Systematic Genomic Surveillance of SARS-CoV-2 at Xiamen International Airport and the Port of Xiamen Reveals the Importance of Incoming Travelers in Lineage Diversity
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample and Data Source
2.2. Next-Generation Sequencing
2.3. Phylogenetic and Evolution Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, Y.; Li, X.; Zhang, L.; Wan, S.; Zhang, L.; Zhou, F. SARS-CoV-2 Omicron variant: Recent progress and future perspectives. Signal Transduct. Target. Ther. 2022, 7, 141. [Google Scholar] [CrossRef]
- Al-Aly, Z.; Bowe, B.; Xie, Y. Long COVID after breakthrough SARS-CoV-2 infection. Nat. Med. 2022, 28, 1461–1467. [Google Scholar] [CrossRef] [PubMed]
- Edara, V.-V.; Lai, L.; Sahoo, M.K.; Floyd, K.; Sibai, M.; Solis, D.; Flowers, M.W.; Hussaini, L.; Ciric, C.R.; Bechnack, S.; et al. Infection and vaccine-induced neutralizing antibody responses to the SARS-CoV-2 B.1.617.1 variant. bioRxiv 2021. bioRxiv:2021.05.09.443299. [Google Scholar]
- Harvey, W.T.; Carabelli, A.M.; Jackson, B.; Gupta, R.K.; Thomson, E.C.; Harrison, E.M.; Ludden, C.; Reeve, R.; Rambaut, A.; Consortium, C.-G.U.; et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 2021, 19, 409–424. [Google Scholar] [CrossRef]
- Wang, P.; Nair, M.S.; Liu, L.; Iketani, S.; Luo, Y.; Guo, Y.; Wang, M.; Yu, J.; Zhang, B.; Kwong, P.D.; et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 2021, 593, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, L.B.; Foster, C.; Rawlinson, W.; Tedla, N.; Bull, R.A. Evolution of the SARS-CoV-2 omicron variants BA.1 to BA.5: Implications for immune escape and transmission. Rev. Med. Virol. 2022, 32, e2381. [Google Scholar] [CrossRef] [PubMed]
- Uriu, K.; Ito, J.; Zahradnik, J.; Fujita, S.; Kosugi, Y.; Schreiber, G.; Sato, K. Enhanced transmissibility, infectivity, and immune resistance of the SARS-CoV-2 omicron XBB.1.5 variant. Lancet Infect. Dis. 2023, 23, 280–281. [Google Scholar] [CrossRef]
- Kurhade, C.; Zou, J.; Xia, H.; Liu, M.; Chang, H.C.; Ren, P.; Xie, X.; Shi, P.Y. Low neutralization of SARS-CoV-2 Omicron BA.2.75.2, BQ.1.1 and XBB.1 by parental mRNA vaccine or a BA.5 bivalent booster. Nat. Med. 2023, 29, 344–347. [Google Scholar] [CrossRef]
- Butera, Y.; Mukantwari, E.; Artesi, M.; Umuringa, J.D.; O’Toole, Á.N.; Hill, V.; Rooke, S.; Hong, S.L.; Dellicour, S.; Majyambere, O.; et al. Genomic sequencing of SARS-CoV-2 in Rwanda reveals the importance of incoming travelers on lineage diversity. Nat. Commun. 2021, 12, 5705. [Google Scholar] [CrossRef]
- Olawoye, I.B.; Oluniyi, P.E.; Oguzie, J.U.; Uwanibe, J.N.; Kayode, T.A.; Olumade, T.J.; Ajogbasile, F.V.; Parker, E.; Eromon, P.E.; Abechi, P.; et al. Emergence and spread of two SARS-CoV-2 variants of interest in Nigeria. Nat. Commun. 2023, 14, 811. [Google Scholar] [CrossRef]
- Chen, S.; Huang, Z.; Guo, Y.; Guo, H.; Jian, L.; Xiao, J.; Yao, X.; Yu, H.; Cheng, T.; Zhang, Y.; et al. Evolving spike mutations in SARS-CoV-2 Omicron variants facilitate evasion from breakthrough infection-acquired antibodies. Cell Discov. 2023, 9, 86. [Google Scholar] [CrossRef]
