Iminopyridine Ni(II) Catalysts Affording Oily Hyperbranched Ethylene Oligomers and/or Crystalline Polyethylenes Depending on the Reaction Conditions: Possible Role of In Situ Catalyst Structure Modifications
Abstract
:1. Introduction
2. Experimental Section
2.1. General Conditions
2.2. Characterization Methods
2.2.1. Nuclear Magnetic Resonance Spectroscopy (NMR)
2.2.2. Size-Exclusion Chromatography (SEC)
2.2.3. Differential Scanning Calorimetry (DSC)
2.3. Ligands and Complexes Synthesis
2.3.1. Synthesis of Complex 5
2.3.2. Synthesis of Complex 6
2.4. General Procedure for Ethylene Polymerization
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, L.K.; Killian, C.M.; Brookhart, M. New Pd(II)- and Ni(II)-Based Catalysts for Polymerization of Ethylene and α-Olefins. J. Am. Chem. Soc. 1995, 117, 6414–6415. [Google Scholar] [CrossRef]
- Ittel, S.D.; Johnson, L.K.; Brookhart, M. Late-Metal Catalysts for Ethylene Homo- and Copolymerization. Chem. Rev. 2000, 100, 1169–1203. [Google Scholar] [CrossRef] [PubMed]
- Small, B.L.; Brookhart, M.; Bennett, A.M.A. Highly Active Iron and Cobalt Catalysts for the Polymerization of Ethylene. J. Am. Chem. Soc. 1998, 120, 4049–4050. [Google Scholar] [CrossRef]
- Britovsek, G.J.P.; Gibson, V.C.; Hoarau, O.D.; Spitzmesser, S.K.; White, A.J.P.; David, J.; Williams, D.J. Iron and Cobalt Ethylene Polymerization Catalysts: Variations on the Central Donor. Inorg. Chem. 2003, 42, 3454–3465. [Google Scholar] [CrossRef]
- Bianchini, C.; Giambastiani, G.; Luconi, L.; Meli, A. Olefin oligomerization, homopolymerization and copolymerization by late transition metals supported by (imino) pyridine ligands. Coord. Chem. Rev. 2010, 254, 431–455. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Q.; Solan, G.A.; Sun, W.-H. Recent advances in Ni-mediated ethylene chain growth: N-Imine-Donor ligand effects on catalytic activity, thermal stability and oligo-/polymer structure. Coord. Chem. Rev. 2017, 350, 68–83. [Google Scholar] [CrossRef]
- Wang, F.; Chen, C. A continuing legend: The Brookhart-type α-diimine nickel and palladium catalysts. Polym. Chem. 2019, 10, 2354–2369. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Liu, W.; Chen, C. Late transition metal catalyzed α-olefin polymerization and copolymerization with polar monomers. Mater. Chem. Front. 2017, 1, 2487–2494. [Google Scholar] [CrossRef]
- Laine, T.V.; Klinga, M.; Leskelä, M. Synthesis and X-ray Structures of New Mononuclear and Dinuclear Diimine Complexes of Late Transition Metals. Eur. J. Inorg. Chem. 1999, 1999, 959–964. [Google Scholar] [CrossRef]
- Laine, T.V.; Piironen, U.; Lappalainen, K.; Klinga, M.; Aitola, E.; Leskelä, M. Pyridinylimine-Based nickel(II) and palladium(II) complexes: Preparation, structural characterization and use as alkene polymerization catalysts. J. Organomet. Chem. 2000, 606, 112–124. [Google Scholar] [CrossRef]
- Irrgang, T.; Keller, S.; Maisel, H.; Kretschmer, W.; Kempe, R. Sterically Demanding Iminopyridine Ligands. Eur. J. Inorg. Chem. 2007, 2007, 4221–4228. [Google Scholar] [CrossRef]
