Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = nickel α-diimine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1606 KiB  
Article
Controlled Copolymerization of Ethylene and Biosourced Comonomers Using Dibenzobarrelene-Based α-Diimine Nickel Catalyst
by Handou Zheng, Junsong Wang, Zonglin Qiu, Chunyu Feng, Haotian Zhou, Guangshui Tu and Haiyang Gao
Molecules 2025, 30(11), 2402; https://doi.org/10.3390/molecules30112402 - 30 May 2025
Viewed by 565
Abstract
The development of earth-abundant nickel-based catalysts is currently one of the greatest challenges for the straightforward synthesis of functionalized polyolefins. With environmental protection concerns, controllable copolymerizations of ethylene with biosourced comonomers derived from castor oil, such as methyl 10-undecenoate (U-COOMe), 10-undecen-1-ol (U-OH), or [...] Read more.
The development of earth-abundant nickel-based catalysts is currently one of the greatest challenges for the straightforward synthesis of functionalized polyolefins. With environmental protection concerns, controllable copolymerizations of ethylene with biosourced comonomers derived from castor oil, such as methyl 10-undecenoate (U-COOMe), 10-undecen-1-ol (U-OH), or 10-undecenyl bromide (U-Br), were realized using α-diimine nickel catalyst (Ni-DBB) with dibenzobarrelene backbone. Catalyst Ni-DBB was highly tolerant toward polar comonomers, and functional polyethylenes were successfully prepared. The influences of the polar group, temperature, and comonomer concentration were studied in detail. Catalyst Ni-DBB was able to catalyze the copolymerization of ethylene with U-OH to afford high-molecular-weight (~180 kg/mol) functional polyethylene in a controlled fashion. NMR analysis showed that the produced functional polyethylenes were highly branched and had broad melting peaks ranging from 0 to 30 °C. Water contact angle (WCA) measurements showed that the surface of the obtained hydroxyl-functionalized polyethylene changed from hydrophobic to hydrophilic with the introduction of the comonomer U-OH. Full article
(This article belongs to the Special Issue Organometallic Compounds: Design, Synthesis and Application)
Show Figures

Graphical abstract

19 pages, 3086 KiB  
Review
A Comprehensive Review on Barrelene-Derived α-Diimine Nickel and Palladium Olefin Polymerization Catalysts
by Haotian Zhou, Chunyu Feng, Handou Zheng, Guangshui Tu, Xieyi Xiao and Haiyang Gao
Catalysts 2025, 15(2), 127; https://doi.org/10.3390/catal15020127 - 28 Jan 2025
Cited by 1 | Viewed by 1111
Abstract
Late transition metal olefin polymerization catalysts have received more attention in the field of catalytic olefin polymerization. Barrelene-based α-diimine nickel and palladium olefin polymerization catalysts are rising stars because of their backbone structure and catalytic properties. In this review, we present a comprehensive [...] Read more.
Late transition metal olefin polymerization catalysts have received more attention in the field of catalytic olefin polymerization. Barrelene-based α-diimine nickel and palladium olefin polymerization catalysts are rising stars because of their backbone structure and catalytic properties. In this review, we present a comprehensive review of barrelene-derived α-diimine nickel and palladium olefin polymerization catalysts. α-Diimine nickel and palladium catalysts are introduced from two aspects: barrelene-derived backbone and aniline derivatives with different substituents. The relationship between catalyst structure and catalytic properties is also emphasized. This review attempts to provide an inspiration for the design of high-performance barrelene-based catalysts. Full article
(This article belongs to the Special Issue State-of-the-Art Polymerization Catalysis)
Show Figures