- Moeti, M.; Gao, G.F.; Herrman, H. Global pandemic perspectives: Public health, mental health, and lessons for the future. Lancet 2022, 400, e3–e7. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Liang, W. The Dynamic COVID-Zero Strategy in China. China CDC Wkly 2022, 4, 74–75. [Google Scholar] [CrossRef]
- Shuai, H.; Chan, J.F.-W.; Hu, B.; Chai, Y.; Yuen, T.T.-T.; Yin, F.; Huang, X.; Yoon, C.; Hu, J.-C.; Liu, H.; et al. Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature 2022, 603, 693–699. [Google Scholar] [CrossRef]
- Chen, J.; Yang, K.; Zhang, M.; Shen, C.; Chen, J.; Wang, G.; Huang, S.; Zhang, M.; Xiong, H.; Chen, H.; et al. Rapid identification of imported influenza viruses at Xiamen International Airport via an active surveillance program. Clin. Microbiol. Infect. 2018, 24, 289–294. [Google Scholar] [CrossRef]
- Cowling, B.J.; Lau, L.L.H.; Wu, P.; Wong, H.W.C.; Fang, V.J.; Riley, S.; Nishiura, H. Entry screening to delay local transmission of 2009 pandemic influenza A (H1N1). BMC Infect. Dis. 2010, 10, 82. [Google Scholar] [CrossRef]
- Montalti, M.; Soldà, G.; Di Valerio, Z.; Salussolia, A.; Lenzi, J.; Forcellini, M.; Barvas, E.; Guttmann, S.; Messina, R.; Poluzzi, E.; et al. ROCCA observational study: Early results on safety of Sputnik V vaccine (Gam-COVID-Vac) in the Republic of San Marino using active surveillance. eClinicalMedicine 2021, 38, 101030. [Google Scholar] [CrossRef]
- Aksamentov, I.; Roemer, C.; Hodcroft, E.; Neher, R. Nextclade: Clade assignment, mutation calling and quality control for viral genomes. J. Open Source Softw. 2021, 6, 3773. [Google Scholar] [CrossRef]
- Hadfield, J.; Megill, C.; Bell, S.M.; Huddleston, J.; Potter, B.; Callender, C.; Sagulenko, P.; Bedford, T.; Neher, R.A. Nextstrain: Real-time tracking of pathogen evolution. Bioinformatics 2018, 34, 4121–4123. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Sagulenko, P.; Puller, V.; Neher, R.A. TreeTime: Maximum-likelihood phylodynamic analysis. Virus Evol. 2018, 4, vex042. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Nadeau, S.; Yared, M.; Voinov, P.; Xie, N.; Roemer, C.; Stadler, T. CoV-Spectrum: Analysis of globally shared SARS-CoV-2 data to identify and characterize new variants. Bioinformatics 2022, 38, 1735–1737. [Google Scholar] [CrossRef]
- Tartof, S.Y.; Slezak, J.M.; Puzniak, L.; Hong, V.; Frankland, T.B.; Ackerson, B.K.; Xie, F.; Takhar, H.; Ogun, O.A.; Simmons, S.; et al. Effectiveness of BNT162b2 BA.4/5 bivalent mRNA vaccine against a range of COVID-19 outcomes in a large health system in the USA: A test-negative case–control study. Lancet Respir. Med. 2023, 11, 1089–1100. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, L.; Feng, Z.; Xu, H.; Li, F.; Shen, Y.; Zhang, D.; Liu, W.J.; Gao, G.F.; Wang, Q. Characterisation of SARS-CoV-2 variants in Beijing during 2022: An epidemiological and phylogenetic analysis. Lancet 2023, 401, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Ling, Y.; Jiang, M.; Tan, Y.; Wei, D.; Jiang, L.; Yu, S.; Jiang, F.; Wang, S.; Dai, Y.; et al. Primary assessment of the diversity of Omicron sublineages and the epidemiologic features of autumn/winter 2022 COVID-19 wave in Chinese mainland. Front. Med. 2023, 17, 758–767. [Google Scholar] [CrossRef]
