongation, which resulted in an increase in the corresponding HEI value. This behavior was likely related to the earlier onset of necking during tensile straining due to strain localizations induced by the coatings’ surface imperfections. The findings from fractographic observations indicated that both studied coatings acted like protective barriers against hydrogen permeation. However, the surface quality in terms of pores and other superficial defects in the considered coatings remains a challenging issue. Full article
Show Figures

Figure 1

22 pages, 4727 KiB  
Review
Review of Magnetoelectric Effects on Coaxial Fibers of Ferrites and Ferroelectrics
by Sujoy Saha, Sabita Acharya, Ying Liu, Peng Zhou, Michael R. Page and Gopalan Srinivasan
Appl. Sci. 2025, 15(9), 5162; https://doi.org/10.3390/app15095162 - 6 May 2025
Viewed by 552
Abstract
Composites of ferromagnetic and ferroelectric phases are of interest for studies on mechanical strain-mediated coupling between the two phases and for a variety of applications in sensors, energy harvesting, and high-frequency devices. Nanocomposites are of particular importance since their surface area-to-volume ratio, a [...] Read more.
Composites of ferromagnetic and ferroelectric phases are of interest for studies on mechanical strain-mediated coupling between the two phases and for a variety of applications in sensors, energy harvesting, and high-frequency devices. Nanocomposites are of particular importance since their surface area-to-volume ratio, a key factor that determines the strength of magneto-electric (ME) coupling, is much higher than for bulk or thin-film composites. Core–shell nano- and microcomposites of the ferroic phases are the preferred structures, since they are free of any clamping due to substrates that are present in nanobilayers or nanopillars on a substrate. This review concerns recent efforts on ME coupling in coaxial fibers of spinel or hexagonal ferrites for the magnetic phase and PZT or barium titanate for the ferroelectric phase. Several recent studies on the synthesis and ME measurements of fibers with nickel ferrite, nickel zinc ferrite, or cobalt ferrite for the spinel ferrite and M-, Y-, and W-types for the hexagonal ferrites were considered. Fibers synthesized by electrospinning were found to be free of impurity phases and had uniform core and shell structures. Piezo force microscopy (PFM) and scanning microwave microscopy (SMM) measurements of strengths of direct and converse ME effects on individual fibers showed evidence for strong coupling. Results of low-frequency ME voltage coefficient and magneto-dielectric effects on 2D and 3D films of the fibers assembled in a magnetic field, however, were indicative of ME couplings that were weaker than in bulk or thick-film composites. A strong ME interaction was only evident from data on magnetic field-induced variations in the remnant ferroelectric polarization in the discs of the fibers. Follow-up efforts aimed at further enhancement in the strengths of ME coupling in core–shell composites are also discussed in this review. Full article
(This article belongs to the Special Issue Applied Electronics and Functional Materials)
Show Figures

Figure 1

13 pages, 4498 KiB  
Article
BaCo0.06Bi0.94O3-Doped NiZn Ferrites for High Frequency Low Loss Current Sensors: LTCC Sintering and Magnetic Properties
by Shao-Pu Jiang, Chang-Lai Yuan, Wei Liu, Lin Li, Huan Li and Jing-Tai Zhao
Sensors 2025, 25(9), 2731; https://doi.org/10.3390/s25092731 - 25 Apr 2025
Viewed by 457
Abstract
In order to meet the demand for high-frequency current sensors in 5G communication and new energy fields, there is an urgent need to develop high-performance nickel-zinc ferrite-based co-fired ceramic magnetic cores. In this study, a nickel-zinc ferrite core based on low temperature co-fired [...] Read more.
In order to meet the demand for high-frequency current sensors in 5G communication and new energy fields, there is an urgent need to develop high-performance nickel-zinc ferrite-based co-fired ceramic magnetic cores. In this study, a nickel-zinc ferrite core based on low temperature co-fired ceramic (LTCC) technology was developed. The regulation mechanism of BaCo0.06Bi0.94O3 doping on the low-temperature sintering characteristics of NiZn ferrites was systematically investigated. The results show that the introduction of BaCo0.06Bi0.94O3 reduces the sintering temperature to 900 °C and significantly improves the density and grain uniformity of ceramics. When the doping amount is 0.75 wt%, the sample exhibits the lowest coercivity of 35.61 Oe and the following optimal soft magnetic properties: initial permeability of 73.74 (at a frequency of 1 MHz) and quality factor of 19.64 (at a frequency of 1 MHz). The highest saturation magnetization reaches 66.07 emu/g at 1 wt% doping. The results show that BaCo0.06Bi0.94O3 doping can regulate the grain boundary liquid phase distribution and modulate the magnetocrystalline anisotropy, which provides an experimental basis and optimization strategy for the application of LTCC technology in high-frequency current sensors. Full article
(This article belongs to the Special Issue New Sensors Based on Inorganic Material)
Show Figures

