Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = next-generation treatments for SARS-CoV-2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 11168 KiB  
Article
Persistent Inflammation, Maladaptive Remodeling, and Fibrosis in the Kidney Following Long COVID-like MHV-1 Mouse Model
by Rajalakshmi Ramamoorthy, Anna Rosa Speciale, Emily M. West, Hussain Hussain, Nila Elumalai, Klaus Erich Schmitz Abe, Madesh Chinnathevar Ramesh, Pankaj B. Agrawal, Arumugam R. Jayakumar and Michael J. Paidas
Diseases 2025, 13(8), 246; https://doi.org/10.3390/diseases13080246 - 5 Aug 2025
Viewed by 57
Abstract
Background: Accumulating evidence indicates that SARS-CoV-2 infection results in long-term multiorgan complications, with the kidney being a primary target. This study aimed to characterize the long-term transcriptomic changes in the kidney following coronavirus infection using a murine model of MHV-1-induced SARS-like illness and [...] Read more.
Background: Accumulating evidence indicates that SARS-CoV-2 infection results in long-term multiorgan complications, with the kidney being a primary target. This study aimed to characterize the long-term transcriptomic changes in the kidney following coronavirus infection using a murine model of MHV-1-induced SARS-like illness and to evaluate the therapeutic efficacy of SPIKENET (SPK). Methods: A/J mice were infected with MHV-1. Renal tissues were collected and subjected to immunofluorescence analysis and Next Generation RNA Sequencing to identify differentially expressed genes associated with acute and chronic infection. Bioinformatic analyses, including PCA, volcano plots, and GO/KEGG pathway enrichment, were performed. A separate cohort received SPK treatment, and comparative transcriptomic profiling was conducted. Gene expression profile was further confirmed using real-time PCR. Results: Acute infection showed the upregulation of genes involved in inflammation and fibrosis. Long-term MHV-1 infection led to the sustained upregulation of genes involved in muscle regeneration, cytoskeletal remodeling, and fibrotic responses. Notably, both expression and variability of SLC22 and SLC22A8, key proximal tubule transporters, were reduced, suggesting a loss of segment-specific identity. Further, SLC12A1, a critical regulator of sodium reabsorption and blood pressure, was downregulated and is associated with the onset of polyuria and hydronephrosis. SLC transporters exhibited expression patterns consistent with tubular dysfunction and inflammation. These findings suggest aberrant activation of myogenic pathways and structural proteins in renal tissues, consistent with a pro-fibrotic phenotype. In contrast, SPK treatment reversed the expression of most genes, thereby restoring the gene profiles to those observed in control mice. Conclusions: MHV-1-induced long COVID is associated with persistent transcriptional reprogramming in the kidney, indicative of chronic inflammation, cytoskeletal dysregulation, and fibrogenesis. SPK demonstrates robust therapeutic potential by normalizing these molecular signatures and preventing long-term renal damage. These findings underscore the relevance of the MHV-1 model and support further investigation of SPK as a candidate therapy for COVID-19-associated renal sequelae. Full article
(This article belongs to the Special Issue COVID-19 and Global Chronic Disease 2025: New Challenges)
Show Figures

Figure 1

24 pages, 1795 KiB  
Review
SARS-CoV-2 Replication Revisited: Molecular Insights and Current and Emerging Antiviral Strategies
by Bryan John J. Subong and Imelda L. Forteza
COVID 2025, 5(6), 85; https://doi.org/10.3390/covid5060085 - 30 May 2025
Viewed by 1039
Abstract
The replication machinery of SARS-CoV-2 is a primary target for therapeutic intervention, and has led to significant progress in antiviral medication discovery. This review consolidates contemporary molecular insights into viral replication and rigorously assesses treatment methods at different phases of viruses’ clinical development. [...] Read more.
The replication machinery of SARS-CoV-2 is a primary target for therapeutic intervention, and has led to significant progress in antiviral medication discovery. This review consolidates contemporary molecular insights into viral replication and rigorously assesses treatment methods at different phases of viruses’ clinical development. Direct-acting antivirals, such as nucleoside analogs (e.g., remdesivir, molnupiravir) and protease inhibitors (e.g., nirmatrelvir), have shown clinical effectiveness in diminishing morbidity and hospitalization rates. Simultaneously, host-targeted medicines like baricitinib, camostat, and brequinar leverage critical host–virus interactions, providing additional pathways to reduce viral replication while possibly minimizing the development of resistance. Notwithstanding these advancements, constraints in distribution methods, antiviral longevity, and the risk of mutational evasion demand novel strategies. Promising investigational approaches encompass CRISPR-mediated RNA degradation systems, inhalable siRNA-nanoparticle conjugates, and molecular glue degraders that target host and viral proteins. Furthermore, next-generation treatments aimed at underutilized enzyme domains (e.g., NiRAN, ExoN) and host chaperone systems (e.g., TRiC complex) signify a transformative approach in antiviral targeting. The integration of high-throughput phenotypic screening, AI-driven medication repurposing, and systems virology is transforming the antiviral discovery field. An ongoing interdisciplinary endeavor is necessary to convert these findings into versatile, resistance-resistant antiviral strategies that are applicable beyond the present pandemic and in future coronavirus epidemics. Full article
(This article belongs to the Special Issue New Antivirals against Coronaviruses)
Show Figures

