Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = next-generation bio-product

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1816 KiB  
Review
Lignin Waste Valorization in the Bioeconomy Era: Toward Sustainable Innovation and Climate Resilience
by Alfonso Trezza, Linta Mahboob, Anna Visibelli, Michela Geminiani and Annalisa Santucci
Appl. Sci. 2025, 15(14), 8038; https://doi.org/10.3390/app15148038 - 18 Jul 2025
Viewed by 449
Abstract
Lignin, the most abundant renewable aromatic biopolymer on Earth, is rapidly emerging as a powerful enabler of next-generation sustainable technologies. This review shifts the focus to the latest industrial breakthroughs that exploit lignin’s multifunctional properties across energy, agriculture, healthcare, and environmental sectors. Lignin-derived [...] Read more.
Lignin, the most abundant renewable aromatic biopolymer on Earth, is rapidly emerging as a powerful enabler of next-generation sustainable technologies. This review shifts the focus to the latest industrial breakthroughs that exploit lignin’s multifunctional properties across energy, agriculture, healthcare, and environmental sectors. Lignin-derived carbon materials are offering scalable, low-cost alternatives to critical raw materials in batteries and supercapacitors. In agriculture, lignin-based biostimulants and controlled-release fertilizers support resilient, low-impact food systems. Cosmetic and pharmaceutical industries are leveraging lignin’s antioxidant, UV-protective, and antimicrobial properties to create bio-based, clean-label products. In water purification, lignin-based adsorbents are enabling efficient and biodegradable solutions for persistent pollutants. These technological leaps are not merely incremental, they represent a paradigm shift toward a materials economy powered by renewable carbon. Backed by global sustainability roadmaps like the European Green Deal and China’s 14th Five-Year Plan, lignin is moving from industrial residue to strategic asset, driven by unprecedented investment and cross-sector collaboration. Breakthroughs in lignin upgrading, smart formulation, and application-driven design are dismantling long-standing barriers to scale, performance, and standardization. As showcased in this review, lignin is no longer just a promising biopolymer, it is a catalytic force accelerating the global transition toward circularity, climate resilience, and green industrial transformation. The future of sustainable innovation is lignin-enabled. Full article
(This article belongs to the Special Issue Biosynthesis and Applications of Natural Products)
Show Figures

Figure 1

27 pages, 362 KiB  
Review
Applications of Bioactive Compounds from Marine Microalgae in Health, Cosmetics, and Functional Foods
by José A. M. Prates
Appl. Sci. 2025, 15(11), 6144; https://doi.org/10.3390/app15116144 - 29 May 2025
Viewed by 1111
Abstract
Marine microalgae have emerged as promising biofactories for the sustainable production of high-value bioactive compounds with significant applications in human health, cosmetics, and functional foods. This review offers a comprehensive overview of the primary classes of bioactives synthesised by marine microalgae, including polyunsaturated [...] Read more.
Marine microalgae have emerged as promising biofactories for the sustainable production of high-value bioactive compounds with significant applications in human health, cosmetics, and functional foods. This review offers a comprehensive overview of the primary classes of bioactives synthesised by marine microalgae, including polyunsaturated fatty acids, carotenoids, phycobiliproteins, peptides, sterols, polysaccharides, phenolic compounds, vitamins, mycosporine-like amino acids, and alkaloids. These compounds demonstrate diverse biological activities, such as antioxidant, anti-inflammatory, antimicrobial, anticancer, immunomodulatory, and photoprotective effects, increasingly validated through in vitro, and clinical studies. Their mechanisms of action and roles in disease prevention and wellness promotion are examined in detail, with an emphasis on pharmaceutical (e.g., cardiovascular, neuroprotective), cosmetic (e.g., anti-ageing, UV protection), and nutraceutical (e.g., metabolic and immune-enhancing) applications. The review also addresses critical challenges in strain selection, cultivation technologies, downstream processing, product standardisation, and regulatory approval. Simultaneously, emerging opportunities driven by synthetic biology, omics integration, and circular biorefinery approaches are transforming marine microalgae into precise platforms for next-generation bioproducts. By summarising current knowledge and future directions, this work underscores the essential role of marine microalgae in advancing the blue bioeconomy and tackling global sustainability challenges. Full article
(This article belongs to the Special Issue Marine-Derived Bioactive Compounds and Marine Biotechnology)
31 pages, 952 KiB  
Review
Electronic Tongue Technology Applied to the Analysis of Grapes and Wines: A Comprehensive Review from Its Origins
by Celia Garcia-Hernandez, Cristina Garcia-Cabezon, Maria Luz Rodriguez-Mendez and Fernando Martin-Pedrosa
Chemosensors 2025, 13(5), 188; https://doi.org/10.3390/chemosensors13050188 - 17 May 2025
Cited by 1 | Viewed by 1533
Abstract
The electronic tongue (ET) and bioelectronic tongue (bioET) technologies have emerged as innovative and promising tools for the characterization and quality control of complex liquid matrices such as grape musts and wines. These multisensor systems, based on electrochemical detection and chemometric analysis, provide [...] Read more.
The electronic tongue (ET) and bioelectronic tongue (bioET) technologies have emerged as innovative and promising tools for the characterization and quality control of complex liquid matrices such as grape musts and wines. These multisensor systems, based on electrochemical detection and chemometric analysis, provide global and rapid information about taste-related attributes, antioxidant content, and other critical parameters, offering an alternative or complement to traditional analytical methods. This review explores the principles, development, and applications of ET and bioET in the wine industry, highlighting their capacity to assess grape ripeness, monitor fermentation, determine wine aging, detect adulterations, and support geographical and varietal authentication. Special attention is paid to advances in sensing materials—such as conducting polymers, metal nanoparticles, and enzymes—and the construction techniques of sensors and biosensors, which have improved ET performance. Finally, the potential of these technologies as cost-effective, portable, and on-site tools aligns with the demands of Industry 4.0 and next-generation smart agriculture and food production systems. Full article
Show Figures