Figure 1

12 pages, 3914 KiB  
Article
Synthesis of Branched Cyclo-Olefin Copolymers Using Neutral α-Sulfonate-β-Diimine Nickel Catalyst
by Donghui Li, Lixia Pei, Wenbo Du, Xieyi Xiao, Heng Gao, Handou Zheng and Haiyang Gao
Molecules 2025, 30(1), 157; https://doi.org/10.3390/molecules30010157 - 3 Jan 2025
Cited by 2 | Viewed by 916
Abstract
The homopolymerization of norbornene and the copolymerization of norbornene and ethylene were carried out using the neutral α-sulfonate-β-diimine nickel catalyst SD-Ni. The neutral α-sulfonate-β-diimine catalyst is highly active in the homopolymerization of norbornene, producing vinyl-addition polynorbornene [...] Read more.
The homopolymerization of norbornene and the copolymerization of norbornene and ethylene were carried out using the neutral α-sulfonate-β-diimine nickel catalyst SD-Ni. The neutral α-sulfonate-β-diimine catalyst is highly active in the homopolymerization of norbornene, producing vinyl-addition polynorbornene (PNB) with a high molecular weight. The copolymerization of norbornene (NB) and ethylene (E) using the catalyst SD-Ni was also investigated. The α-sulfonate-β-diimine catalyst SD-Ni shows distinctive catalytic copolymerization properties to produce high-molecular-weight E-NB copolymers with low norbornene incorporation. Importantly, microstructure analyses confirm that the resultant E-NB copolymers are branched cyclo-olefin copolymers (COCs) with branched polyethylene units. Full article
(This article belongs to the Special Issue Organometallic Compounds: Design, Synthesis and Application)
Show Figures

Figure 1

15 pages, 4010 KiB  
Article
Synthesis of High-Molecular-Weight Polypropylene Elastomer by Propylene Polymerization Using α-Diimine Nickel Catalysts
by Lujie Gao, Hegang Ren, Yanhui Hou, Linlin Ye, Hao Meng, Binyuan Liu and Min Yang
Polymers 2024, 16(16), 2376; https://doi.org/10.3390/polym16162376 - 22 Aug 2024
Viewed by 1691
Abstract
The α-diimine late transition metal catalyst represents a new strategy for the synthesis of atactic polypropylene elastomer. Taking into account the properties of the material, enhancing the molecular weight of polypropylene at an elevated temperature through modifying the catalyst structure, and further increasing [...] Read more.
The α-diimine late transition metal catalyst represents a new strategy for the synthesis of atactic polypropylene elastomer. Taking into account the properties of the material, enhancing the molecular weight of polypropylene at an elevated temperature through modifying the catalyst structure, and further increasing the activity of α-diimine catalyst for propylene polymerization, are urgent problems to be solved. In this work, two α-diimine nickel(II) catalysts with multiple hydroxymethyl phenyl substituents were synthesized and used for propylene homopolymerization. The maximum catalytic activity was 5.40 × 105 gPP/molNi·h, and the activity was still maintained above 105 gPP/molNi·h at 50 °C. The large steric hindrance of catalysts inhibited the chain-walking and chain-transfer reactions, resulting in polypropylene with high molecular weights (407~1101 kg/mol) and low 1,3-enchainment content (3.57~16.96%) in toluene. The low tensile strength (0.3~1.0 MPa), high elongation at break (218~403%) and strain recovery properties (S.R. ~50%, 10 tension cycles) of the resulting polypropylenes, as well as the visible light transmittance of approximately 90%, indicate the characteristics of the transparent elastomer. Full article
(This article belongs to the Special Issue Polyolefin: Synthesis, Properties, and Characterization)
Show Figures