Graphical abstract

17 pages, 4115 KiB  
Article
Uncovering SARS-CoV-2 Molecular Epidemiology Across the Pandemic Transition: Insights into Transmission in Clinical and Environmental Samples
by Vrushali D. Patil, Rashmi Chowdhary, Anvita Gupta Malhotra, Jitendra Singh, Debasis Biswas, Rajnish Joshi and Jagat Rakesh Kanwar
Viruses 2025, 17(5), 726; https://doi.org/10.3390/v17050726 - 19 May 2025
Viewed by 845
Abstract
Background: Respiratory droplets are the main way in which the COVID-19 pandemic’s causal agent, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), spreads. Angiotensin-converting enzyme 2 (ACE2) receptors, especially in lung cells, allow the virus to enter host cells. However, ACE2 expression in intestinal cells [...] Read more.
Background: Respiratory droplets are the main way in which the COVID-19 pandemic’s causal agent, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), spreads. Angiotensin-converting enzyme 2 (ACE2) receptors, especially in lung cells, allow the virus to enter host cells. However, ACE2 expression in intestinal cells has sparked worries about possible fecal transfer, particularly in poor-sanitation areas like India. Methods: Between July 2021 and July 2024, clinical (nasopharyngeal, saliva, and stool samples) and sewage samples were collected from outpatient departments and sewage treatment plants (STPs), respectively, from the high-population-density area under study in order to investigate SARS-CoV-2 transmission. Results: This proof-of-concept study analyzed clinical samples from n = 60 COVID-19-positive patients at a central Indian tertiary care hospital and n = 156 samples from hospital STPs. Variants of SARS-CoV-2 were found using qRT-PCR and Next-Generation Sequencing (NGS). Of the n = 37 qRT-PCR-positive patients who gave their assent, 30% had stool samples that tested positive for viral RNA. In 70% of positive NP and 65% of positive saliva samples, along with two stool samples from immunocompromised patients, the live virus was identified using Vero E6 cell lines. Although 18% of the tests reported qRT-PCR-positive results, no live virus was detected in sewage samples despite NGS validation. The detection of SARS-CoV-2 in the absence of confirmed clinical cases may indicate the silent circulation of the virus within the community, suggesting that sewage surveillance can serve as an early warning system before an outbreak occurs. Conclusions: These findings provide critical insights into the importance of continuous environmental surveillance, silent virus circulation, changes in viral epidemiology throughout the years, and strategies to mitigate coronavirus outbreaks. Full article
(This article belongs to the Special Issue Molecular Epidemiology of SARS-CoV-2, 4th Edition)
Show Figures