Figure 1

34 pages, 2173 KiB  
Review
Advances in Microbial and Plant-Based Biopolymers: Synthesis and Applications in Next-Generation Materials
by Poova Kattil Drishya, M. Venkateswar Reddy, Gunda Mohanakrishna, Omprakash Sarkar, Isha, M. V. Rohit, Aesha Patel and Young-Cheol Chang
Macromol 2025, 5(2), 21; https://doi.org/10.3390/macromol5020021 - 6 May 2025
Cited by 6 | Viewed by 3225
Abstract
Biopolymers are revolutionizing the materials landscape, driven by a growing demand for sustainable alternatives to traditional petroleum-based materials. Sourced from biological origins, these polymers are not only environment friendly but also present exciting solutions in healthcare, packaging, biosensors, high performance, and durable materials [...] Read more.
Biopolymers are revolutionizing the materials landscape, driven by a growing demand for sustainable alternatives to traditional petroleum-based materials. Sourced from biological origins, these polymers are not only environment friendly but also present exciting solutions in healthcare, packaging, biosensors, high performance, and durable materials as alternatives to crude oil-based products. Recently, biopolymers derived from plants, such as lignin and cellulose, alongside those produced by bacteria, like polyhydroxyalkanoates (PHAs), have captured the spotlight, drawing significant interest for their industrial and eco-friendly applications. The growing interest in biopolymers stems from their potential as sustainable, renewable materials across diverse applications. This review provides an in-depth analysis of the current advancements in plant-based and bacterial biopolymers, covering aspects of bioproduction, downstream processing, and their integration into high-performance next-generation materials. Additionally, we delve into the technical challenges of cost-effectiveness, processing, and scalability, which are critical barriers to widespread adoption. By highlighting these issues, this review aims to equip researchers in the bio-based domain with a comprehensive understanding of how plant-based and bacterial biopolymers can serve as viable alternatives to petroleum-derived materials. Ultimately, we envision a transformative shift from a linear, fossil fuel-based economy to a circular, bio-based economy, fostering more sustainable and environmentally conscious material solutions using novel biopolymers aligning with the framework of the United Nations Sustainable Development Goals (SDGs), including clean water and sanitation (SDG 6), industry, innovation, and infrastructure (SDG 9), affordable and clean energy (SDG 7), sustainable cities and communities (SDG 11), responsible production and consumption (SDG 12), and climate action (SDG 13). Full article
Show Figures