- Mahmood, Q.; Sun, W.-H. N, N-Chelated nickel catalysts for highly branched polyolefin elastomers: A survey. R. Soc. Open Sci. 2018, 5, 180367. [Google Scholar] [CrossRef] [Green Version]
- Vignesh, A.; Zhang, Q.; Ma, Y.; Liang, T.; Sun, W.-H. Attaining highly branched polyethylene elastomers by employing modified α-diiminonickel(II) catalysts: Probing the effects of enhancing fluorine atom on the ligand framework towards mechanical properties of polyethylene. Polymer 2020, 187, 122089. [Google Scholar] [CrossRef]
- Sun, W.-H.; Song, S.; Li, B.; Redshaw, C.; Hao, X.; Li, Y.-S.; Wang, F. Ethylene polymerization by 2-iminopyridylnickel halide complexes: Synthesis, characterization and catalytic influence of the benzhydryl group. Dalton Trans. 2012, 41, 11999–12010. [Google Scholar] [CrossRef]
- Yue, E.; Xing, Q.; Zhang, L.; Shi, Q.; Cao, X.-P.; Wang, L.; Redshaw, C.; Sun, W.-H. Synthesis and characterization of 2-(2-benzhydrylnaphthyliminomethyl) pyridylnickel halides: Formation of branched polyethylene. Dalton Trans. 2014, 43, 3339–3346. [Google Scholar] [CrossRef]
- Yue, E.; Zhang, L.; Xing, Q.; Cao, X.-P.; Hao, X.; Redshaw, C.; Sun, W.-H.; Sun, W.-H. 2-(1-(2-Benzhydrylnaphthylimino) ethyl)-pyridylnickel halides: Synthesis, characterization and ethylene polymerization behavior. Dalton Trans. 2014, 43, 423–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Y.; Mahmood, Q.; Hao, X.; Sun, W.-H. Synthesis and Ethylene Polymerization of 8-(fluorenylarylimino)-5, 6, 7-Trihydroquinolylnickel Chlorides: Tailoring Polyethylenes by Adjusting Fluorenyl Position and Adduct Et2Zn. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 1910–1919. [Google Scholar] [CrossRef]
- Zada, M.; Vignesh, A.; Guo, L.; Zhang, R.; Zhang, W.; Ma, Y.; Sun, Y.; Sun, W.-H. Sterically and Electronically Modified Aryliminopyridyl-Nickel Bromide Precatalysts for an Access to Branched Polyethylene with Vinyl/Vinylene End Groups. ACS Omega 2020, 5, 10610–10625. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Allen, K.E.; White, P.S.; Daugulis, O.; Brookhart, M. Synthesis of Branched Polyethylene with “Half-Sandwich” Pyridine-Imine Nickel Complexes. Organometallics 2016, 35, 1756–1760. [Google Scholar] [CrossRef]
- D’Auria, I.; Milione, S.; Caruso, T.; Balducci, G.; Pellecchia, C. Synthesis of hyperbranched low molecular weight polyethylene oils by an iminopyridine nickel(II) catalyst. Polym. Chem. 2017, 8, 6443–6454. [Google Scholar] [CrossRef]
- D’Auria, I.; D’Alterio, M.C.; Talarico, G.; Pellecchia, C. Alternating Copolymerization of CO2 and Cyclohexene Oxide by New Pyridylamidozinc(II) Catalysts. Macromolecules 2018, 51, 9871–9877. [Google Scholar] [CrossRef]