Figure 1

20 pages, 2439 KiB  
Article
Dynamics of SARS-CoV-2 Mutations in Wastewater Provide Insights into the Circulation of Virus Variants in the Population
by Sara Mesquita Costa, Maria Clara da Costa Simas, Luciana Jesus da Costa and Rosane Silva
Int. J. Mol. Sci. 2025, 26(9), 4324; https://doi.org/10.3390/ijms26094324 - 1 May 2025
Viewed by 440
Abstract
SARS-CoV-2 high transmission and genomic mutations result in the emergence of new variants that impact COVID-19 vaccine efficacy and virus transmission by evading the host immune system. Wastewater-based epidemiology is an effective approach to monitor SARS-CoV-2 variants circulation in the population but is [...] Read more.
SARS-CoV-2 high transmission and genomic mutations result in the emergence of new variants that impact COVID-19 vaccine efficacy and virus transmission by evading the host immune system. Wastewater-based epidemiology is an effective approach to monitor SARS-CoV-2 variants circulation in the population but is a challenge due to the presence of reaction inhibitors and the low concentrations of SARS-CoV-2 in this environment. Here, we aim to improve SARS-CoV-2 variant detection in wastewater by employing nested PCR followed by next-generation sequencing (NGS) of small amplicons of the S gene. Eight SARS-CoV-2 wastewater samples from Alegria Wastewater Treatment Plant, in Rio de Janeiro, Brazil, were collected monthly from February to September 2021. Samples were submitted to virus concentration, RNA extraction and nested PCR followed by NGS. The small amplicons were used to prepare libraries for sequencing without the need to perform any fragmentation step. We identified and calculated the frequencies of 29 mutations matching the Alpha, Beta, Gamma, Delta, Omicron, and P.2 variants. Omicron matching-mutations were detected before the lineage was classified as a variant of concern. SARS-CoV-2 wastewater sequences clustered with SARS-CoV-2 variants detected in clinical samples that circulated in 2021 in Rio de Janeiro. We show that sequencing of selected small amplicons of SARS-CoV-2 S gene allows the identification of SARS-CoV-2 variants matching mutations and their frequencies’ calculation. This approach may be expanded using customizing primers for additional genomic regions, in order to differentiate current variants. Approaches that allow us to learn how variants emerge and how they relate to clinical outcomes are crucial for our understanding of the dynamics of virus variants circulation, providing valuable data for public health management. Full article
Show Figures

Figure 1

10 pages, 1418 KiB  
Communication
Cellular Receptor Tyrosine Kinase Signaling Plays Important Roles in SARS-CoV-2 Infection
by Shania Sanchez, Brigitte H. Flannery, Hannah Murphy, Qinfeng Huang, Hinh Ly and Yuying Liang
Pathogens 2025, 14(4), 333; https://doi.org/10.3390/pathogens14040333 - 31 Mar 2025
Cited by 1 | Viewed by 1871
Abstract
Current antiviral treatments often target specific viral components, which can lead to the rapid emergence of drug-resistant mutants. Targeting host signaling pathways, including their associated cellular factors, that are important for virus replication is a novel approach toward the development of next-generation antivirals [...] Read more.
Current antiviral treatments often target specific viral components, which can lead to the rapid emergence of drug-resistant mutants. Targeting host signaling pathways, including their associated cellular factors, that are important for virus replication is a novel approach toward the development of next-generation antivirals to overcome drug resistance. Various cellular receptor tyrosine kinases (RTKs) have previously been shown to play important roles in mediating viral replication including coronaviruses. In this study, we examined the roles of RTKs in SARS-CoV-2 replication in two cell lines, A549-ACE2 (human lung epithelial cells) and Vero-E6 (African Green Monkey kidney cell), via chemical inhibitors. We showed that the HER2 inhibitor Lapatinib significantly reduced viral replication in both cell lines, the TrkA inhibitor GW441756 was effective only in A549-ACE2 cells, while the EGFR inhibitor Gefitinib had little effect in either cell line. Lapatinib and GW441756 exhibited a high therapeutic index (CC50/EC50 > 10) in A549-ACE2 cells. Time-of-addition experiments indicated that Lapatinib may inhibit the early entry step, whereas GW441756 can affect post-entry steps of the viral life cycle. These findings suggest the important roles of HER2 and TrkA signaling in SARS-CoV-2 infection in human lung epithelial cells and support further investigation of RTK inhibitors as potential COVID-19 treatments. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