Figure 1

28 pages, 10272 KiB  
Article
A Bio-Optimization Approach for Renewable Energy Management: The Case of a University Building in a Tropical Climate
by Orlando Aguilar Pinzón, Orlando Aguilar Gallardo and Miguel Chen Austin
Energies 2025, 18(8), 2100; https://doi.org/10.3390/en18082100 - 18 Apr 2025
Cited by 1 | Viewed by 395
Abstract
As concerns about sustainable energy solutions grow, the exploration of bio-inspired techniques for optimizing renewable energy systems becomes increasingly important. This study presents a theoretical application of bio-inspired algorithms, specifically the Particle Swarm Optimization (PSO) algorithm and the Genetic Algorithm (GA), to enhance [...] Read more.
As concerns about sustainable energy solutions grow, the exploration of bio-inspired techniques for optimizing renewable energy systems becomes increasingly important. This study presents a theoretical application of bio-inspired algorithms, specifically the Particle Swarm Optimization (PSO) algorithm and the Genetic Algorithm (GA), to enhance the energy availability of a renewable energy system in an existing university building in a tropical climate. The research followed a multi-step process. First, a renewable energy generation system was designed for the building, considering available resources and space limitations. Next, we optimized both electricity production and overall energy management. Using the PSO algorithm to find the ideal combination of power generators that would fit within the available space resulted in a 10% increase in the energy deficit. Additionally, PSO was used to optimize the discharge management of the battery bank, independently demonstrating a 2% efficiency improvement when incorporated into the original pre-optimization system. These findings highlight some of the challenges with integrating renewable energy systems into existing buildings while showcasing the potential of biomimetic algorithms, like the PSO and the GA, for targeted optimization tasks. Further research is warranted to refine such algorithms and explore their tailored applications for enhancing the performance of renewable energy systems within the often-restrictive parameters of existing infrastructure. Full article
(This article belongs to the Special Issue Simulation and Analysis of Electrical Power Systems)
Show Figures

Figure 1

24 pages, 7165 KiB  
Review
Synthetic Biology Strategies and Tools to Modulate Photosynthesis in Microbes
by Shujin Fu, Kaiyu Ma, Xinyu Song, Tao Sun, Lei Chen and Weiwen Zhang
Int. J. Mol. Sci. 2025, 26(7), 3116; https://doi.org/10.3390/ijms26073116 - 28 Mar 2025
Cited by 1 | Viewed by 1224
Abstract
The utilization of photosynthetic microbes, such as cyanobacteria and microalgae, offers sustainable solutions to addressing global resource shortages and pollution. While these microorganisms have demonstrated significant potential in biomanufacturing, their industrial application is limited by suboptimal photosynthetic efficiency. Synthetic biology integrates molecular biology, [...] Read more.
The utilization of photosynthetic microbes, such as cyanobacteria and microalgae, offers sustainable solutions to addressing global resource shortages and pollution. While these microorganisms have demonstrated significant potential in biomanufacturing, their industrial application is limited by suboptimal photosynthetic efficiency. Synthetic biology integrates molecular biology, systems biology, and engineering principles to provide a powerful tool for elucidating photosynthetic mechanisms and rationally optimizing photosynthetic platforms. This review summarizes recent advancements in regulating photosynthesis in cyanobacteria and microalgae via synthetic biology, focusing on strategies to enhance light energy absorption, optimize electron transport chains, and improve carbon assimilation. Furthermore, we discuss key challenges in translating these genetic modifications to large-scale bioproduction, highlighting specific bottlenecks in strain stability, metabolic burden, and process scalability. Finally, we propose potential solutions, such as AI-assisted metabolic engineering, synthetic microbial consortia, and next-generation photobioreactor designs, to overcome these limitations. Overall, while synthetic biology holds great promise for enhancing photosynthetic efficiency in cyanobacteria and microalgae, further research is needed to refine genetic strategies and develop scalable production systems. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

