Controlled Copolymerization of Ethylene and Biosourced Comonomers Using Dibenzobarrelene-Based α-Diimine Nickel Catalyst
Abstract
:1. Introduction
2. Results and Discussion
2.1. Copolymerization of Ethylene and Comonomers
2.2. Microstructures of Functional Polyethylene
2.3. Hydrophilic Property of Functional Polyethylene
3. Materials and Methods
3.1. General Procedures
3.2. Materials
3.3. Measurements
3.4. Procedure for the Copolymerization of Ethylene and Comonomers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stürzel, M.; Mihan, S.; Mülhaupt, R. From Multisite Polymerization Catalysis to Sustainable Materials and All-Polyolefin Composites. Chem. Rev. 2016, 116, 1398–1433. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Zou, C.; Chen, C. Material Properties of Functional Polyethylenes from Transition-Metal-Catalyzed Ethylene-Polar Monomer Copolymerization. Macromolecules 2022, 55, 1910–1922. [Google Scholar] [CrossRef]
- Tan, C.; Si, G.; Zou, C.; Chen, C. Functional Polyolefins and Composites. Angew. Chem. Int. Ed. 2025, 64, e202424529. [Google Scholar] [CrossRef]
- Ghiass, M.; Hutchinson, R.A. Simulation of Free Radical High-Pressure Copolymerization in a Multizone Autoclave: Model Development and Application. Polym. React. Eng. 2003, 11, 989–1015. [Google Scholar] [CrossRef]
- Franssen, N.M.G.; Reek, J.N.H.; de Bruin, B. Synthesis of Functional ‘Polyolefins’: State of the Art and Remaining Challenges. Chem. Soc. Rev. 2013, 42, 5809–5832. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, J.; Xu, X. Studies on High Density Polyethylene (HDPE) Functionalized by Ultraviolet Irradiation and its Application. Polym. Int. 2003, 52, 1527–1530. [Google Scholar] [CrossRef]
- Berkefeld, A.; Mecking, S. Coordination Copolymerization of Polar Vinyl Monomers H2C=CHX. Angew. Chem. Int. Ed. 2008, 47, 2538–2542. [Google Scholar] [CrossRef]
- Guo, L.; Dai, S.; Sui, X.; Chen, C. Palladium and Nickel Catalyzed Chain Walking Olefin Polymerization and Copolymerization. ACS Catal. 2016, 6, 428–441. [Google Scholar] [CrossRef]
- Chen, J.; Gao, Y.; Marks, T.J. Early Transition Metal Catalysis for Olefin–Polar Monomer Copolymerization. Angew. Chem. Int. Ed. 2020, 59, 14726–14735. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, H.; Xin, S.; Li, H.; Luo, Y.; He, S. DFT Studies on the Early-Transition-Metal-Catalyzed Polymerization of Polar Monomers with a Methylene Spacer between Vinyl and Functional Groups. Organometallics 2022, 41, 3514–3521. [Google Scholar] [CrossRef]
- Mu, H.; Zhou, G.; Hu, X.; Jian, Z. Recent Advances in Nickel Mediated Copolymerization of Olefin with Polar Monomers. Coord. Chem. Rev. 2021, 435, 213802. [Google Scholar] [CrossRef]
- Zheng, H.; Qiu, Z.; Li, D.; Pei, L.; Gao, H. Advance on Nickel- and Palladium-Catalyzed Insertion Copolymerization of Ethylene and Acrylate Monomers. J. Polym. Sci. 2023, 61, 2987–3021. [Google Scholar] [CrossRef]