17 pages, 4373 KiB  
Article
Effective Inhibitor Removal from Wastewater Samples Increases Sensitivity of RT-dPCR and Sequencing Analyses and Enhances the Stability of Wastewater-Based Surveillance
by Nico Linzner, Alexander Bartel, Vera Schumacher, José Horacio Grau, Emanuel Wyler, Henrike Preuß, Sonja Garske, Julia Bitzegeio, Elisabeth Barbara Kirst, Karsten Liere, Sebastian Hoppe, Tatiana A. Borodina, Janine Altmüller, Markus Landthaler, Martin Meixner, Daniel Sagebiel and Uta Böckelmann
Microorganisms 2024, 12(12), 2475; https://doi.org/10.3390/microorganisms12122475 - 2 Dec 2024
Cited by 1 | Viewed by 4003
Abstract
Wastewater-based surveillance (WBS) is a proven tool for monitoring population-level infection events. Wastewater contains high concentrations of inhibitors, which contaminate the total nucleic acids (TNA) extracted from these samples. We found that TNA extracts from raw influent of Berlin wastewater treatment plants contained [...] Read more.
Wastewater-based surveillance (WBS) is a proven tool for monitoring population-level infection events. Wastewater contains high concentrations of inhibitors, which contaminate the total nucleic acids (TNA) extracted from these samples. We found that TNA extracts from raw influent of Berlin wastewater treatment plants contained highly variable amounts of inhibitors that impaired molecular analyses like dPCR and next-generation sequencing (NGS). By using dilutions, we were able to detect inhibitory effects. To enhance WBS sensitivity and stability, we applied a combination of PCR inhibitor removal and TNA dilution (PIR+D). This approach led to a 26-fold increase in measured SARS-CoV-2 concentrations, practically reducing the detection limit. Additionally, we observed a substantial increase in the stability of the time series. We define suitable stability as a mean absolute error (MAE) below 0.1 log10 copies/L and a geometric mean relative absolute error (GMRAE) below 26%. Using PIR+D, the MAE could be reduced from 0.219 to 0.097 and the GMRAE from 65.5% to 26.0%, and even further in real-world WBS. Furthermore, PIR+D improved SARS-CoV-2 genome alignment and coverage in amplicon-based NGS for low to medium concentrations. In conclusion, we strongly recommend both the monitoring and removal of inhibitors from samples for WBS. Full article
(This article belongs to the Special Issue Surveillance of SARS-CoV-2 Employing Wastewater)
Show Figures

Figure 1

24 pages, 2902 KiB  
Review
Advancing CRISPR-Based Solutions for COVID-19 Diagnosis and Therapeutics
by Roaa Hadi, Abhishek Poddar, Shivakumar Sonnaila, Venkata Suryanarayana Murthy Bhavaraju and Shilpi Agrawal
Cells 2024, 13(21), 1794; https://doi.org/10.3390/cells13211794 - 30 Oct 2024
Cited by 1 | Viewed by 3517
Abstract
Since the onset of the COVID-19 pandemic, a variety of diagnostic approaches, including RT-qPCR, RAPID, and LFA, have been adopted, with RT-qPCR emerging as the gold standard. However, a significant challenge in COVID-19 diagnostics is the wide range of symptoms presented by patients, [...] Read more.
Since the onset of the COVID-19 pandemic, a variety of diagnostic approaches, including RT-qPCR, RAPID, and LFA, have been adopted, with RT-qPCR emerging as the gold standard. However, a significant challenge in COVID-19 diagnostics is the wide range of symptoms presented by patients, necessitating early and accurate diagnosis for effective management. Although RT-qPCR is a precise molecular technique, it is not immune to false-negative results. In contrast, CRISPR-based detection methods for SARS-CoV-2 offer several advantages: they are cost-effective, time-efficient, highly sensitive, and specific, and they do not require sophisticated instruments. These methods also show promise for scalability, enabling diagnostic tests. CRISPR technology can be customized to target any genomic region of interest, making it a versatile tool with applications beyond diagnostics, including therapeutic development. The CRISPR/Cas systems provide precise gene targeting with immense potential for creating next-generation diagnostics and therapeutics. One of the key advantages of CRISPR/Cas-based therapeutics is the ability to perform multiplexing, where different sgRNAs or crRNAs can target multiple sites within the same gene, reducing the likelihood of viral escape mutants. Among the various CRISPR systems, CRISPR/Cas13 and CARVER (Cas13-assisted restriction of viral expression and readout) are particularly promising. These systems can target a broad range of single-stranded RNA viruses, making them suitable for the diagnosis and treatment of various viral diseases, including SARS-CoV-2. However, the efficacy and safety of CRISPR-based therapeutics must be thoroughly evaluated in pre-clinical and clinical settings. While CRISPR biotechnologies have not yet been fully harnessed to control the current COVID-19 pandemic, there is an optimism that the limitations of the CRISPR/Cas system can be overcome soon. This review discusses how CRISPR-based strategies can revolutionize disease diagnosis and therapeutic development, better preparing us for future viral threats. Full article
Show Figures