- Ao, D.; He, X.; Hong, W.; Wei, X. The rapid rise of SARS-CoV-2 Omicron subvariants with immune evasion properties: XBB.1.5 and BQ.1.1 subvariants. MedComm 2023, 4, e239. [Google Scholar] [CrossRef]
- Wang, Q.; Iketani, S.; Li, Z.; Liu, L.; Guo, Y.; Huang, Y.; Bowen, A.D.; Liu, M.; Wang, M.; Yu, J.; et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell 2023, 186, 279–286.e8. [Google Scholar] [CrossRef]
- Balakrishnan, K.N.; Yew, C.W.; Chong, E.T.; Daim, S.; Mohamad, N.E.; Rodrigues, K.; Lee, P.-C. Timeline of SARS-CoV-2 Transmission in Sabah, Malaysia: Tracking the Molecular Evolution. Pathogens 2023, 12, 1047. [Google Scholar] [CrossRef]
- Ramaiah, A.; Khubbar, M.; Akinyemi, K.; Bauer, A.; Carranza, F.; Weiner, J.; Bhattacharyya, S.; Payne, D.; Balakrishnan, N. Genomic Surveillance Reveals the Rapid Expansion of the XBB Lineage among Circulating SARS-CoV-2 Omicron Lineages in Southeastern Wisconsin, USA. Viruses 2023, 15, 1940. [Google Scholar] [CrossRef]
- Goh, A.X.C.; Chae, S.-R.; Chiew, C.J.; Tang, N.; Pang, D.; Lin, C.; Tan, K.B.; Lee, V.J.; Ho, Z.J.M. Characteristics of the omicron XBB subvariant wave in Singapore. Lancet 2023, 401, 1261–1262. [Google Scholar] [CrossRef]
- Velavan, T.P.; Ntoumi, F.; Kremsner, P.G.; Lee, S.S.; Meyer, C.G. Emergence and geographic dominance of Omicron subvariants XBB/XBB.1.5 and BF.7—The public health challenges. Int. J. Infect. Dis. 2023, 128, 307–309. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Nie, K.; Zhao, H.; Zhao, X.; Ye, B.; Wang, J.; Chen, C.; Wang, H.; Di, J.; Li, J.; et al. Eleven COVID-19 Outbreaks with Local Transmissions Caused by the Imported SARS-CoV-2 Delta VOC—China, July-August, 2021. China CDC Wkly. 2021, 3, 863–868. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Chen, Z.; Yu, A.; Li, X.; Feng, Y.; Zhao, X.; Xu, W.; Su, X. The First Two Imported Cases of SARS-CoV-2 Omicron Variant—Tianjin Municipality, China, December 13, 2021. China CDC Wkly 2022, 4, 76–77. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Azman, A.S.; Chen, X.; Zou, J.; Tian, Y.; Sun, R.; Xu, X.; Wu, Y.; Lu, W.; Ge, S.; et al. Global landscape of SARS-CoV-2 genomic surveillance and data sharing. Nat. Genet. 2022, 54, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zhao, X.; Chen, Z.; Nie, K.; Yin, Z.; Xia, Y.; Wang, J.; Niu, P.; Ruhan, A.; Li, L.; et al. Genomic Surveillance for SARS-CoV-2 Variants of Concern from Imported COVID-19 Cases—The Mainland of China, 2021. China CDC Wkly. 2022, 4, 680–684. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, M.; Lin, W.; Dong, W.; Xu, J. Evolutionary analysis of Omicron variant BF.7 and BA.5.2 pandemic in China. J. Biosaf. Biosecurity 2023, 5, 14–20. [Google Scholar] [CrossRef]