Figure 1

18 pages, 8277 KiB  
Article
Synthesis and Characterization of Ni-Doped Iron Oxide/GO Nanoparticles by Co-Precipitation Method for Electrocatalytic Oxygen Reduction Reaction in Microbial Fuel Cells
by Sandra E. Benito-Santiago, Brigitte Vigolo, Jaafar Ghanbaja, Dominique Bégin, Sathish-Kumar Kamaraj and Felipe Caballero-Briones
Ceramics 2025, 8(2), 40; https://doi.org/10.3390/ceramics8020040 - 21 Apr 2025
Viewed by 1116
Abstract
Nickel-doped iron oxide/graphene oxide powders were synthesized by the co-precipitation method varying the Ni/Fe ratio, and the activity of the materials towards the oxygen reduction reaction in a microbial fuel cell (MFC) was studied. The samples presented X-ray diffraction peaks associated with magnetite, [...] Read more.
Nickel-doped iron oxide/graphene oxide powders were synthesized by the co-precipitation method varying the Ni/Fe ratio, and the activity of the materials towards the oxygen reduction reaction in a microbial fuel cell (MFC) was studied. The samples presented X-ray diffraction peaks associated with magnetite, maghemite and Ni ferrite, as well as evidence of hematite. Raman spectra confirmed the presence of maghemite (γ-Fe2O3) and NiFe2O4. Scanning electron micrographs showed exfoliated sheets decorated with nanoparticles, and transmission electron micrographs showed spherical nanoparticles about 10 nm in diameter well distributed on the individual graphene sheet. The electrocatalytic activity for the oxygen reduction reaction (ORR) was studied by cyclic voltammetry in an air-saturated electrolyte, finding that the best catalyst was the sample with a 1:2 Ni/Fe ratio, using a catalyst concentration of 15 mg·cm−2 on graphite felt. The 1:2 Ni/Fe catalyst provided an oxygen reduction potential of 397 mV and a maximum oxygen reduction current of −0.13 mA; for comparison, an electrode prepared with GO/γ-Fe2O3 showed a maximum ORR of 369 mV and a maximum current of −0.03 mA. Microbial fuel cells with a vertical proton membrane were prepared with Ni-doped Fe3O4 and Fe3O4/graphene oxide and tested for 24 h; they reached a stable OCV of +400 mV and +300 mV OCV, and an efficiency of 508 mW·m−2 and 139 mW·m−2, respectively. The better performance of Ni-doped material was attributed to the combined presence of catalytic activity between γ-Fe2O3 and NiFe2O4, coupled with lower wettability, which led to better dispersion onto the electrode. Full article
Show Figures

Figure 1

18 pages, 4088 KiB  
Article
Magnetic Nanoparticles in Agriculture: Unraveling the Impact of Nickel Ferrite Nanoparticles on Peanut Growth and Seed Nutritional Quality
by Yuying Tang, Taiming Zhang, Yuanbo Li, Quanlong Wang, Weichen Zhao, Muhammed Nadeem, Peng Zhang and Yukui Rui
Plants 2025, 14(7), 1011; https://doi.org/10.3390/plants14071011 - 24 Mar 2025
Viewed by 777
Abstract
Nanotechnology has been a source of innovation in various fields in recent years, and its application in agriculture has attracted much attention, particularly for its potential to enhance crop growth and optimize nutritional quality. This study systematically investigated the effects of nickel ferrite [...] Read more.
Nanotechnology has been a source of innovation in various fields in recent years, and its application in agriculture has attracted much attention, particularly for its potential to enhance crop growth and optimize nutritional quality. This study systematically investigated the effects of nickel ferrite nanoparticles (NiFe2O4 NPs) on peanut (Arachis hypogaea L.) growth, nutrient dynamics, and biochemical responses, highlighting their potential as sustainable alternatives to conventional fertilizers. The results showed that an optimum concentration of 50 mg/kg soil significantly improved photosynthetic efficiency, biomass accumulation, seed yield, and nutritional quality, with 1000 seed weight and total yield increasing by 12.3% and 15.6%, respectively. In addition, we hypothesized that NiFe2O4 NPs would activate the antioxidant system and increase plant resistance. According to the risk assessment, the target hazard quotient (THQ = 0.081) is well below the safety threshold of 1. These findings provide strong evidence for the application of NiFe2O4 NPs as next-generation nano-fertilizers, offering a dual advantage of improved agronomic performance and biosafety. However, further research is needed to optimize their application strategies and assess potential long-term environmental impacts. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