Figure 1

16 pages, 1493 KiB  
Article
In Silico Design of miniACE2 Decoys with In Vitro Enhanced Neutralization Activity against SARS-CoV-2, Encompassing Omicron Subvariants
by Jenny Andrea Arévalo-Romero, Gina López-Cantillo, Sara Moreno-Jiménez, Íñigo Marcos-Alcalde, David Ros-Pardo, Bernardo Armando Camacho, Paulino Gómez-Puertas and Cesar A. Ramírez-Segura
Int. J. Mol. Sci. 2024, 25(19), 10802; https://doi.org/10.3390/ijms251910802 - 8 Oct 2024
Cited by 2 | Viewed by 1654
Abstract
The COVID-19 pandemic has overwhelmed healthcare systems and triggered global economic downturns. While vaccines have reduced the lethality rate of SARS-CoV-2 to 0.9% as of October 2024, the continuous evolution of variants remains a significant public health challenge. Next-generation medical therapies offer hope [...] Read more.
The COVID-19 pandemic has overwhelmed healthcare systems and triggered global economic downturns. While vaccines have reduced the lethality rate of SARS-CoV-2 to 0.9% as of October 2024, the continuous evolution of variants remains a significant public health challenge. Next-generation medical therapies offer hope in addressing this threat, especially for immunocompromised individuals who experience prolonged infections and severe illnesses, contributing to viral evolution. These cases increase the risk of new variants emerging. This study explores miniACE2 decoys as a novel strategy to counteract SARS-CoV-2 variants. Using in silico design and molecular dynamics, blocking proteins (BPs) were developed with stronger binding affinity for the receptor-binding domain of multiple variants than naturally soluble human ACE2. The BPs were expressed in E. coli and tested in vitro, showing promising neutralizing effects. Notably, miniACE2 BP9 exhibited an average IC50 of 4.9 µg/mL across several variants, including the Wuhan strain, Mu, Omicron BA.1, and BA.2 This low IC50 demonstrates the potent neutralizing ability of BP9, indicating its efficacy at low concentrations.Based on these findings, BP9 has emerged as a promising therapeutic candidate for combating SARS-CoV-2 and its evolving variants, thereby positioning it as a potential emergency biopharmaceutical. Full article
Show Figures

Figure 1

13 pages, 1071 KiB  
Article
Post-COVID-19 Pandemic Rebound of Macrolide-Resistant Mycoplasma pneumoniae Infection: A Descriptive Study
by Fan-Fan Xing, Kelvin Hei-Yeung Chiu, Chao-Wen Deng, Hai-Yan Ye, Lin-Lin Sun, Yong-Xian Su, Hui-Jun Cai, Simon Kam-Fai Lo, Lei Rong, Jian-Liang Chen, Vincent Chi-Chung Cheng, David Christopher Lung, Siddharth Sridhar, Jasper Fuk-Woo Chan, Ivan Fan-Ngai Hung and Kwok-Yung Yuen
Antibiotics 2024, 13(3), 262; https://doi.org/10.3390/antibiotics13030262 - 15 Mar 2024
Cited by 17 | Viewed by 3398
Abstract
The rebound characteristics of respiratory infections after lifting pandemic control measures were uncertain. From January to November 2023, patients presenting at a teaching hospital were tested for common respiratory viruses and Mycoplasma pneumoniae using a combination of antigen, nucleic acid amplification, and targeted [...] Read more.
The rebound characteristics of respiratory infections after lifting pandemic control measures were uncertain. From January to November 2023, patients presenting at a teaching hospital were tested for common respiratory viruses and Mycoplasma pneumoniae using a combination of antigen, nucleic acid amplification, and targeted next-generation sequencing (tNGS) tests. The number and rate of positive tests per month, clinical and microbiological characteristics were analyzed. A rapid rebound of SARS-CoV-2 was followed by a slower rebound of M. pneumoniae, with an interval of 5 months between their peaks. The hospitalization rate was higher, with infections caused by respiratory viruses compared to M. pneumoniae. Though the pediatric hospitalization rate of respiratory viruses (66.1%) was higher than that of M. pneumoniae (34.0%), the 4094 cases of M. pneumoniae within 6 months posed a huge burden on healthcare services. Multivariate analysis revealed that M. pneumoniae-infected adults had more fatigue, comorbidities, and higher serum C-reactive protein, whereas children had a higher incidence of other respiratory pathogens detected by tNGS or pathogen-specific PCR, fever, and were more likely to be female. A total of 85% of M. pneumoniae-positive specimens had mutations detected at the 23rRNA gene, with 99.7% showing A2063G mutation. Days to defervescence were longer in those not treated by effective antibiotics and those requiring a change in antibiotic treatment. A delayed but significant rebound of M. pneumoniae was observed after the complete relaxation of pandemic control measures. No unusual, unexplained, or unresponsive cases of respiratory infections which warrant further investigation were identified. Full article
Show Figures