- Chen, Z.; Brookhart, M. Exploring Ethylene/Polar Vinyl Monomer Copolymerizations Using Ni and Pd α-Diimine Catalysts. Acc. Chem. Res. 2018, 51, 1831–1839. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Chen, C. A continuing legend: The Brookhart-type α-Diimine Nickel and Palladium Catalysts. Polym. Chem. 2019, 10, 2354–2369. [Google Scholar] [CrossRef]
- Wang, X.; Ma, L.; Dong, B.; Zhang, C.; Zhang, X.; Liu, H. Axial Anagostic Interaction in α-Diimine Nickel Catalysts: An Ultraefficient Occupation Strategy in Suppressing Associative Chain Transfers to Achieve UHMWPEs. Macromolecules 2025, 58, 1888–1897. [Google Scholar] [CrossRef]
- Drent, E.; van Dijk, R.; van Ginkel, R.; van Oort, B.; Pugh, R.I. Palladium Catalysed Copolymerisation of Ethene with Alkylacrylates: Polar Comonomer Built into the Linear Polymer Chain. Chem. Commun. 2002, 7, 744–745. [Google Scholar] [CrossRef] [PubMed]
- Guironnet, D.; Roesle, P.; Rünzi, T.; Göttker-Schnetmann, I.; Mecking, S. Insertion Polymerization of Acrylate. J. Am. Chem. Soc. 2009, 131, 422–423. [Google Scholar] [CrossRef]
- Ota, Y.; Ito, S.; Kuroda, J.-I.; Okumura, Y.; Nozaki, K. Quantification of the Steric Influence of Alkylphosphine–Sulfonate Ligands on Polymerization, Leading to High-Molecular-Weight Copolymers of Ethylene and Polar Monomers. J. Am. Chem. Soc. 2014, 136, 11898–11901. [Google Scholar] [CrossRef]
- Iberl, S.; Voccia, M.; Ritacco, I.; Odenwald, L.; Baur, M.; Falivene, L.; Caporaso, L.; Mecking, S. Keto-Polyethylene Material from Pd(II)-Catalyzed Copolymerization with Continuous Carbon Monoxide Feed. ACS Catal. 2025, 15, 8259–8267. [Google Scholar] [CrossRef]
- Younkin Todd, R.; Connor Eric, F.; Henderson Jason, I.; Friedrich Stefan, K.; Grubbs Robert, H.; Bansleben Donald, A. Neutral, Single-Component Nickel (II) Polyolefin Catalysts That Tolerate Heteroatoms. Science 2000, 287, 460–462. [Google Scholar] [CrossRef]
- Mu, H.; Pan, L.; Song, D.; Li, Y. Neutral Nickel Catalysts for Olefin Homo- and Copolymerization: Relationships between Catalyst Structures and Catalytic Properties. Chem. Rev. 2015, 115, 12091–12137. [Google Scholar] [CrossRef] [PubMed]
- Kenyon, P.; Wörner, M.; Mecking, S. Controlled Polymerization in Polar Solvents to Ultrahigh Molecular Weight Polyethylene. J. Am. Chem. Soc. 2018, 140, 6685–6689. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, D.; Chiba, Y.; Takano, S.; Osakada, K. Double-Decker-Type Dinuclear Nickel Catalyst for Olefin Polymerization: Efficient Incorporation of Functional Co-monomers. Angew. Chem. Int. Ed. 2013, 52, 12536–12540. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yao, E.; Wang, J.; Gong, X.; Ma, Y. Ethylene (Co)polymerization by Binuclear Nickel Phenoxyiminato Catalysts with Cofacial Orientation. Macromolecules 2016, 49, 8848–8854. [Google Scholar] [CrossRef]
- Xin, B.S.; Sato, N.; Tanna, A.; Oishi, Y.; Konishi, Y.; Shimizu, F. Nickel Catalyzed Copolymerization of Ethylene and Alkyl Acrylates. J. Am. Chem. Soc. 2017, 139, 3611–3614. [Google Scholar] [CrossRef]
- Zhang, Y.; Mu, H.; Pan, L.; Wang, X.; Li, Y. Robust Bulky [P,O] Neutral Nickel Catalysts for Copolymerization of Ethylene with Polar Vinyl Monomers. ACS Catal. 2018, 8, 5963–5976. [Google Scholar] [CrossRef]