Graphical abstract

11 pages, 2177 KiB  
Article
Nickel-Catalyzed Ethylene Copolymerization with Vinylalkoxysilanes: A Computational Study
by Zhihui Song, Rong Gao, Changjiang Wu, Qingqiang Gou, Gang Zheng, Junjie Liu, Shifang Yang and Huasheng Feng
Polymers 2024, 16(6), 762; https://doi.org/10.3390/polym16060762 - 10 Mar 2024
Cited by 1 | Viewed by 1921
Abstract
Since the discovery of α-diimine catalysts in 1995, an extensive series of Brookhart-type complexes have shown their excellence in catalyzing ethylene polymerizations with remarkable activity and a high molecular weight. However, although this class of palladium complexes has proven proficiency in catalyzing ethylene [...] Read more.
Since the discovery of α-diimine catalysts in 1995, an extensive series of Brookhart-type complexes have shown their excellence in catalyzing ethylene polymerizations with remarkable activity and a high molecular weight. However, although this class of palladium complexes has proven proficiency in catalyzing ethylene copolymerization with various polar monomers, the α-diimine nickel catalysts have generally exhibited a much worse performance in these copolymerizations compared to their palladium counterparts. Recently, Brookhart et al. reported a notable exception, demonstrating that α-diimine nickel catalysts could catalyze the ethylene copolymerization with some vinylalkoxysilanes effectively, producing functionalized polyethylene incorporating trialkoxysilane (-Si(OR)3) groups. This breakthrough is significant since Pd-catalyzed copolymerizations are commercially less usable due to the high cost of palladium. Thus, the utilization of Ni, given its abundance in raw materials and cost-effectiveness, is a landmark in ethylene/polar vinyl monomer copolymerization. Inspired by these findings, we used density functional theory (DFT) calculations to investigate the mechanistic study of ethylene copolymerization with vinyltrimethoxysilane (VTMoS) catalyzed by Brookhart-type nickel catalysts, aiming to elucidate the molecular-level understanding of this unique reaction. Initially, the nickel complexes and cationic active species were optimized through DFT calculations. Subsequently, we explored the mechanisms including the chain initiation, chain propagation, and chain termination of ethylene homopolymerization and copolymerization catalyzed by Brookhart-type complexes. Finally, we conducted an energetic analysis of both the in-chain and chain-end of silane enchainment. It was found that chain initiation is the dominant step in the ethylene homopolymerization catalyzed by the α-diimine Ni complex. The 1,2- and 2,1-insertion of vinylalkoxysilane exhibit similar barriers, explaining the fact that both five-membered and four-membered chelates were identified experimentally. After the VTMoS insertion, the barriers of ethylene reinsertion become higher, indicating that this step is the rate-determining step, which could be attributed to the steric hindrance between the incoming ethylene and the bulky silane substrate. We have also reported the energetic analysis of the distribution of polar substrates. The dominant pathway of chain-end -Si(OR)3 incorporation is suggested as chain-walking → ring-opening → ethylene insertion, and the preference of chain-end -Si(OR)3 incorporation is primarily attributed to the steric repulsion between the pre-inserted silane group and the incoming ethylene molecule, reducing the likelihood of in-chain incorporation. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

17 pages, 9060 KiB  
Article
Synthesis of α-Diimine Complex Enabling Rapidly Covalent Attachment to Silica Supports and Application of Homo-/Heterogeneous Catalysts in Ethylene Polymerization
by Xiaobei Zhao, Yanhui Hou, Linlin Ye, Kening Zong, Qingming An, Binyuan Liu and Min Yang
Int. J. Mol. Sci. 2023, 24(17), 13645; https://doi.org/10.3390/ijms241713645 - 4 Sep 2023
Cited by 2 | Viewed by 1486
Abstract
For covalent attachment-supported α-diimine catalysts, on the basis of ensuring the thermal stability and activity of the catalysts, the important problem is that the active group on the catalyst can quickly react with the support, anchoring it firmly on the support, shortening the [...] Read more.
For covalent attachment-supported α-diimine catalysts, on the basis of ensuring the thermal stability and activity of the catalysts, the important problem is that the active group on the catalyst can quickly react with the support, anchoring it firmly on the support, shortening the loading time, reducing the negative impact of the support on the active centers, and further improving the polymer morphology, which makes them suitable for use in industrial polymerization temperatures. Herein, we synthesized a α-diimine nickel(II) catalyst bearing four hydroxyl substituents. The hydroxyl substituents enable the catalyst to be immobilized firmly on silica support by covalent linkage in 5–10 min. Compared with the toluene solvent system, the homogeneous catalysts show high activity and thermal stability in hexane solvent at the same conditions. Compared with homogeneous catalysts, heterogeneous catalysis leads to improvements in catalyst lifetime, polymer morphology control, catalytic activity, and the molecular weight of polyethylene (up to 679 kg/mol). The silica-supported catalysts resulted in higher melting temperatures as well as lower branching densities in polyethylenes. Even at 70 °C, the polyethylene prepared by S-CatA-2 still exhibits dispersed particle morphology, and there is no phenomenon of reactor fouling, which is suitable for industrial polymerization processes. Full article
(This article belongs to the Special Issue Advances in Heterogeneous Catalysts)
Show Figures