Figure 1

12 pages, 1381 KiB  
Article
Systematic Genomic Surveillance of SARS-CoV-2 at Xiamen International Airport and the Port of Xiamen Reveals the Importance of Incoming Travelers in Lineage Diversity
by Ruiluan You, Ruotong Wu, Xijing Wang, Rao Fu, Ningshao Xia, Yixin Chen, Kunyu Yang and Junyu Chen
Viruses 2024, 16(1), 132; https://doi.org/10.3390/v16010132 - 17 Jan 2024
Cited by 1 | Viewed by 2170
Abstract
Sever Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is still a threat to human health globally despite the World Health Organization (WHO) announcing the end of the COVID-19 pandemic. Continued surveillance of SARS-CoV-2 at national borders would be helpful in understanding the epidemics of novel [...] Read more.
Sever Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is still a threat to human health globally despite the World Health Organization (WHO) announcing the end of the COVID-19 pandemic. Continued surveillance of SARS-CoV-2 at national borders would be helpful in understanding the epidemics of novel imported variants and updating local strategies for disease prevention and treatment. This study focuses on the surveillance of imported SARS-CoV-2 variants among travelers entering Xiamen International Airport and the Port of Xiamen from February to August 2023. A total of 97 imported SARS-CoV-2 sequences among travelers from 223 cases collected from 12 different countries and regions were identified by real-time RT-PCR. Next-generation sequencing was used to generate high-quality complete sequences for phylogenetic and population dynamic analysis. The study revealed a dominant shift in variant distribution, in which the XBB subvariant (XBB.1.5, XBB.1.16, XBB.1.9, XBB.2.3, and EG.5.1) accounted for approximately 88.8% of the sequenced samples. In detail, clades 23D and 23E accounted for 26.2% and 21.4% of the sequenced samples, respectively, while clades 23B (13.6%) and 23F (10.7%) took the third and fourth spots in the order of imported sequences, respectively. Additionally, the XBB.2.3 variants were first identified in imported cases from the mainland of Xiamen, China on 27 February 2023. The spatiotemporal analyses of recent viral genome sequences from a limited number of travelers into Xiamen provide valuable insights into the situation surrounding SARS-CoV-2 and highlight the importance of sentinel surveillance of SARS-CoV-2 variants in the national border screening of incoming travelers, which serves as an early warning system for the presence of highly transmissible circulating SARS-CoV-2 lineages. Full article
(This article belongs to the Section SARS-CoV-2 and COVID-19)
Show Figures

Figure 1

12 pages, 1629 KiB  
Perspective
COVID Variants, Villain and Victory: A Bioinformatics Perspective
by Nityendra Shukla, Neha Srivastava, Rohit Gupta, Prachi Srivastava and Jitendra Narayan
Microorganisms 2023, 11(8), 2039; https://doi.org/10.3390/microorganisms11082039 - 9 Aug 2023
Cited by 3 | Viewed by 2742
Abstract
The SARS-CoV-2 virus, a novel member of the Coronaviridae family, is responsible for the viral infection known as Coronavirus Disease 2019 (COVID-19). In response to the urgent and critical need for rapid detection, diagnosis, analysis, interpretation, and treatment of COVID-19, a wide variety [...] Read more.
The SARS-CoV-2 virus, a novel member of the Coronaviridae family, is responsible for the viral infection known as Coronavirus Disease 2019 (COVID-19). In response to the urgent and critical need for rapid detection, diagnosis, analysis, interpretation, and treatment of COVID-19, a wide variety of bioinformatics tools have been developed. Given the virulence of SARS-CoV-2, it is crucial to explore the pathophysiology of the virus. We intend to examine how bioinformatics, in conjunction with next-generation sequencing techniques, can be leveraged to improve current diagnostic tools and streamline vaccine development for emerging SARS-CoV-2 variants. We also emphasize how bioinformatics, in general, can contribute to critical areas of biomedicine, including clinical diagnostics, SARS-CoV-2 genomic surveillance and its evolution, identification of potential drug targets, and development of therapeutic strategies. Currently, state-of-the-art bioinformatics tools have helped overcome technical obstacles with respect to genomic surveillance and have assisted in rapid detection, diagnosis, and delivering precise treatment to individuals on time. Full article
(This article belongs to the Special Issue Coronaviruses: Past, Present, and Future)
Show Figures

