BaCo0.06Bi0.94O3-Doped NiZn Ferrites for High Frequency Low Loss Current Sensors: LTCC Sintering and Magnetic Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. I Preparation of Composite Ceramic Samples
2.3. Characterization
3. Results and Discussion
3.1. Phase Analysis
3.2. Microstructure Analysis
3.3. Magnetic Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, Y.; Ma, M.; Zhang, F.; Liu, F.; Liu, Z.; Wang, D.; Li, Y. An LC wireless microfluidic sensor based on low temperature co-fired ceramic (LTCC) technology. J. Sens. 2019, 19, 1189. [Google Scholar] [CrossRef] [PubMed]
- Petrila, I. Annealing Temperature Effects on Humidity Sensor Properties for Mg0.5W0.5Fe2O4 Spinel Ferrite. J. Sens. 2022, 22, 9182. [Google Scholar] [CrossRef] [PubMed]
- Barrera, G.; Coisson, M.; Celegato, F.; Martino, L.; Tiwari, P.; Verma, R.; Kane, S.N.; Mazaleyrat, F. Specific Loss Power of Co/Li/Zn-Mixed Ferrite Powders for Magnetic Hyperthermia. J. Sens. 2020, 20, 2151. [Google Scholar] [CrossRef] [PubMed]
- Wan, B.; Fu, G.; Li, Y. Research on a Defects Detection Method in the Ferrite Phase Shifter Cementing Process Based on a Multi-Sensor Prognostic and Health Management (PHM) System. J. Sens. 2016, 16, 1263. [Google Scholar] [CrossRef]
- Hwang, J.-J.; Sim, H.-J. Development and Evaluation of Ferrite Core Inductively Coupled Plasma Radio Frequency Ion Source for High-Current Ion Implanters in Semiconductor Applications. J. Sens. 2024, 24, 5071. [Google Scholar] [CrossRef]
- Youn, S.; Lim, T.H.; Kang, E.; Lee, D.H.; Kim, K.B. Design of a Miniaturized Rectangular Multiturn Loop Antenna for Shielding Effectiveness Measurement. J. Sens. 2020, 20, 3178. [Google Scholar] [CrossRef]
- Saha, S.; Acharya, S.; Popov, M.; Sauyet, T.; Pfund, J.; Bidthanapally, R. A Novel Spinel Ferrite-Hexagonal Ferrite Composite for Enhanced Magneto-Electric Coupling in a Bilayer with PZT. J. Sens. 2023, 23, 9815. [Google Scholar] [CrossRef]
- Arshaka, K.; Twomey, K. A Ceramic Thick Film Humidity Sensor Based on MnZn Ferrite. J. Sens. 2002, 2, 50–61. [Google Scholar] [CrossRef]
- Lin, G.; Lu, D.; Cui, B.; Lin, A.; Liu, M.; Ye, Y. Establishment of a Mass Concrete Strength-Monitoring Method Using Barium Titanate–Bismuth Ferrite/Polyvinylidene Fluoride Nanocomposite Piezoelectric Sensors with Temperature Stability. J. Sens. 2024, 24, 4653. [Google Scholar] [CrossRef]
- Zhang, H.W.; Li, J.; Su, H.; Zhou, T.C.; Long, Y.; Zheng, Z.L. Development and application of ferrite materials for low temperature co-fired ceramic technology. J. Chin. Phys. B 2013, 22, 117504. [Google Scholar] [CrossRef]
- Węglarski, M.; Jankowski-Mihułowicz, P.; Pitera, G.; Jurków, D. LTCC Flow Sensor with RFID Interface. J. Sens. 2020, 20, 268. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowski, A.; Nawrot, W.; Czok, M.; Babij, M.; Bielówka, P. LTCC Strip Electrode Arrays for Gas Electron Multiplier Detectors. J. Sens. 2022, 22, 623. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Wang, Y.; Liu, F.; Zhang, F.; Liu, Z.; Li, Y. Passive Wireless LC Proximity Sensor Based on LTCC Technology. J. Sens. 2019, 19, 1110. [Google Scholar] [CrossRef] [PubMed]
- Molins-Benlliure, J.; Cabedo-Fabrés, M.; Antonino-Daviu, E.; Ferrando-Bataller, M. Miniaturized On-Ground 2.4 GHz IoT LTCC Chip Antenna and Its Positioning on a Ground Plane. J. Sens. 2023, 23, 3007. [Google Scholar] [CrossRef]