44 pages, 11931 KiB  
Review
Eco-Friendly Conductive Hydrogels: Towards Green Wearable Electronics
by José María Calderón Moreno, Mariana Chelu and Monica Popa
Gels 2025, 11(4), 220; https://doi.org/10.3390/gels11040220 - 21 Mar 2025
Cited by 2 | Viewed by 2366
Abstract
The rapid advancement of wearable electronics has catalyzed the development of flexible, lightweight, and highly conductive materials. Among these, conductive hydrogels have emerged as promising candidates due to their tissue-like properties, which can minimize the mechanical mismatch between flexible devices and biological tissues [...] Read more.
The rapid advancement of wearable electronics has catalyzed the development of flexible, lightweight, and highly conductive materials. Among these, conductive hydrogels have emerged as promising candidates due to their tissue-like properties, which can minimize the mechanical mismatch between flexible devices and biological tissues and excellent electrical conductivity, stretchability and biocompatibility. However, the environmental impact of synthetic components and production processes in conventional conductive hydrogels poses significant challenges to their sustainable application. This review explores recent advances in eco-friendly conductive hydrogels used in healthcare, focusing on their design, fabrication, and applications in green wearable electronics. Emphasis is placed on the use of natural polymers, bio-based crosslinkers, and green synthesis methods to improve sustainability while maintaining high performance. We discuss the incorporation of conductive polymers and carbon-based nanomaterials into environmentally benign matrices. Additionally, the article highlights strategies for improving the biodegradability, recyclability, and energy efficiency of these materials. By addressing current limitations and future opportunities, this review aims to provide a comprehensive understanding of environmentally friendly conductive hydrogels as a basis for the next generation of sustainable wearable technologies. Full article
Show Figures

Graphical abstract

26 pages, 1478 KiB  
Review
Seed Priming: Molecular and Physiological Mechanisms Underlying Biotic and Abiotic Stress Tolerance
by Bhupinder Singh Jatana, Sajjan Grover, Hari Ram and Gurjinder Singh Baath
Agronomy 2024, 14(12), 2901; https://doi.org/10.3390/agronomy14122901 - 5 Dec 2024
Cited by 14 | Viewed by 6088
Abstract
Seed priming is a state-of-the-art, low-cost, and environment-friendly strategy to improve seed germination, seed vigor, abiotic and biotic stress tolerance, and the yield of field and horticultural crops. Seed priming involves imbibing the seeds in a priming solution under a desired set of [...] Read more.
Seed priming is a state-of-the-art, low-cost, and environment-friendly strategy to improve seed germination, seed vigor, abiotic and biotic stress tolerance, and the yield of field and horticultural crops. Seed priming involves imbibing the seeds in a priming solution under a desired set of environmental conditions for a period followed by drying before the radicle protrusion. Several seed priming approaches including hydropriming, osmopriming, bio-priming, hormonal priming, nutrient priming, nanoparticle priming, and electropriming can be effectively employed under different environmental conditions to improve crop growth and stress resilience. Seed priming is known to trigger enzymatic, hormonal, physiological, transcriptomic, metabolomic, and proteomic regulations in seed embryos during seed germination and plant growth, which leads to faster and synchronized seed germination and higher abiotic and biotic stress tolerance in crop plants. Furthermore, seed priming can induce cross-tolerance between abiotic and biotic stressors and induce stress memory for higher resilience of the next generation to environmental stresses. The present review paper discusses the applications of seed priming in biotic and abiotic stress tolerance and the underlying abiotic and biotic stress tolerance physiological, biochemical, and molecular mechanisms of seed priming. Furthermore, we discuss the current challenges/bottlenecks in the widespread application of seed priming in crop production. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