Figure 1

14 pages, 2243 KiB  
Article
Gut Microbiota Composition Can Predict Colonization by Multidrug-Resistant Bacteria in SARS-CoV-2 Patients in Intensive Care Unit: A Pilot Study
by Jorge García-García, Patricia Diez-Echave, María Eugenia Yuste, Natalia Chueca, Federico García, Jose Cabeza-Barrera, Emilio Fernández-Varón, Julio Gálvez, Manuel Colmenero, Maria Elena Rodríguez-Cabezas, Alba Rodríguez-Nogales and Rocío Morón
Antibiotics 2023, 12(3), 498; https://doi.org/10.3390/antibiotics12030498 - 2 Mar 2023
Cited by 7 | Viewed by 3069
Abstract
The SARS-CoV-2 infection has increased the number of patients entering Intensive Care Unit (ICU) facilities and antibiotic treatments. Concurrently, the multi-drug resistant bacteria (MDRB) colonization index has risen. Considering that most of these bacteria are derived from gut microbiota, the study of its [...] Read more.
The SARS-CoV-2 infection has increased the number of patients entering Intensive Care Unit (ICU) facilities and antibiotic treatments. Concurrently, the multi-drug resistant bacteria (MDRB) colonization index has risen. Considering that most of these bacteria are derived from gut microbiota, the study of its composition is essential. Additionally, SARS-CoV-2 infection may promote gut dysbiosis, suggesting an effect on microbiota composition. This pilot study aims to determine bacteria biomarkers to predict MDRB colonization risk in SARS-CoV-2 patients in ICUs. Seventeen adult patients with an ICU stay >48 h and who tested positive for SARS-CoV-2 infection were enrolled in this study. Patients were assigned to two groups according to routine MDRB colonization surveillance: non-colonized and colonized. Stool samples were collected when entering ICUs, and microbiota composition was determined through Next Generation Sequencing techniques. Gut microbiota from colonized patients presented significantly lower bacterial diversity compared with non-colonized patients (p < 0.05). Microbiota in colonized subjects showed higher abundance of Anaerococcus, Dialister and Peptoniphilus, while higher levels of Enterococcus, Ochrobactrum and Staphylococcus were found in non-colonized ones. Moreover, LEfSe analysis suggests an initial detection of Dialister propionicifaciens as a biomarker of MDRB colonization risk. This pilot study shows that gut microbiota profile can become a predictor biomarker for MDRB colonization in SARS-CoV-2 patients. Full article
Show Figures

Figure 1

10 pages, 960 KiB  
Article
An Evaluation of Avian Influenza Virus Whole-Genome Sequencing Approaches Using Nanopore Technology
by Hon S. Ip, Sarah Uhm, Mary Lea Killian and Mia K. Torchetti
Microorganisms 2023, 11(2), 529; https://doi.org/10.3390/microorganisms11020529 - 19 Feb 2023
Cited by 13 | Viewed by 5758
Abstract
As exemplified by the global response to the SARS-CoV-2 pandemic, whole-genome sequencing played an important role in monitoring the evolution of novel viral variants and provided guidance on potential antiviral treatments. The recent rapid and extensive introduction and spread of highly pathogenic avian [...] Read more.
As exemplified by the global response to the SARS-CoV-2 pandemic, whole-genome sequencing played an important role in monitoring the evolution of novel viral variants and provided guidance on potential antiviral treatments. The recent rapid and extensive introduction and spread of highly pathogenic avian influenza virus in Europe, North America, and elsewhere raises the need for similarly rapid sequencing to aid in appropriate response and mitigation activities. To facilitate this objective, we investigate a next-generation sequencing platform that uses a portable nanopore sequencing device to generate and present data in real time. This platform offers the potential to extend in-house sequencing capacities to laboratories that may otherwise lack resources to adopt sequencing technologies requiring large benchtop instruments. We evaluate this platform for routine use in a diagnostic laboratory. In this study, we evaluate different primer sets for the whole genome amplification of influenza A virus and evaluate five different library preparation approaches for sequencing on the nanopore platform using the MinION flow cell. A limited amplification procedure and a rapid procedure are found to be best among the approaches taken. Full article
(This article belongs to the Special Issue Viral Metagenomic Analysis in Animals)
Show Figures