- Szymanowska, P.; Nowak, D.; Piasecki, T. Performance Evaluation of Miniature Integrated Electrochemical Cells Fabricated Using LTCC Technology. J. Sens. 2019, 19, 1314. [Google Scholar] [CrossRef]
- Malecha, K.; Jasińska, L.; Grytsko, A.; Drzozga, K.; Słobodzian, P.; Cabaj, J. Monolithic Microwave-Microfluidic Sensors Made with Low Temperature Co-Fired Ceramic (LTCC) Technology. J. Sens. 2019, 19, 577. [Google Scholar] [CrossRef]
- Xu, F.; Liao, Y.; Zhang, D.; Zhou, T.; Li, J.; Gan, G.; Zhang, H. Synthesis of highly uniform and compact lithium zinc ferrite ceramics via an efficient low temperature approach. J. Inorg. Chem. 2017, 56, 4512–4520. [Google Scholar] [CrossRef]
- Mei, L.T.; Hsiang, H.I.; Hsu, W.H. Varistor and magnetic properties of nickel copper zinc niobium ferrite doped with B2O3. J. Am. Ceram. Soc. 2014, 97, 3918–3925. [Google Scholar] [CrossRef]
- Mirzaee, O.; Golozar, M.A.; Shafyei, A. Influence of V2O5 as an effective dopant on the microstructure development and magnetic properties of Ni0.64Zn0.36Fe2O4 soft ferrites. J. Mater. Charact. 2008, 59, 638–641. [Google Scholar] [CrossRef]
- Su, H.; Zhang, H.; Tang, X.; Jing, Y. Effects of MoO3 and WO3 additives on densification and magnetic properties of highly permeable NiCuZn ferrites. J. Mater. Chem. Phys. 2007, 102, 271–274. [Google Scholar] [CrossRef]
- Yang, W.; Tang, X.; Zhang, H.; Su, H. Effects of Li2CO3 addition on the microstructure and magnetic properties of low-temperature-fired NiCuZn ferrites. J. Ceram. Int. 2016, 42, 14609–14613. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. J. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- Verma, A.; Dube, D.C. Processing of nickel-zinc ferrites via the citrate precursor route for high-frequency applications. J. Am. Ceram. Soc. 2005, 88, 519–523. [Google Scholar] [CrossRef]
- Yue, Z.; Zhou, J.; Gui, Z.; Li, L. Magnetic and electrical properties of low-temperature sintered Mn-doped NiCuZn ferrites. J. Magn. Magn. Mater. 2003, 264, 258–263. [Google Scholar] [CrossRef]
- Liu, Y.; Yi, Z.; Li, J.J.; Qiu, T.; Min, F.F.; Zhang, M.X. Microwave Sintering of Nanocrystalline Ni1−xZnxFe2O4 Ferrite Powder and Their Magnetic Properties. J. Am. Ceram. Soc. 2013, 96, 151–156. [Google Scholar] [CrossRef]
- Caliman, L.B.; Bouchet, R.; Gouvea, D.; Soudant, P.; Steil, M.C. Flash sintering of ionic conductors: The need of a reversible electrochemical reaction. J. Eur. Ceram. Soc. 2016, 36, 1253–1260. [Google Scholar] [CrossRef]
- Niu, X.; Liu, X.; Huang, X.; Huang, K.; Ma, Y.; Huang, F.; Lv, F. On the structure and some properties of LaCo Co-substituted NiZn ferrites prepared using the standard ceramic technique. J. High Temp. Mater. Process. 2016, 35, 417–423. [Google Scholar] [CrossRef]
- Zhong, D. Ferromagnetism; Science Press: Beijing, China, 1998; Volume II. [Google Scholar]
- Maisnam, M.; Phanjoubam, S.; Sarma, H.N.K.; Devi, L.R.; Thakur, O.P.; Prakash, C. Hysteresis and initial permeability behavior of vanadium-substituted lithium-zinc-titanium ferrite. J. Phys. B Condens. Matter 2004, 352, 86–90. [Google Scholar] [CrossRef]
- Liu, C.; Lan, Z.; Jiang, X.; Yu, Z.; Sun, K.; Li, L.; Liu, P. Effects of sintering temperature and Bi2O3 content on microstructure and magnetic properties of LiZn ferrites. J. Magn. Magn. Mater. 2008, 320, 1335–1339. [Google Scholar] [CrossRef]