- Xiong, S.; Shoshani, M.M.; Zhang, X.; Spinney, H.A.; Nett, A.J.; Henderson, B.S.; Miller, T.F., III; Agapie, T. Efficient Copolymerization of Acrylate and Ethylene with Neutral P, O-Chelated Nickel Catalysts: Mechanistic Investigations of Monomer Insertion and Chelate Formation. J. Am. Chem. Soc. 2021, 143, 6516–6527. [Google Scholar] [CrossRef]
- Baur, M.; Lin, F.; Morgen, T.O.; Odenwald, L.; Mecking, S. Polyethylene Materials with In-Chain Ketones from Nonalternating Catalytic Copolymerization. Science 2021, 374, 604–607. [Google Scholar] [CrossRef]
- Yang, Q.; Kang, X.; Liu, Y.; Mu, H.; Jian, Z. Ultrahigh Molecular Weight Ethylene–Acrylate Copolymers Synthesized with Highly Active Neutral Nickel Catalysts. Angew. Chem. Int. Ed. 2025, 64, e202421904. [Google Scholar] [CrossRef]
- Johnson, L.K.; Mecking, S.; Brookhart, M. Copolymerization of Ethylene and Propylene with Functionalized Vinyl Monomers by Palladium(II) Catalysts. J. Am. Chem. Soc. 1996, 118, 267–268. [Google Scholar] [CrossRef]
- Mecking, S.; Johnson, L.K.; Wang, L.; Brookhart, M. Mechanistic Studies of the Palladium-Catalyzed Copolymerization of Ethylene and α-Olefins with Methyl Acrylate. J. Am. Chem. Soc. 1998, 120, 888–899. [Google Scholar] [CrossRef]
- Keyes, A.; Basbug Alhan, H.E.; Ordonez, E.; Ha, U.; Beezer, D.B.; Dau, H.; Liu, Y.-S.; Tsogtgerel, E.; Jones, G.R.; Harth, E. Olefins and Vinyl Polar Monomers: Bridging the Gap for Next Generation Materials. Angew. Chem. Int. Ed. 2019, 58, 12370–12391. [Google Scholar] [CrossRef] [PubMed]
- Kesti, M.R.; Coates, G.W.; Waymouth, R.M. Homogeneous Ziegler-Natta Polymerization of Functionalized Monomers Catalyzed by Cationic Group IV Metallocenes. J. Am. Chem. Soc. 1992, 114, 9679–9680. [Google Scholar] [CrossRef]
- Sampson, J.; Bruening, M.; Akhtar, M.N.; Jaseer, E.A.; Theravalappil, R.; Garcia, N.; Agapie, T. Copolymerization of Ethylene and Long-Chain Functional α-Olefins by Dinuclear Zirconium Catalysts. Organometallics 2021, 40, 1854–1858. [Google Scholar] [CrossRef]
- Boffa, L.S.; Novak, B.M. Copolymerization of Polar Monomers with Olefins Using Transition-Metal Complexes. Chem. Rev. 2000, 100, 1479–1494. [Google Scholar] [CrossRef]
- Kotzabasakis, V.; Petzetakis, N.; Pitsikalis, M.; Hadjichristidis, N.; Lohse, D.J. Copolymerization of Tetradecene-1 and Octene-1 with Silyl-Protected 10-Undecen-1-ol Using a Cs-Symmetry Hafnium Metallocene Catalyst. A Route to Functionalized Poly(α-olefins). J. Polym. Sci. Part A Polym. Chem. 2009, 47, 876–886. [Google Scholar] [CrossRef]
- Tan, C.; Chen, C. Emerging Palladium and Nickel Catalysts for Copolymerization of Olefins with Polar Monomers. Angew. Chem. Int. Ed. 2019, 58, 7192–7200. [Google Scholar] [CrossRef]
- Zheng, H.; Gao, H. Noncovalent Interactions in Late Transition Metal-Catalyzed Polymerization of Olefins. Macromolecules 2024, 57, 6899–6913. [Google Scholar] [CrossRef]
- Li, M.; Wang, X.; Luo, Y.; Chen, C. A Second-Coordination-Sphere Strategy to Modulate Nickel- and Palladium-Catalyzed Olefin Polymerization and Copolymerization. Angew. Chem. Int. Ed. 2017, 56, 11604–11609. [Google Scholar] [CrossRef]