Figure 1

9 pages, 2908 KiB  
Communication
Direct Synthesis of Polyethylene Thermoplastic Elastomers Using Hybrid Bulky Acenaphthene-Based α-Diimine Ni(II) Catalysts
by Hui Wang, Weiqing Lu, Mingmin Zou and Shengyu Dai
Molecules 2023, 28(5), 2266; https://doi.org/10.3390/molecules28052266 - 28 Feb 2023
Cited by 13 | Viewed by 2447
Abstract
Recently, polyolefin thermoplastic elastomers can be obtained directly using ethylene as a single feedstock via α-diimine nickel-catalyzed ethylene chain walking polymerization. Here, a new range of bulky acenaphthene-based α-diimine nickel complexes with hybrid o-phenyl and -diarylmethyl anilines were constructed and applied to [...] Read more.
Recently, polyolefin thermoplastic elastomers can be obtained directly using ethylene as a single feedstock via α-diimine nickel-catalyzed ethylene chain walking polymerization. Here, a new range of bulky acenaphthene-based α-diimine nickel complexes with hybrid o-phenyl and -diarylmethyl anilines were constructed and applied to ethylene polymerization. All the nickel complexes under the activation of excess Et2AlCl exhibited good activity (level of 106 g mol−1 h−1) and produced polyethylene with high molecular weight (75.6–352.4 kg/mol) as well as proper branching densities (55–77/1000C). All the branched polyethylenes obtained exhibited high strain (704–1097%) and moderate to high stress (7–25 MPa) at break values. Most interestingly, the polyethylene produced by the methoxy-substituted nickel complex exhibited significantly lower molecular weights and branching densities, as well as significantly poorer strain recovery values (48% vs. 78–80%) than those by the other two complexes under the same conditions. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

13 pages, 2269 KiB  
Article
New Ni(II)-Ni(II) Dinuclear Complex, a Resting State of the (α-diimine)NiBr2/AlMe3 Catalyst System for Ethylene Polymerization
by Igor E. Soshnikov, Nina V. Semikolenova, Anna A. Bryliakova, Artem A. Antonov, Konstantin P. Bryliakov and Evgenii P. Talsi
Catalysts 2023, 13(2), 333; https://doi.org/10.3390/catal13020333 - 2 Feb 2023
Cited by 1 | Viewed by 2781
Abstract
A novel room-temperature stable diamagnetic nickel complex 2 was detected upon activation of Brookhart-type ethylene polymerization pre-catalyst LNiBr2 (1, L = 1,4-bis-2,4,6-trimethylphenyl-2,3-dimethyl-1,4-diazabuta-1,3-diene) with AlMe3. Using in situ 1H, 2H, and 13C NMR spectroscopy, as well [...] Read more.
A novel room-temperature stable diamagnetic nickel complex 2 was detected upon activation of Brookhart-type ethylene polymerization pre-catalyst LNiBr2 (1, L = 1,4-bis-2,4,6-trimethylphenyl-2,3-dimethyl-1,4-diazabuta-1,3-diene) with AlMe3. Using in situ 1H, 2H, and 13C NMR spectroscopy, as well as DFT calculations, this species has been identified as an antiferromagnetically coupled homodinuclear complex [LNiII(μ-Me)(μ-CH2)NiIIL]+Br. Its behavior in the reaction solution is characteristic of the resting state of nickel catalyzed ethylene polymerization. Full article
(This article belongs to the Special Issue Mechanism/Kinetic Modeling Study of Catalytic Reactions)
Show Figures