- Nakamura, T. Snoek’s limit in high-frequency permeability of polycrystalline NiZn, Mg-Zn, and NiZn-Cu spinel ferrites. J. Appl. Phys. 2000, 88, 348–353. [Google Scholar] [CrossRef]
- Tsutaoka, T.; Ueshima, M.; Tokunaga, T.; Nakamura, T.; Hatakeyama, K. Frequency dispersion and temperature variation of complex permeability of NiZn ferrite composite materials. J. Appl. Phys. 1995, 78, 3983–3991. [Google Scholar] [CrossRef]
- Sun, K.; Liu, H.; Yang, Y.; Yu, Z.; Chen, C.; Wu, G.; Li, L. Contribution of magnetization mechanisms in nickel-zinc ferrites with different grain sizes and its temperature relationship. J. Mater. Chem. Phys. 2016, 175, 131–137. [Google Scholar] [CrossRef]
- Byun, T.Y.; Byeon, S.C.; Hong, K.S.; Kim, C.K. Factors affecting initial permeability of Co-substituted NiZn-Cu ferrites. IEEE Trans. Magn. 1999, 35, 3445–3447. [Google Scholar] [CrossRef]
- Van der Zaag, P.J.; Kolenbrander, M.; Rekveldt, M.T. The effect of intragranular domain walls in MgMnZn-ferrite. J. Appl. Phys. 1998, 83, 6870–6872. [Google Scholar] [CrossRef]
- Liu, W.; Yan, S.; Cheng, Y.; Li, Q.; Feng, Z.; Wang, X.; Nie, Y. Monodomain design and permeability study of high-Q-factor NiCuZn ferrites for near-field communication application. J. Electron. Mater. 2015, 44, 4367–4372. [Google Scholar] [CrossRef]
- Jia, H.; Liu, W.; Zhang, Z.; Chen, F.; Li, Y.; Liu, J.; Nie, Y. Monodomain MgCuZn ferrite with equivalent permeability and permittivity for broad frequency band applications. J. Ceram. Int. 2017, 43, 5974–5978. [Google Scholar] [CrossRef]
- Lee, J.; Oh, Y.; Oh, S.; Chae, H. Low power CMOS-based Hall sensor with simple structure using double-sampling delta-sigma ADC. J. Sens. 2020, 20, 5285. [Google Scholar] [CrossRef]
BaCo0.06Bi0.94O3 (wt%) | μi′ (1 MHz) | D (µm) | MS (emu/g) | Hc (Oe) | d (g/cm3) | Q (1 MHz) |
---|---|---|---|---|---|---|
0 | 72.25 | 1.27 | 64.16 | 40.75 | 4.87 | 14.53 |
0.25 | 73.83 | 1.38 | 63.79 | 41.83 | 5.11 | 17.91 |
0.5 | 72.99 | 1.21 | 64.32 | 41.25 | 4.97 | 11.83 |
0.75 | 73.74 | 1.21 | 65.21 | 35.61 | 5.15 | 19.64 |
1 | 68.63 | 1.33 | 66.07 | 40.81 | 4.67 | 13.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, S.-P.; Yuan, C.-L.; Liu, W.; Li, L.; Li, H.; Zhao, J.-T. BaCo0.06Bi0.94O3-Doped NiZn Ferrites for High Frequency Low Loss Current Sensors: LTCC Sintering and Magnetic Properties. Sensors 2025, 25, 2731. https://doi.org/10.3390/s25092731
Jiang S-P, Yuan C-L, Liu W, Li L, Li H, Zhao J-T. BaCo0.06Bi0.94O3-Doped NiZn Ferrites for High Frequency Low Loss Current Sensors: LTCC Sintering and Magnetic Properties. Sensors. 2025; 25(9):2731. https://doi.org/10.3390/s25092731
Chicago/Turabian StyleJiang, Shao-Pu, Chang-Lai Yuan, Wei Liu, Lin Li, Huan Li, and Jing-Tai Zhao. 2025. "BaCo0.06Bi0.94O3-Doped NiZn Ferrites for High Frequency Low Loss Current Sensors: LTCC Sintering and Magnetic Properties" Sensors 25, no. 9: 2731. https://doi.org/10.3390/s25092731
APA StyleJiang, S.-P., Yuan, C.-L., Liu, W., Li, L., Li, H., & Zhao, J.-T. (2025). BaCo0.06Bi0.94O3-Doped NiZn Ferrites for High Frequency Low Loss Current Sensors: LTCC Sintering and Magnetic Properties. Sensors, 25(9), 2731. https://doi.org/10.3390/s25092731