- Mitchell, N.E.; Long, B.K. Recent Advances in Thermally Robust, Late Transition Metal-Catalyzed Olefin Polymerization. Polym. Int. 2019, 68, 14–26. [Google Scholar] [CrossRef]
- Muhammad, Q.; Tan, C.; Chen, C. Concerted Steric and Electronic Effects on α-Diimine Nickel- and Palladium-Catalyzed Ethylene Polymerization and Copolymerization. Sci. Bull. 2020, 65, 300–307. [Google Scholar] [CrossRef]
- Dai, S.; Sui, X.; Chen, C. Highly Robust Palladium(II) α-Diimine Catalysts for Slow-Chain-Walking Polymerization of Ethylene and Copolymerization with Methyl Acrylate. Angew. Chem. Int. Ed. 2015, 54, 9948–9953. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Li, Y.; Du, W.; Cheung, C.S.; Li, D.; Gao, H.; Deng, H.; Gao, H. Unprecedented Square-Planar α-Diimine Dibromonickel Complexes and Their Ethylene Polymerizations Modulated by Ni–Phenyl Interactions. Macromolecules 2022, 55, 3533–3540. [Google Scholar] [CrossRef]
- Zheng, H.; Qiu, Z.; Gao, H.; Li, D.; Cheng, Z.; Tu, G.; Gao, H. Noncovalent Ni–Phenyl Interactions Promoted α-Diimine Nickel-Catalyzed Copolymerization of Ethylene and Methyl Acrylate. Macromolecules 2024, 57, 5279–5288. [Google Scholar] [CrossRef]
- Liu, F.S.; Hu, H.-B.; Xu, Y.; Guo, L.-H.; Zai, S.-B.; Song, K.-M.; Gao, H.-Y.; Zhang, L.; Zhu, F.-M.; Wu, Q. Thermostable α-Diimine Nickel(II) Catalyst for Ethylene Polymerization: Effects of the Substituted Backbone Structure on Catalytic Properties and Branching Structure of Polyethylene. Macromolecules 2009, 42, 7789–7796. [Google Scholar] [CrossRef]
- Guo, L.; Gao, H.; Guan, Q.; Hu, H.; Deng, J.; Liu, J.; Liu, F.; Wu, Q. Substituent Effects of the Backbone in α-Diimine Palladium Catalysts on Homo- and Copolymerization of Ethylene with Methyl Acrylate. Organometallics 2012, 31, 6054–6062. [Google Scholar] [CrossRef]
- Zhong, L.; Li, G.; Liang, G.; Gao, H.; Wu, Q. Enhancing Thermal Stability and Living Fashion in α-Diimine–Nickel-Catalyzed (Co)polymerization of Ethylene and Polar Monomer by Increasing the Steric Bulk of Ligand Backbone. Macromolecules 2017, 50, 2675–2682. [Google Scholar] [CrossRef]
- Zhong, S.; Tan, Y.; Zhong, L.; Gao, J.; Liao, H.; Jiang, L.; Gao, H.; Wu, Q. Precision Synthesis of Ethylene and Polar Monomer Copolymers by Palladium-Catalyzed Living Coordination Copolymerization. Macromolecules 2017, 50, 5661–5669. [Google Scholar] [CrossRef]
- Zhong, L.; Zheng, H.; Du, C.; Du, W.; Liao, G.; Cheung, C.; Gao, H. Thermally Robust α-Diimine Nickel and Palladium Catalysts with Constrained Space for Ethylene (Co)Polymerizations. J. Catal. 2020, 384, 208–217. [Google Scholar] [CrossRef]
- Zheng, H.; Zhong, L.; Du, C.; Du, W.; Cheung, C.S.; Ruan, J.; Gao, H. Combining Hydrogen Bonding Interactions with Steric and Electronic Modifications for Thermally Robust α-Diimine Palladium Catalysts Toward Ethylene (Co)Polymerization. Catal. Sci. Technol. 2021, 11, 124–135. [Google Scholar] [CrossRef]