13 pages, 4989 KiB  
Article
Radiosensitization Induced by Magnetic Hyperthermia of PEGylated Nickel Ferrite Nanoparticles on Breast Cancer Cells
by Daniele A. Fagundes, Liliam V. Leonel, Luis E. Fernandez-Outon, José D. Ardisson and Raquel G. dos Santos
Int. J. Mol. Sci. 2025, 26(6), 2706; https://doi.org/10.3390/ijms26062706 - 17 Mar 2025
Cited by 1 | Viewed by 657
Abstract
Magnetic hyperthermia can complement traditional cancer treatments by exploiting the greater heat sensitivity of tumor cells. This approach allows for localized action, increasing its therapeutic effectiveness. In this study, MCF-7 breast cancer cell radiosensitization, induced by the magnetic hyperthermia of PEGylated nickel ferrite [...] Read more.
Magnetic hyperthermia can complement traditional cancer treatments by exploiting the greater heat sensitivity of tumor cells. This approach allows for localized action, increasing its therapeutic effectiveness. In this study, MCF-7 breast cancer cell radiosensitization, induced by the magnetic hyperthermia of PEGylated nickel ferrite magnetic nanoparticles (PEG-NiF MNPs), was evaluated by exposing the cells in the presence of MNPs to an alternating magnetic field followed by 60Co gamma irradiation. Superparamagnetic PEG-NiF MNPs (25.6 ± 0.5 nm) synthesized via the hydrothermal method exhibited a hydrodynamic size below 150 nm, a saturation magnetization of 53 emu·g−1, biocompatibility of up to 100 µg·mL−1, selectivity for breast cancer cells, and an up-to-fivefold increase in therapeutic efficacy of radiation. When combined with magnetic hyperthermia, this increase reached up-to-sevenfold. These results indicate that PEG-NiF MNPs are suitable thermal radiosensitization agents for breast cancer cells. Full article
Show Figures

Graphical abstract

18 pages, 10848 KiB  
Article
Degradation of Tetracycline Hydrochloride via Activation of Peroxymonosulfate by Magnetic Nickel–Cobalt Ferrite: Role of High-Valent Metal Species as Primary Reactive Agents
by Hangang Xie, Mingmei Ding and Hang Xu
Water 2025, 17(5), 616; https://doi.org/10.3390/w17050616 - 20 Feb 2025
Cited by 1 | Viewed by 656
Abstract
Non-radical-based advanced oxidation processes, particularly those dominated by high-valent metals, have caught a great deal of attention because of their exceptional degradation selectivity and robust interference resistance. This study reports the synthesis of a novel ferrite, designated as Co0.5Ni0.5Fe [...] Read more.
Non-radical-based advanced oxidation processes, particularly those dominated by high-valent metals, have caught a great deal of attention because of their exceptional degradation selectivity and robust interference resistance. This study reports the synthesis of a novel ferrite, designated as Co0.5Ni0.5Fe2O4, through a solvothermal reaction, aimed at activating PMS for the removal of TCH from water. It was observed that calcination time played an important role in adjusting the particle size of the catalyst, which subsequently increased its surface area. This enlargement, in turn, led to an increase in active sites, ultimately enhancing the catalytic efficiency. Within the Co0.5Ni0.5Fe2O4/PMS system, high-valent metals Fe(IV) and Co(IV) became prominent as the primary active species, with O21 serving as a secondary contributor. The activation mechanism of PMS was thoroughly analyzed and discussed. Co0.5Ni0.5Fe2O4 exhibited remarkable stability in complex reaction environments and during multiple recycling tests, maintaining a TCH removal efficiency exceeding 98%. This study not only increases awareness of the interaction between catalyst structure and performance but also provides a viable platform for high-valent metal-dominated ferrite catalysts. Full article
Show Figures