Figure 1

16 pages, 6112 KiB  
Article
Search for Novel Potent Inhibitors of the SARS-CoV-2 Papain-like Enzyme: A Computational Biochemistry Approach
by Manuel I. Osorio, Osvaldo Yáñez, Mauricio Gallardo, Matías Zuñiga-Bustos, Jorge Mulia-Rodríguez, Roberto López-Rendón, Olimpo García-Beltrán, Fernando González-Nilo and José M. Pérez-Donoso
Pharmaceuticals 2022, 15(8), 986; https://doi.org/10.3390/ph15080986 - 11 Aug 2022
Cited by 6 | Viewed by 2638
Abstract
The rapid emergence and spread of new variants of coronavirus type 2, as well as the emergence of zoonotic viruses, highlights the need for methodologies that contribute to the search for new pharmacological treatments. In the present work, we searched for new SARS-CoV-2 [...] Read more.
The rapid emergence and spread of new variants of coronavirus type 2, as well as the emergence of zoonotic viruses, highlights the need for methodologies that contribute to the search for new pharmacological treatments. In the present work, we searched for new SARS-CoV-2 papain-like protease inhibitors in the PubChem database, which has more than 100 million compounds. Based on the ligand efficacy index obtained by molecular docking, 500 compounds with higher affinity than another experimentally tested inhibitor were selected. Finally, the seven compounds with ADME parameters within the acceptable range for such a drug were selected. Next, molecular dynamics simulation studies at 200 ns, ΔG calculations using molecular mechanics with generalized Born and surface solvation, and quantum mechanical calculations were performed with the selected compounds. Using this in silico protocol, seven papain-like protease inhibitors are proposed: three compounds with similar free energy (D28, D04, and D59) and three compounds with higher binding free energy (D60, D99, and D06) than the experimentally tested inhibitor, plus one compound (D24) that could bind to the ubiquitin-binding region and reduce the effect on the host immune system. The proposed compounds could be used in in vitro assays, and the described protocol could be used for smart drug design. Full article
(This article belongs to the Special Issue COVID-19 in Pharmaceuticals)
Show Figures

Graphical abstract

12 pages, 710 KiB  
Article
The Impact of SARS-CoV-2 Pandemic on Patients Undergoing Radiation Therapy for Advanced Cervical Cancer at a Romanian Academic Center: A Four-Year Retrospective Analysis
by Alin Popescu, Stelian Pantea, Daniela Radu, Adrian Gluhovschi, Catalin Dumitru, George Dahma, Adelina Geanina Mocanu, Radu Neamtu, Sorin Dema, Codruta Victoria Tigmeanu, Mirela Loredana Grigoras, Silvius Alexandru Pescariu, Hazzaa Aabed and Marius Craina
Diagnostics 2022, 12(6), 1488; https://doi.org/10.3390/diagnostics12061488 - 17 Jun 2022
Viewed by 2292
Abstract
Background and Objectives: Throughout the COVID-19 pandemic, health systems worldwide adapted to support COVID-19 patients while continuing to provide assistance to patients with other potentially fatal illnesses. While patients with cancer may be at an elevated risk of severe COVID-19-related complications, their [...] Read more.
Background and Objectives: Throughout the COVID-19 pandemic, health systems worldwide adapted to support COVID-19 patients while continuing to provide assistance to patients with other potentially fatal illnesses. While patients with cancer may be at an elevated risk of severe COVID-19-related complications, their oncologic therapies generally cannot be postponed indefinitely without a negative effect on outcomes. Taking this into account, a thorough examination of the therapy management of various cancers is necessary, such as cervical cancer. Therefore, we aimed to develop a retrospective cohort study to measure the impact of the COVID-19 pandemic on the delivery of cancer care services for women diagnosed with cervical cancer staged IB2-IVA, necessitating chemo- and radiotherapy in Romania, as well as determine the difference in cervical cancer staging between the pandemic and pre-pandemic period. Materials and Methods: Using a multicentric hospital database, we designed a retrospective study to compare the last 24 months of the pre-pandemic period to the first 24 months of the SARS-CoV-2 pandemic to evaluate the variation in the proportion of women diagnosed with cervical cancer and the percentage of inoperable cases requiring chemotherapy and radiotherapy, as well as to detail their clinical presentation and other findings. Results: We observed that the likelihood of cervical cancer patients requiring radiation therapy at a later stage than before the pandemic increased by about 20% during the COVID-19 pandemic. Patients at an advanced FIGO stage of cervical cancer had a 3.39 higher likelihood of disease progression after radiotherapy (CI [2.06–4.21], p-value < 0.001), followed by tumor size at diagnosis with a hazard ratio (HR) of 3.12 (CI [2.24–4.00], p-value < 0.001). The factors related to the COVID-19 pandemic, postponed treatment and missed appointments, were also identified as significant risk factors for cervical cancer progression (HR = 2.51 and HR = 2.24, respectively). Conclusions We predict that there will be a considerable rise in cervical cancer cases over the next several years based on existing data and that expanding screening and treatment capacity will attenuate this with a minimal increase in morbidity and fatality. Full article
(This article belongs to the Special Issue Diagnosis and Management of Gynecological Cancers)
Show Figures

Figure 1

Back to TopTop