- Owen, D. Covid-19: Infections climb globally as EG.5 variant gains ground. BMJ 2023, 382, p1900. [Google Scholar] [CrossRef]
- Yang, S.; Yu, Y.; Xu, Y.; Jian, F.; Song, W.; Yisimayi, A.; Wang, P.; Wang, J.; Liu, J.; Yu, L.; et al. Fast evolution of SARS-CoV-2 BA.2.86 to JN.1 under heavy immune pressure. Lancet Infect. Dis. 2023. [Google Scholar] [CrossRef]
Country or Region Source | Clade (Numbers) | Date (Numbers) |
---|---|---|
America | 23D (1) | August |
Australia | 23A (2) | April/August |
23F (1) | August | |
China—Hong Kong | 23E (1) | April |
22B (1) | May | |
23B (1) | June | |
23F (1) | July | |
China—Macau | 23A (1) | May |
23F (1) | August | |
China—Taiwan | 22D (7) | February/March/June (5) |
22E (1) | February | |
22F (3) | June (3) | |
23A (2) | July/August | |
23B (6) | June (3)/July/August (2) | |
23C (1) | July | |
23D (6) | May/ June (4)/July | |
23E (1) | June | |
23F (3) | July/August (2) | |
Recombinant | June | |
Indonesia | 22F (1) | August |
23B (3) | April/July/August | |
23D (1) | August | |
Japan | 23D (7) | May (7) |
Malaysia | 23D (2) | March/May |
23B (1) | May | |
The Netherlands | 23A (1) | February |
The Philippines | 22F (3) | March/April /May |
23A (1) | April | |
23B (2) | May (2) | |
23D (3) | April /May (2) | |
23E (6) | April/May (4)/August | |
Singapore | 23E (1) | February |
23F (2) | July/August | |
Thailand | 22F (1) | August |
23F (1) | August | |
Vietnam | 22F (2) | May (2) |
23D (5) | May (5) | |
23E (13) | May (13) | |
Unknown | 22D (1) | May |
23B (1) | June | |
23F (1) | August |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, R.; Wu, R.; Wang, X.; Fu, R.; Xia, N.; Chen, Y.; Yang, K.; Chen, J. Systematic Genomic Surveillance of SARS-CoV-2 at Xiamen International Airport and the Port of Xiamen Reveals the Importance of Incoming Travelers in Lineage Diversity. Viruses 2024, 16, 132. https://doi.org/10.3390/v16010132
You R, Wu R, Wang X, Fu R, Xia N, Chen Y, Yang K, Chen J. Systematic Genomic Surveillance of SARS-CoV-2 at Xiamen International Airport and the Port of Xiamen Reveals the Importance of Incoming Travelers in Lineage Diversity. Viruses. 2024; 16(1):132. https://doi.org/10.3390/v16010132
Chicago/Turabian StyleYou, Ruiluan, Ruotong Wu, Xijing Wang, Rao Fu, Ningshao Xia, Yixin Chen, Kunyu Yang, and Junyu Chen. 2024. "Systematic Genomic Surveillance of SARS-CoV-2 at Xiamen International Airport and the Port of Xiamen Reveals the Importance of Incoming Travelers in Lineage Diversity" Viruses 16, no. 1: 132. https://doi.org/10.3390/v16010132
APA StyleYou, R., Wu, R., Wang, X., Fu, R., Xia, N., Chen, Y., Yang, K., & Chen, J. (2024). Systematic Genomic Surveillance of SARS-CoV-2 at Xiamen International Airport and the Port of Xiamen Reveals the Importance of Incoming Travelers in Lineage Diversity. Viruses, 16(1), 132. https://doi.org/10.3390/v16010132