18 pages, 5464 KiB  
Article
Study on Surfactants for the Removal of Water from Deliquification Natural Gas Wells to Enhance Production
by Dorota Kluk, Teresa Steliga, Dariusz Bęben and Piotr Jakubowicz
Energies 2024, 17(23), 5924; https://doi.org/10.3390/en17235924 - 26 Nov 2024
Viewed by 986
Abstract
A major problem in natural gas production is the waterlogging of gas wells. This problem occurs at the end of a well’s life when the reservoir pressure becomes low and the gas velocity in the well tubing is no longer sufficient to bring [...] Read more.
A major problem in natural gas production is the waterlogging of gas wells. This problem occurs at the end of a well’s life when the reservoir pressure becomes low and the gas velocity in the well tubing is no longer sufficient to bring the gas-related fluids (water and gas condensate) up to the surface. This causes water to accumulate at the bottom of the gas well, which can seriously reduce or even stop gas production altogether. This paper presents a study of the foaming of reservoir water using foaming sticks with the trade names BioLight 30/380, BioCond 30, BioFoam 30, BioAcid 30/380, and BioCond Plus 30/380. The reservoir waters tested came from near-well separators located at three selected wells that had undergone waterlogging and experienced a decline in natural gas production. They were characterised by varying physical and chemical parameters, especially in terms of mineralisation and oil contaminant content. Laboratory studies on the effect of foaming agents on the effectiveness of foaming and lifting of reservoir water from the well were carried out on a laboratory bench, simulating a natural gas-producing column using surfactant doses in the range of 1.5–5.0 g/m3 and measuring the surface tension of the water, the volume of foam generated as a function of time and the foamed reservoir water. The performance criterion for the choice of surfactant for the test water was its effective lifting in a foam structure from an installation, simulating a waterlogged gas well and minimising the dose of foaming agent introduced into the water. The results obtained from the laboratory tests allowed the selection of effective surfactants in the context of foaming and uplift of reservoir water from wells, where a decline in natural gas production was observed as a result of their waterlogging. In the next stage, well tests were carried out based on laboratory studies to verify their effectiveness under conditions typical for the production site. Tests carried out at natural gas wells showed that the removal of water from the bottom of the well resulted in an increase in natural gas production, ranging from 56.3% to 79.6%. In practice, linking the results of laboratory tests for the type and dosage of foaming agents to the properties of reservoir water and gas production parameters made it possible to identify the types of surfactants and their dosages that improve the production of a given type of natural gas reservoir in an effective manner, resulting in an increase in the degree of depletion of hydrocarbon deposits. Full article
(This article belongs to the Special Issue Subsurface Energy and Environmental Protection 2024)
Show Figures

Figure 1

28 pages, 1538 KiB  
Article
A Novel Bifidobacterium longum Subsp. longum T1 Strain from Cow’s Milk: Homeostatic and Antibacterial Activity against ESBL-Producing Escherichia coli
by Andrey V. Machulin, Vyacheslav M. Abramov, Igor V. Kosarev, Evgenia I. Deryusheva, Tatiana V. Priputnevich, Alexander N. Panin, Ashot M. Manoyan, Irina O. Chikileva, Tatiana N. Abashina, Dmitriy A. Blumenkrants, Olga E. Ivanova, Tigran T. Papazyan, Ilia N. Nikonov, Nataliya E. Suzina, Vyacheslav G. Melnikov, Valentin S. Khlebnikov, Vadim K. Sakulin, Vladimir A. Samoilenko, Alexey B. Gordeev, Gennady T. Sukhikh, Vladimir N. Uversky and Andrey V. Karlyshevadd Show full author list remove Hide full author list
Antibiotics 2024, 13(10), 924; https://doi.org/10.3390/antibiotics13100924 - 27 Sep 2024
Viewed by 2434
Abstract
Background/Objectives: The global emergence of antibiotic-resistant zooanthroponotic Escherichia coli strains, producing extended-spectrum beta-lactamases (ESBL-E) and persisting in the intestines of farm animals, has now led to the development of a pandemic of extra-intestinal infectious diseases in humans. The search for innovative probiotic microorganisms [...] Read more.
Background/Objectives: The global emergence of antibiotic-resistant zooanthroponotic Escherichia coli strains, producing extended-spectrum beta-lactamases (ESBL-E) and persisting in the intestines of farm animals, has now led to the development of a pandemic of extra-intestinal infectious diseases in humans. The search for innovative probiotic microorganisms that eliminate ESBL-E from the intestines of humans and animals is relevant. Previously, we received three isolates of bifidobacteria: from milk of a calved cow (BLLT1), feces of a newborn calf (BLLT2) and feces of a three-year-old child who received fresh milk from this calved cow (BLLT3). Our goal was to evaluate the genetic identity of BLLT1, BLLT2, BLLT3 isolates using genomic DNA fingerprinting (GDF), to study the tolerance, adhesion, homeostatic and antibacterial activity of BLLT1 against ESBL-E. Methods: We used a complex of microbiological, molecular biological, and immunological methods, including next generation sequencing (NGS). Results: GDF showed that DNA fragments of BLLT2 and BLLT3 isolates were identical in number and size to DNA fragments of BLLT1. These data show for the first time the possibility of natural horizontal transmission of BLLT1 through with the milk of a calved cow into the intestines of a calf and the intestines of a child. BLLT1 was resistant to gastric and intestinal stresses and exhibited high adhesive activity to calf, pig, chicken, and human enterocytes. This indicates the unique ability of BLLT1 to inhabit the intestines of animals and humans. We are the first to show that BLLT1 has antibacterial activity against ESBL-E strains that persist in humans and animals. BLLT1 produced 145 ± 8 mM of acetic acid, which reduced the pH of the nutrient medium from 6.8 to 5.2. This had an antibacterial effect on ESBL-E. The genome of BLLT1 contains ABC-type carbohydrate transporter gene clusters responsible for the synthesis of acetic acid with its antibacterial activity against ESBL-E. BLLT1 inhibited TLR4 mRNA expression induced by ESBL-E in HT-29 enterocytes, and protected the enterocyte monolayers used in this study as a bio-model of the intestinal barrier. BLLT1 increased intestinal alkaline phosphatase (IAP) as one of the main molecular factors providing intestinal homeostasis. Conclusions: BLLT1 shows promise for the creation of innovative functional nutritional products for humans and feed additives for farm animals that will reduce the spread of ESBL-E strains in the food chain. Full article
Show Figures