- Saki, Z.; D’Auria, I.; Dall’Anese, A.; Milani, B.; Pellecchia, C. Copolymerization of Ethylene and Methyl Acrylate by Pyridylimino Ni(II) Catalysts Affording Hyperbranched Poly(ethylene-co-methylacrylate)s with Tunable Structures of the Ester Groups. Macromolecules 2020, 53, 9294–9305. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, L.; Gao, H.; Zhu, F.; Wu, Q. Design of Thermally Stable Amine–Imine Nickel Catalyst Precursors for Living Polymerization of Ethylene: Effect of Ligand Substituents on Catalytic Behavior and Polymer Properties. Chem. Eur. J. 2014, 20, 3225–3233. [Google Scholar] [CrossRef]
- Wiedemann, T.; Voit, G.; Tchernook, A.; Roesle, P.; Götter-Schnetmann, I.; Mecking, S. Monofunctional Hyperbranched Ethylene Oligomers. J. Am. Chem. Soc. 2014, 136, 2078–2085. [Google Scholar] [CrossRef] [PubMed]
- Gibson, V.C.; Redshaw, C.; White, A.J.P.; Williams, D.J. Synthesis and structural characterisation of aluminium imino-amide and pyridyl-amide complexes: Bulky monoanionic N, N chelate ligands via methyl group transfer. J. Organomet. Chem. 1998, 550, 453–456. [Google Scholar] [CrossRef]
- Gibson, V.C.; Spitzmesser, S.K. Advances in Non-Metallocene Olefin Polymerization Catalysis. Chem. Rev. 2003, 103, 283–316. [Google Scholar] [CrossRef] [PubMed]
- Delferro, M.; Marks, T.J. Multinuclear Olefin Polymerization Catalysts. Chem. Rev. 2011, 111, 2450–2485. [Google Scholar] [CrossRef]
- Sun, W.-H. Novel polyethylenes via late transition metal complex pre-catalysts. Adv. Polym. Sci. 2013, 258, 163–178. [Google Scholar]
- Mu, H.; Pan, L.; Song, D.; Li, Y. Neutral Nickel Catalysts for Olefin Homo- and Copolymerization: Relationships between Catalyst Structures and Catalytic Properties. Chem. Rev. 2015, 115, 12091–12137. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Dai, S.; Sui, X.; Chen, C. Palladium and nickel catalyzed chain walking olefin polymerization and copolymerization. ACS Catal. 2016, 6, 428–441. [Google Scholar] [CrossRef] [Green Version]
- D’Auria, I.; Maggio, M.; Guerra, G.; Pellecchia, C. Efficient Modulation of Polyethylene Microstructure by Proper Activation of (α-Diimine) Ni(II) Catalysts: Synthesis of Well-Performing Polyethylene Elastomers. Macromolecules 2017, 50, 6586–6594. [Google Scholar] [CrossRef]
- Saito, J.; Onda, M.; Matsui, S.; Mitani, M.; Furuyama, R.; Tanaka, H.; Fujita, T. Propylene Polymerization with Bis(phenoxy-imine) Group-4 Catalysts Using iBu3Al/Ph3CB(C6F5)4as a Cocatalyst. Macromol. Rapid Commun. 2002, 23, 1118–1123. [Google Scholar] [CrossRef]
- Yasuhiko, S.; Norio, K.; Fujita, T. Synthesis and Ethylene Polymerization Behavior of a New Titanium Complex Having Two Imine–Phenoxy Chelate Ligands. Chem. Lett. 2002, 31, 358–359. [Google Scholar]
- Vishwa, P.A.; Haruyuki, M.; Junji, S.; Mitsuhiko, O.; Fujita, T. Highly Isospecific Polymerization of Propylene with Bis(phenoxy-imine) Zr and Hf Complexes Using iBu3Al/Ph3CB(C6F5)4 as a Cocatalyst. Chem. Lett. 2004, 33, 250–251. [Google Scholar]
- Lamberti, M.; Consolmagno, M.; Mazzeo, M.; Pellecchia, C. A Binaphthyl-Bridged Salen Zirconium Catalyst Affording Atactic Poly(propylene) and Isotactic Poly (α-olefins). Macromol. Rapid Commun. 2005, 26, 1866–1871. [Google Scholar] [CrossRef]