Graphical abstract

15 pages, 3637 KiB  
Article
Unsymmetrical Strategy on α-Diimine Nickel and Palladium Mediated Ethylene (Co)Polymerizations
by Xin Ma, Yixin Zhang and Zhongbao Jian
Molecules 2022, 27(24), 8942; https://doi.org/10.3390/molecules27248942 - 15 Dec 2022
Cited by 6 | Viewed by 2122
Abstract
Among various catalyst design strategies used in the α-diimine nickel(II) and palladium(II) catalyst systems, the unsymmetrical strategy is an effective and widely utilized method. In this contribution, unsymmetrical nickel and palladium α-diimine catalysts (Ipty/iPr-Ni and Ipty/iPr-Pd) derived [...] Read more.
Among various catalyst design strategies used in the α-diimine nickel(II) and palladium(II) catalyst systems, the unsymmetrical strategy is an effective and widely utilized method. In this contribution, unsymmetrical nickel and palladium α-diimine catalysts (Ipty/iPr-Ni and Ipty/iPr-Pd) derived from the dibenzobarrelene backbone were constructed via the combination of pentiptycenyl and diisopropylphenyl substituents, and investigated toward ethylene (co)polymerization. Both of these catalysts were capable of polymerizing ethylene in a broad temperature range of 0–120 °C, in which Ipty/iPr-Ni could maintain activity in the level of 106 g mol−1 h−1 even at 120 °C. The branching densities of polyethylenes generated by both nickel and palladium catalysts could be modulated by the reaction temperature. Compared with symmetrical Ipty-Ni and iPr-Ni, Ipty/iPr-Ni exhibited the highest activity, the highest polymer molecular weight, and the lowest branching density. In addition, Ipty/iPr-Pd could produce copolymers of ethylene and methyl acrylate, with the polar monomer incorporating both on the main chain and the terminal of branches. Remarkably, the ratio of the in-chain and end-chain polar monomer incorporations could be modulated by varying the temperature. Full article
(This article belongs to the Special Issue Recent Advance in Transition Metal Complexes and Their Applications)
Show Figures

Graphical abstract

31 pages, 7820 KiB  
Review
Recent Advances in the Copolymerization of Ethylene with Polar Comonomers by Nickel Catalysts
by Randi Zhang, Rong Gao, Qingqiang Gou, Jingjing Lai and Xinyang Li
Polymers 2022, 14(18), 3809; https://doi.org/10.3390/polym14183809 - 12 Sep 2022
Cited by 21 | Viewed by 5167
Abstract
The less-expensive and earth-abundant nickel catalyst is highly promising in the copolymerization of ethylene with polar monomers and has thus attracted increasing attention in both industry and academia. Herein, we have summarized the recent advancements made in the state-of-the-art nickel catalysts with different [...] Read more.
The less-expensive and earth-abundant nickel catalyst is highly promising in the copolymerization of ethylene with polar monomers and has thus attracted increasing attention in both industry and academia. Herein, we have summarized the recent advancements made in the state-of-the-art nickel catalysts with different types of ligands for ethylene copolymerization and how these modifications influence the catalyst performance, as well as new polymerization modulation strategies. With regard to α-diimine, salicylaldimine/ketoiminato, phosphino-phenolate, phosphine-sulfonate, bisphospnine monoxide, N-heterocyclic carbene and other unclassified chelates, the properties of each catalyst and fine modulation of key copolymerization parameters (activity, molecular weight, comonomer incorporation rate, etc.) are revealed in detail. Despite significant achievements, many opportunities and possibilities are yet to be fully addressed, and a brief outlook on the future development and long-standing challenges is provided. Full article
Show Figures