Figure 1

12 pages, 1700 KiB  
Article
Effects of Zinc Oxide and Zinc–Silica-Based Nanofertilizers with Yeasts on Selected Components of Soybean in the Central European Agronomic Region: A Short-Term Study
by Dávid Ernst, Marek Kolenčík, Michal Kupec, Martin Šebesta, Yu Qian, Viktor Straka, Ivan Černý, Joyce Govinden Soulange and Ladislav Ducsay
Agronomy 2024, 14(9), 2138; https://doi.org/10.3390/agronomy14092138 - 20 Sep 2024
Cited by 1 | Viewed by 1598
Abstract
The action-to-reaction dynamics of next-generation nanofertilizers (NFs) towards field crops are currently being addressed in precision and sustainable agriculture. Therefore, our aim was to evaluate the effects of foliar application of ZnO nanoparticles (ZnO-NPs) or their combination with hybrid nanoporous biosilica mixed with [...] Read more.
The action-to-reaction dynamics of next-generation nanofertilizers (NFs) towards field crops are currently being addressed in precision and sustainable agriculture. Therefore, our aim was to evaluate the effects of foliar application of ZnO nanoparticles (ZnO-NPs) or their combination with hybrid nanoporous biosilica mixed with yeast (ZnSi-bio) for soybean plants’ selected production and physiological indices in comparison to an NF-free control. The experiment was conducted at eco-friendly concentrations in Veľký Krtíš, Slovakia, a location within the Central European agronomical region. The ZnSi-bio variant had an improved number of pods, seed count, and yield, while the ZnO-NPs variant had an enhanced seed bulk density compared to the NF-free control, which had a greater effect on thousand-seed weight (TSW). Significant differences were found in the final quality components of soybeans with respect to phosphorus content without ZnO-NP biofortification. In the case of the ZnSi-bio variant, soybeans were biofortified with zinc. Both leaf-applied NFs markedly improved nutritional and energetic values for soybeans. NFs continued to positively affect seasonal physiology, such as the stomatal conductance (Ig) and crop water stress index (CWSI), compared to the control. The results suggest that the ZnO-NPs, especially when combined with hybrid biosilica and yeast, open new avenues for interdisciplinary research in agro-food science. Full article
Show Figures