- Du, C.; Zhong, L.; Gao, J.; Zhong, S.H.; Liao, H.; Gao, H.Y.; Wu, Q. Living (Co)polymerization of Ethylene and Bio-based Furfuryl Acrylate Using Dibenzobarrelene Derived -Diimine Palladium Catalysts. Polym. Chem. 2019, 10, 2029–2038. [Google Scholar] [CrossRef]
- Xu, M.; Chen, A.; Li, W.; Li, Y.; Zou, C.; Chen, C. Efficient Synthesis of Polar Functionalized Polyolefins with High Biomass Content. Macromolecules 2023, 56, 1372–1378. [Google Scholar] [CrossRef]
- Gandini, A.; Lacerda, T.M. From Monomers to Polymers from Renewable Resources: Recent Advances. Prog. Polym. Sci. 2015, 48, 1–39. [Google Scholar] [CrossRef]
- Dai, S.; Li, S.; Xu, G.; Chen, C. Direct Synthesis of Polar Functionalized Polyethylene Thermoplastic Elastomer. Macromolecules 2020, 53, 2539–2546. [Google Scholar] [CrossRef]
- Biermann, U.; Metzger, J.O. Synthesis of Alkyl-Branched Fatty Acids. Eur. J. Lipid Sci. Technol. 2008, 110, 805–811. [Google Scholar] [CrossRef]
- Zhang, X.; Li, P.; Zeng, J.; Li, J.; Gao, W.; Wang, B.; Xu, J.; Chen, K. Acetylated Cellulose Nanofibers Enhanced Bio-Based Polyesters Derived from 10-Undecanoic Acid toward Recyclable and Degradable Plastics. Chem. Eng. J. 2024, 479, 147797. [Google Scholar] [CrossRef]
- Quinzler, D.; Mecking, S. Renewable Resource-Based Poly(Dodecyloate) by Carbonylation Polymerization. Chem. Commun. 2009, 36, 5400–5402. [Google Scholar] [CrossRef]
- Liu, Y.; Mecking, S. A Synthetic Polyester from Plant Oil Feedstock by Functionalizing Polymerization. Angew. Chem., Int. Ed. 2019, 58, 3346–3350. [Google Scholar] [CrossRef]
- Gong, Y.; Li, S.; Gong, Q.; Zhang, S.; Liu, B.; Dai, S. Systematic Investigations of Ligand Steric Effects on α-Diimine Nickel Catalyzed Olefin Polymerization and Copolymerization. Organometallics 2019, 38, 2919–2926. [Google Scholar] [CrossRef]
- Hu, X.; Wang, C.; Jian, Z. Comprehensive Studies of the Ligand Electronic Effect on Unsymmetrical α-Diimine Nickel(II) Promoted Ethylene (Co)Polymerizations. Polym. Chem. 2020, 11, 4005–4012. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Y.; Zhang, Y.; Jian, Z. Unsymmetrical Strategy Makes Significant Differences in α-Diimine Nickel and Palladium Catalyzed Ethylene (Co)Polymerizations. ChemCatChem 2020, 12, 2497–2505. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Y.; Li, B.; Jian, Z. Fluorinated α-Diimine Nickel Mediated Ethylene (Co)Polymerization. Chem.-Eur. J. 2021, 27, 11935–11942. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhang, Y.; Li, B.; Jian, Z. Horizontally and Vertically Concerted Steric Strategy in α-Diimine Nickel Promoted Ethylene (Co)Polymerization. Chin. J. Chem. 2021, 39, 2829–2836. [Google Scholar] [CrossRef]
- Clark, K.J.; Powell, T. Polymers of Halogen-Substituted 1-Olefins. Polymer 1965, 6, 531–534. [Google Scholar] [CrossRef]
- Hakala, K.; Löfgren, B.; Helaja, T. Copolymerizations of Oxygen-Functionalized Olefins with Propylene Using Metallocene/Methylaluminoxane Catalyst. Eur. Polym. J. 1998, 34, 1093–1097. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, S.; Li, H.; Zhang, Z.; Lu, Y.; Wu, C.; Hu, Y. Highly Active Copolymerization of Ethylene with 10-Undecen-1-ol Using Phenoxy-Based Zirconium/Methylaluminoxane Catalysts. J. Polym. Sci. Part A Polym. Chem. 2005, 43, 5944–5952. [Google Scholar] [CrossRef]