- Zai, S.; Liu, F.; Gao, H.; Li, C.; Zhou, G.; Cheng, S.; Guo, L.; Zhang, L.; Zhu, F.; Wu, Q. Longstanding living polymerization of ethylene: Substituent effect on bridging carbon of 2-pyridinemethanamine nickel catalysts. Chem. Commun. 2010, 46, 4321–4323. [Google Scholar] [CrossRef]
- Zai, S.; Gao, H.; Huang, Z.; Hu, H.; Wu, H.; Wu, Q. Substituent Effects of Pyridine-amine Nickel Catalyst Precursors on Ethylene Polymerization. ACS Catal. 2012, 2, 433–440. [Google Scholar] [CrossRef]
Run | Complex | T (°C) | P(ethylene) (atm) | Time (h) | Yield (g) | Activity a | Mn b(kDa) | PDI c | % Branches d |
---|---|---|---|---|---|---|---|---|---|
1 e | 1 | 0 | 50 | 4 | 1.00 f + | 25 | 0.9 | 3.1 | 6.2 |
2.80 e,g | 70 | 4.5 | 2.6 | 3.2 | |||||
2 e | 2 | 40 | 6 | 4 | 0.96 f | 24 | 2.0 | 1.3 | 7.4 |
3 e | 3 | 40 | 6 | 4 | 1.07 f | 27 | 0.73 | 1.3 | 10.5 |
4 e | 4 | 40 | 6 | 4 | 1.4d f | 35 | 0.35 | 1.2 | 9.0 |
5 h | 2 | 40 | 10 | 4 | 4.58 f | 114 | 3.6 | 1.4 | 7.3 |
6 h | 2 | 40 | 30 | 20 | 11.0 f | 55 | 3.10 | 1.4 | 8.2 |
7 h | 3 | 40 | 10 | 4 | 5.21 f | 130 | 0.58 | 1.3 | 8.9 |
8 h | 4 | 40 | 10 | 4 | 4.15 f | 104 | 0.30 | 1.1 | 8.8 |
9 e | 2 | 0 | 50 | 4 | 0.91 e,g | 23 | 5.20 | 3.2 | 5.0 |
Run a | Complex | Temperature (°C) | P (atm) | Yield (g) | Activity b | Mn c (kDa) | % Branches d |
---|---|---|---|---|---|---|---|
10 | 5 | 0 | 50 | 0.11 | 3.0 | 2.2 | 20.4 |
11 | 6 | 0 | 50 | 0.02 | 0.5 | 4.9 | 8.8 |
12 | 5 | 40 | 10 | 0.06 | 1.5 | 4.5 | 13.3 |
13 | 5 | 40 | 50 | 0.20 | 5.0 | 5.8 | 29.8 |
14 | 6 | 40 | 10 | 0.05 | 1.2 | 3.3 | 12.4 |
15 | 6 | 40 | 50 | 0.10 | 2.5 | 4.6 | 21.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Auria, I.; Saki, Z.; Pellecchia, C. Iminopyridine Ni(II) Catalysts Affording Oily Hyperbranched Ethylene Oligomers and/or Crystalline Polyethylenes Depending on the Reaction Conditions: Possible Role of In Situ Catalyst Structure Modifications. Macromol 2021, 1, 121-129. https://doi.org/10.3390/macromol1020010
D’Auria I, Saki Z, Pellecchia C. Iminopyridine Ni(II) Catalysts Affording Oily Hyperbranched Ethylene Oligomers and/or Crystalline Polyethylenes Depending on the Reaction Conditions: Possible Role of In Situ Catalyst Structure Modifications. Macromol. 2021; 1(2):121-129. https://doi.org/10.3390/macromol1020010
Chicago/Turabian StyleD’Auria, Ilaria, Zeinab Saki, and Claudio Pellecchia. 2021. "Iminopyridine Ni(II) Catalysts Affording Oily Hyperbranched Ethylene Oligomers and/or Crystalline Polyethylenes Depending on the Reaction Conditions: Possible Role of In Situ Catalyst Structure Modifications" Macromol 1, no. 2: 121-129. https://doi.org/10.3390/macromol1020010
APA StyleD’Auria, I., Saki, Z., & Pellecchia, C. (2021). Iminopyridine Ni(II) Catalysts Affording Oily Hyperbranched Ethylene Oligomers and/or Crystalline Polyethylenes Depending on the Reaction Conditions: Possible Role of In Situ Catalyst Structure Modifications. Macromol, 1(2), 121-129. https://doi.org/10.3390/macromol1020010