Figure 1

18 pages, 5701 KiB  
Article
Effect of Nickel Content and Cooling Rate on the Microstructure of as Cast 316 Stainless Steels
by Lei Chen, Yang Wang, Yafeng Li, Zhengrui Zhang, Zhixuan Xue, Xinyu Ban, Chaohui Hu, Haixiao Li, Jun Tian, Wangzhong Mu, Kun Yang and Chao Chen
Crystals 2025, 15(2), 168; https://doi.org/10.3390/cryst15020168 - 10 Feb 2025
Cited by 4 | Viewed by 1687
Abstract
To meet the requirement of low magnetic permeability, which, in turn, lowers the ferrite content of castings, of special interest is 316 stainless steel, whose low ferrite content renders it suitable also for nuclear power applications. Therefore, the effects of the composition and [...] Read more.
To meet the requirement of low magnetic permeability, which, in turn, lowers the ferrite content of castings, of special interest is 316 stainless steel, whose low ferrite content renders it suitable also for nuclear power applications. Therefore, the effects of the composition and cooling rate of 316 stainless steel castings on the ferrite content are investigated. Three 316 stainless steel continuous casting samples with different compositions (primarily differing in the Ni content) are studied, i.e., low-alloy type (L-316), medium-alloy type (M-316), and high-alloy type (H-316). The austenite-forming element nickel of three different industrial samples is 10%, 12%, and 14%, respectively. The effect of the cooling rate on the ferrite content and precipitation phases of the high Ni content of the 316 stainless steel casting (H-316) is studied by remelting experiments and different methods of quenching of liquid steel. In both cases, the ferrite content and the precipitate phases in the microstructure are analyzed using SEM and EBSD. The results indicate that compositional changes within the 316 stainless steel range lead to changes in the solidification mode. In the L-316 casting, solidified by the FA mode (ferrite–austenite mode), ferrite precipitates first from the liquid phase, followed by the formation of austenite, and the ferrite content is 11.2%. In contrast, the ferrite content in the M-316 and H-316 castings, solidified by the AF mode (austenite–ferrite mode), is 2.88% and 2.45%, respectively. The effect of the solidification mode on the ferrite content is more obvious than that of the composition. The microstructure of the L-316 casting is mainly composed of the austenitic phase and the ferritic phase. The microstructure of the M-316 casting is composed of austenite, ferrite, and a small amount of sigma phase, with a small amount of ferrite transformed into the sigma phase. The microstructure of the H-316 casting is basically composed of austenite and the sigma phase, with the ferrite has been completely transformed into sigma phase. Changes in composition have a greater influence on the precipitate phases, while the solidification mode has a lesser impact. In the remelting experiments, the ferrite content in the H-316 ingot obtained through furnace cooling and air cooling is 1.49% and 1.94%, respectively, and the cooling rates are 0.1 °C/s and 3.5 °C/s, respectively. Under oil- and water-cooling conditions, with cooling rates of 11.5 °C/s and 25.1 °C/s, respectively, the ferrite content in the ingot is controlled to below 1%. The effect of the cooling rate on the precipitation phase of the H-316L ingot is that the amount of precipitated phase in the ingot decreases with an increase in cooling rate, but, when the cooling rate exceeds a certain value (air cooling 3.5 °C/s), the change in cooling rate has little effect on the amount of the precipitated phase. Full article
Show Figures

Figure 1

17 pages, 3668 KiB  
Article
High-Efficiency Adsorption Removal of Congo Red Dye from Water Using Magnetic NiFe2O4 Nanofibers: An Efficient Adsorbent
by Hellen C. T. Firmino, Emanuel P. Nascimento, Keila C. Costa, Luis C. C. Arzuza, Rondinele N. Araujo, Bianca V. Sousa, Gelmires A. Neves, Marco A. Morales and Romualdo R. Menezes
Materials 2025, 18(4), 754; https://doi.org/10.3390/ma18040754 - 8 Feb 2025
Cited by 4 | Viewed by 1109 | Correction
Abstract
The pollution caused by organic dyes in water bodies has become a major environmental issue, and removing such pernicious dyes presents an immense challenge for the scientific community and governments. In this study, a sorbent based on nickel ferrite (NiFe2O4 [...] Read more.
The pollution caused by organic dyes in water bodies has become a major environmental issue, and removing such pernicious dyes presents an immense challenge for the scientific community and governments. In this study, a sorbent based on nickel ferrite (NiFe2O4) fibers was fabricated by the solution blow spinning (SBS) method for the adsorptive removal of anionic Cong red (CR) dye. The cubic–spinel structure and the magnetic and porous nature of NiFe2O4 were confirmed by XRD, magnetometry, BET, and SEM analyses. The saturation magnetization confirmed the magnetic nature of the fibers, which favorably respond to an external magnetic field, facilitating separation from a treated solution. The sorption kinetics of CR on NiFe2O4 were best described by the pseudo-second-order model, while sorption equilibrium agreed best with the Freundlich, Langmuir, Sips, and Temkin isotherm models, suggesting a complex mechanism involving chemisorption, monolayer coverage, and heterogeneous adsorption. The NiFe2O4 fibers annealed at 500 °C showed a high CR removal efficiency of ~97% after only 30 min. The sorbent’s porous structure and high specific surface area were responsible for the improved removal efficiency. Finally, the results indicated the potential of the NiFe2O4 fibers in the remediation of water contaminated with Congo red dye. Full article
(This article belongs to the Special Issue Nanoarchitectonics in Materials Science, Second Edition)
Show Figures

Figure 1

Back to TopTop