- Chen, M.; Chen, C. Rational Design of High-Performance Phosphine Sulfonate Nickel Catalysts for Ethylene Polymerization and Copolymerization with Polar Monomers. ACS Catal. 2017, 7, 1308–1312. [Google Scholar] [CrossRef]
- Dai, S.; Chen, C. Direct Synthesis of Functionalized High-Molecular-Weight Polyethylene by Copolymerization of Ethylene with Polar Monomers. Angew. Chem. Int. Ed. 2016, 55, 13281–13285. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, Z.; Zhao, Y.; Luo, Y.; He, S. Multivariate Linear Regression Models to Predict Monomer Poisoning Effect in Ethylene/Polar Monomer Copolymerization Catalyzed by Late Transition Metals. Inorganics 2022, 10, 26. [Google Scholar] [CrossRef]
- Michalak, A.; Ziegler, T. A Comparison of Ni- and Pd-Diimine Complexes as Catalysts for Ethylene/Methyl Acrylate Copolymerization. A Static and Dynamic Density Functional Theory Study. Organometallics 2003, 22, 2660–2669. [Google Scholar] [CrossRef]
- Popeney, C.S.; Guan, Z. Effect of Ligand Electronics on the Stability and Chain Transfer Rates of Substituted Pd(II) α-Diimine Catalysts. Macromolecules 2010, 43, 4091–4097. [Google Scholar] [CrossRef]
- Xiao, Z.; Zhong, L.; Du, C.; Du, W.; Zheng, H.; Cheung, C.S.; Wang, L.; Gao, H. Unprecedented Steric and Positioning Effects of Comonomer Substituents on α-Diimine Palladium-Catalyzed Vinyl Arene/CO Copolymerization. Macromolecules 2021, 54, 687–695. [Google Scholar] [CrossRef]
- Gao, H.; Hu, H.; Zhu, F.; Wu, Q. A Thermally Robust Amine-Imine Nickel Catalyst Precursor for Living Polymerization of Ethylene above Room Temperature. Chem. Commun. 2012, 48, 3312–3314. [Google Scholar] [CrossRef] [PubMed]
- Kanai, Y.; Foro, S.; Plenio, H. Bispentiptycenyl-Diimine-Nickel Complexes for Ethene Polymerization and Copolymerization with Polar Monomers. Organometallics 2019, 38, 544–551. [Google Scholar] [CrossRef]
- Long, B.K.; Eagan, J.M.; Mulzer, M.; Coates, G.W. Semi-Crystalline Polar Polyethylene: Ester-Functionalized Linear Polyolefins Enabled by a Functional-Group-Tolerant, Cationic Nickel Catalyst. Angew. Chem. Int. Ed. 2016, 55, 7106–7110. [Google Scholar] [CrossRef]
- Usami, T.; Takayama, S. Fine-Branching Structure in High-Pressure, Low-Density Polyethylenes by 50.10-MHz Carbon-13 NMR Analysis. Macromolecules 1984, 17, 1756–1761. [Google Scholar] [CrossRef]
- Galland, G.B.; de Souza, R.F.; Mauler, R.S.; Nunes, F.F. 13C NMR Determination of the Composition of Linear Low-Density Polyethylene Obtained with [η3-Methallyl-nickel-diimine]PF6 Complex. Macromolecules 1999, 32, 1620–1625. [Google Scholar] [CrossRef]
- Pei, L.; Liu, F.; Liao, H.; Gao, J.; Zhong, L.; Gao, H.; Wu, Q. Synthesis of Polyethylenes with Controlled Branching with α-Diimine Nickel Catalysts and Revisiting Formation of Long-Chain Branching. ACS Catal. 2018, 8, 1104–1113. [Google Scholar] [CrossRef]
- Nakamura, A.; Ito, S.; Nozaki, K. Coordination−Insertion Copolymerization of Fundamental Polar Monomers. Chem. Rev. 2009, 109, 5215–5244. [Google Scholar] [CrossRef]