Graphical abstract

14 pages, 4254 KiB  
Article
Slurry Homopolymerization of Ethylene Using Thermostable α-Diimine Nickel Catalysts Covalently Linked to Silica Supports via Substituents on Acenaphthequinone-Backbone
by Kening Zong, Yanhui Hou, Xiaobei Zhao, Yali Sun, Binyuan Liu and Min Yang
Polymers 2022, 14(17), 3684; https://doi.org/10.3390/polym14173684 - 5 Sep 2022
Cited by 4 | Viewed by 2311
Abstract
Four supported α-diimine nickel(II) catalysts covalently linked to silica via hydroxyl functionality on α-diimine acenaphthequinone-backbone were prepared and used in slurry polymerizations of ethylene to produce branched polyethylenes. The catalytic activities of these still reached 106 g/molNi·h at 70 °C. The life [...] Read more.
Four supported α-diimine nickel(II) catalysts covalently linked to silica via hydroxyl functionality on α-diimine acenaphthequinone-backbone were prepared and used in slurry polymerizations of ethylene to produce branched polyethylenes. The catalytic activities of these still reached 106 g/molNi·h at 70 °C. The life of the supported catalyst is prolonged, as can be seen from the kinetic profile. The molecular weight of the polyethylene obtained by the 955 silica gel supported catalyst was higher than that obtained by the 2408D silica gel supported catalyst. The melting points of polyethylene obtained by the supported catalysts S-C1-a/b are all above 110 °C. Compared with the homogeneous catalyst, the branching numbers of the polyethylenes obtained by the supported catalysts S-C1-a/b is significantly lower. The polyethylenes obtained by supported catalyst S-C1-a/b at 30–50 °C are free-flowing particles, which is obviously better than the rubber-like cluster polymer obtained from homogeneous catalyst. Full article
(This article belongs to the Collection Polymerization and Kinetic Studies)
Show Figures

Graphical abstract

11 pages, 2596 KiB  
Perspective
α-Diimine Ni-Catalyzed Ethylene Polymerizations: On the Role of Nickel(I) Intermediates
by Igor E. Soshnikov, Nina V. Semikolenova, Konstantin P. Bryliakov and Evgenii P. Talsi
Catalysts 2021, 11(11), 1386; https://doi.org/10.3390/catal11111386 - 17 Nov 2021
Cited by 9 | Viewed by 3376
Abstract
Nickel(II) complexes with bidentate N,N-α-diimine ligands constitute a broad class of promising catalysts for the synthesis of branched polyethylenes via ethylene homopolymerization. Despite extensive studies devoted to the rational design of new Ni(II) α-diimines with desired catalytic properties, the polymerization [...] Read more.
Nickel(II) complexes with bidentate N,N-α-diimine ligands constitute a broad class of promising catalysts for the synthesis of branched polyethylenes via ethylene homopolymerization. Despite extensive studies devoted to the rational design of new Ni(II) α-diimines with desired catalytic properties, the polymerization mechanism has not been fully rationalized. In contrast to the well-characterized cationic Ni(II) active sites of ethylene polymerization and their precursors, the structure and role of Ni(I) species in the polymerization process continues to be a “black box”. This perspective discusses recent advances in the understanding of the nature and role of monovalent nickel complexes formed in Ni(II) α-diimine-based ethylene polymerization catalyst systems. Full article
(This article belongs to the Special Issue 10th Anniversary of Catalysts: Molecular Catalysis)
Show Figures

Graphical abstract

9 pages, 1743 KiB  
Article
Iminopyridine Ni(II) Catalysts Affording Oily Hyperbranched Ethylene Oligomers and/or Crystalline Polyethylenes Depending on the Reaction Conditions: Possible Role of In Situ Catalyst Structure Modifications
by Ilaria D’Auria, Zeinab Saki and Claudio Pellecchia
Macromol 2021, 1(2), 121-129; https://doi.org/10.3390/macromol1020010 - 7 May 2021
Cited by 5 | Viewed by 3408
Abstract
Nickel-based ethylene polymerization catalysts have unique features, being able to produce macromolecules with a variable content of branches, resulting in polymers ranging from semicrystalline plastics to elastomers to hyperbranched amorphous waxes and oils. In addition to Brookhart’s α-diimine catalysts, iminopyridine Ni(II) complexes are [...] Read more.
Nickel-based ethylene polymerization catalysts have unique features, being able to produce macromolecules with a variable content of branches, resulting in polymers ranging from semicrystalline plastics to elastomers to hyperbranched amorphous waxes and oils. In addition to Brookhart’s α-diimine catalysts, iminopyridine Ni(II) complexes are among the most investigated systems. We report that Ni(II) complexes bearing aryliminopyridine ligands with bulky substituents both at the imino moiety and in the 6-position of pyridine afford either hyperbranched low molecular weight polyethylene oils or prevailingly linear crystalline polyethylenes or both, depending on the ligand structure and the reaction conditions. The formation of multiple active species in situ is suggested by analysis of the post-polymerization catalyst residues, showing the partial reduction of the imino function. Some related arylaminopyridine Ni(II) complexes were also synthesized and tested, showing a peculiar behavior, i.e., the number of branches of the produced polyethylenes increases while ethylene pressure increases. Full article
Show Figures