- Dong, J.; Hu, Y. Design and Synthesis of Structurally Well-Defined Functional Polyolefins via Transition Metal-Mediated Olefin Polymerization Chemistry. Coord. Chem. Rev. 2006, 250, 47–65. [Google Scholar] [CrossRef]
- Qian, H.; Zhang, Y.X.; Huang, S.M.; Lin, Z.Y. Effect of the Surface-modifying Macromolecules on the Duration of the Surface Functionalization. Appl. Surf. Sci. 2007, 253, 4659–4667. [Google Scholar] [CrossRef]
Entry | Monomer | T (°C) | Yield (mg) | Act. b | Incorporation c (mol%) | Mn d (kg/mol) | PDI d | BD e |
---|---|---|---|---|---|---|---|---|
1 | U-COOMe | 20 | 150 | 150 | 0.78 | 104.2 | 1.15 | 86 |
2 | U-COOMe | 35 | 122 | 122 | 1.01 | 81.4 | 1.18 | 89 |
3 | U-COOMe | 50 | 85 | 85 | 1.42 | 42.3 | 1.40 | 91 |
4 | U-COOMe | 65 | trace | - | - | - | - | - |
5 | U-OH | 20 | 340 | 340 | 0.57 | 121.7 | 1.07 | 88 |
6 | U-OH | 35 | 231 | 231 | 0.95 | 105.6 | 1.20 | 87 |
7 | U-OH | 50 | 213 | 213 | 1.23 | 70.2 | 1.35 | 82 |
8 | U-OH | 65 | trace | - | - | - | - | - |
9 | U-Br | 20 | 360 | 360 | 0.33 | 59.4 | 1.51 | 81 |
10 | U-Br | 35 | 303 | 303 | 0.36 | 36.8 | 1.53 | 85 |
11 | U-Br | 50 | 260 | 260 | 0.41 | 18.4 | 1.54 | 87 |
12 | U-Br | 65 | 218 | 218 | 0.47 | 9.1 | 1.65 | 95 |
13 | U-COOH | 20 | trace | - | - | - | - | - |
Entry | Monomer | Conc. (mol/L) | Yield (mg) | Act. b | Incorporation c (mol%) | Mn d (kg/mol) | PDI d | BD e |
---|---|---|---|---|---|---|---|---|
1 | U-COOMe | 0.05 | 170 | 170 | 0.42 | 125.2 | 1.12 | 88 |
2 | U-COOMe | 0.1 | 150 | 150 | 0.78 | 104.2 | 1.15 | 86 |
3 | U-COOMe | 0.2 | 106 | 106 | 1.31 | 89.1 | 1.24 | 83 |
4 | U-OH | 0.05 | 474 | 474 | 0.34 | 145.2 | 1.05 | 89 |
5 | U-OH | 0.1 | 340 | 340 | 0.57 | 121.7 | 1.07 | 88 |
6 | U-OH | 0.2 | 102 | 102 | 1.06 | 54.1 | 1.86 | 78 |
7 | U-Br | 0.1 | 360 | 360 | 0.33 | 59.4 | 1.51 | 81 |
8 | U-Br | 0.2 | 280 | 280 | 0.62 | 30.0 | 1.55 | 81 |
9 | U-Br | 0.3 | 209 | 209 | 0.93 | 23.7 | 1.61 | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, H.; Wang, J.; Qiu, Z.; Feng, C.; Zhou, H.; Tu, G.; Gao, H. Controlled Copolymerization of Ethylene and Biosourced Comonomers Using Dibenzobarrelene-Based α-Diimine Nickel Catalyst. Molecules 2025, 30, 2402. https://doi.org/10.3390/molecules30112402
Zheng H, Wang J, Qiu Z, Feng C, Zhou H, Tu G, Gao H. Controlled Copolymerization of Ethylene and Biosourced Comonomers Using Dibenzobarrelene-Based α-Diimine Nickel Catalyst. Molecules. 2025; 30(11):2402. https://doi.org/10.3390/molecules30112402
Chicago/Turabian StyleZheng, Handou, Junsong Wang, Zonglin Qiu, Chunyu Feng, Haotian Zhou, Guangshui Tu, and Haiyang Gao. 2025. "Controlled Copolymerization of Ethylene and Biosourced Comonomers Using Dibenzobarrelene-Based α-Diimine Nickel Catalyst" Molecules 30, no. 11: 2402. https://doi.org/10.3390/molecules30112402
APA StyleZheng, H., Wang, J., Qiu, Z., Feng, C., Zhou, H., Tu, G., & Gao, H. (2025). Controlled Copolymerization of Ethylene and Biosourced Comonomers Using Dibenzobarrelene-Based α-Diimine Nickel Catalyst. Molecules, 30(11), 2402. https://doi.org/10.3390/molecules30112402