Scheme 1

11 pages, 1962 KiB  
Article
Living Chain-Walking (Co)Polymerization of Propylene and 1-Decene by Nickel α-Diimine Catalysts
by Pei Li, Xiaotian Li, Shabnam Behzadi, Mengli Xu, Fan Yu, Guoyong Xu and Fuzhou Wang
Polymers 2020, 12(9), 1988; https://doi.org/10.3390/polym12091988 - 31 Aug 2020
Cited by 7 | Viewed by 3463
Abstract
Homo- and copolymers of propylene and 1-decene were synthesized by controlled chain-walking (co)polymerization using phenyl substituted α-diimine nickel complexes activated with modified methylaluminoxane (MMAO). This catalytic system was found to polymerize propylene in a living fashion to furnish high molecular weight ethylene-propylene (EP) [...] Read more.
Homo- and copolymers of propylene and 1-decene were synthesized by controlled chain-walking (co)polymerization using phenyl substituted α-diimine nickel complexes activated with modified methylaluminoxane (MMAO). This catalytic system was found to polymerize propylene in a living fashion to furnish high molecular weight ethylene-propylene (EP) copolymers. The copolymerizations proceeded to give high molecular weight P/1-decene copolymers with narrow molecular weight distribution (Mw/Mn ≈ 1.2), which indicated a living nature of copolymerization at room temperature. The random copolymerization results indicated the possibility of precise branched structure control, depending on the polymerization temperature and time. Full article
(This article belongs to the Special Issue Coordination Catalysis in Additive Polymerization)
Show Figures

Graphical abstract

9 pages, 1171 KiB  
Article
High Temperature, Living Polymerization of Ethylene by a Sterically-Demanding Nickel(II) α-Diimine Catalyst
by Lauren A. Brown, W. Curtis Anderson, Nolan E. Mitchell, Kevin R. Gmernicki and Brian K. Long
Polymers 2018, 10(1), 41; https://doi.org/10.3390/polym10010041 - 2 Jan 2018
Cited by 34 | Viewed by 6306
Abstract
Catalysts that employ late transition-metals, namely Ni and Pd, have been extensively studied for olefin polymerizations, co-polymerizations, and for the synthesis of advanced polymeric structures, such as block co-polymers. Unfortunately, many of these catalysts often exhibit poor thermal stability and/or non-living polymerization behavior [...] Read more.
Catalysts that employ late transition-metals, namely Ni and Pd, have been extensively studied for olefin polymerizations, co-polymerizations, and for the synthesis of advanced polymeric structures, such as block co-polymers. Unfortunately, many of these catalysts often exhibit poor thermal stability and/or non-living polymerization behavior that limits their ability to access tailored polymer structures. Due to this, the development of catalysts that display controlled/living behavior at elevated temperatures is vital. In this manuscript, we describe a Ni α-diimine complex that is capable of polymerizing ethylene in a living manner at temperatures as high as 75 °C, which is one of the highest temperatures reported for the living polymerization of ethylene by a late transition metal-based catalyst. Furthermore, we will demonstrate that this catalyst’s living behavior is not dependent on the presence of monomer, and that it can be exploited to access polyethylene-based block co-polymers. Full article
(This article belongs to the Special Issue Olefin Polymerization and Polyolefin)
Show Figures

Figure 1

Back to TopTop