Figure 1

14 pages, 486 KiB  
Review
A Review of Swine Breeding Herd Biosecurity in the United States to Prevent Virus Entry Using Porcine Reproductive and Respiratory Syndrome Virus as a Model Pathogen
by Satoshi Otake, Mio Yoshida and Scott Dee
Animals 2024, 14(18), 2694; https://doi.org/10.3390/ani14182694 - 16 Sep 2024
Cited by 3 | Viewed by 2559
Abstract
The prevention of disease introduction into swine herds requires the practice of science-based protocols of biosecurity that have been validated to reduce the risk of the entry of targeted pathogens. The fundamental pillars of biosecurity include bio-exclusion, biocontainment, and bio-management. Biosecurity protocols must [...] Read more.
The prevention of disease introduction into swine herds requires the practice of science-based protocols of biosecurity that have been validated to reduce the risk of the entry of targeted pathogens. The fundamental pillars of biosecurity include bio-exclusion, biocontainment, and bio-management. Biosecurity protocols must be science-based, a way of life, continuously validated, cost-effective, and benchmarked over time. This paper will review these concepts, the direct and indirect routes of transmission of porcine reproductive and respiratory syndrome virus (PRRSV), and the interventions that have been designed and validated to prevent infection of the breeding herd. It will close with a review of Next Generation Biosecurity, describing how a science-based approach is being used to prevent PRRSV infection in breeding herds from a large commercial pork production system in the US. Full article
(This article belongs to the Special Issue Biosecuring Animal Populations)
Show Figures

Figure 1

21 pages, 2548 KiB  
Review
The Macroalga Kappaphycus alvarezii as a Potential Raw Material for Fermentation Processes within the Biorefinery Concept: Challenges and Perspectives
by Adam Tabacof, Verônica Calado and Nei Pereira
Fermentation 2024, 10(6), 283; https://doi.org/10.3390/fermentation10060283 - 28 May 2024
Cited by 2 | Viewed by 2994
Abstract
Seaweed is a fast-growing biomass source that is currently studied as feedstock for sustainable industrial production in a wide variety of markets. Being composed mostly of polysaccharides, macroalgae can be integrated in biorefineries for obtaining bioproducts via fermentation. Kappaphycus alvarezii has been introduced [...] Read more.
Seaweed is a fast-growing biomass source that is currently studied as feedstock for sustainable industrial production in a wide variety of markets. Being composed mostly of polysaccharides, macroalgae can be integrated in biorefineries for obtaining bioproducts via fermentation. Kappaphycus alvarezii has been introduced experimentally to Brazil’s south coastline in 1995 and is now cultivated on a large scale to keep up with the high carrageenan demand in various industrial sectors. In this review article, an introduction is given on renewable biomass and environmental issues, focusing especially on third-generation biomass and its promising features and use advantages. Later on, the processing of K. alvarezii for the use of its saccharide portion for fermentative processes is approached. The current state of research conducted alongside challenges and hurdles in K. alvarezii hydrolysate fermentation processes provides insight into future studies needed to make new fermentation processes viable. Next, some fermentation products are discussed, and the metabolism of galactose in microorganisms is also presented to bring to light other possible fermentation products that are not yet, but can be, obtained from K. alvarezii. Finally, a simple and comprehensive scheme for K. alvarezii fermentation biorefinery is presented to demonstrate a generic example for a possible configuration for obtaining valuable bio-products. In the literature, production of ethanol and lactic acid were already reported from K. alvarezii. This review aims to help envision new industrial processes that can be developed for this most valuable macroalga. Full article
(This article belongs to the Special Issue Algae—The Medium of Bioenergy Conversion: 2nd Edition)
Show Figures

Figure 1

16 pages, 2554 KiB  
Article
Innovations in Agricultural Bio-Inputs: Commercial Products Developed in Argentina and Brazil
by Gabriel da Silva Medina, Rosana Rotondo and Gustavo Rubén Rodríguez
Sustainability 2024, 16(7), 2763; https://doi.org/10.3390/su16072763 - 27 Mar 2024
Cited by 8 | Viewed by 6493
Abstract
Innovations in agricultural bio-inputs can lead to sustainable alternatives to replace synthetic fertilizers and pesticides. However, there is no clear understanding of what technologies can become available to farmers as commercial products, particularly in developing countries. This study summarizes the innovations used in [...] Read more.
Innovations in agricultural bio-inputs can lead to sustainable alternatives to replace synthetic fertilizers and pesticides. However, there is no clear understanding of what technologies can become available to farmers as commercial products, particularly in developing countries. This study summarizes the innovations used in commercial products in Argentina and Brazil based on the countries’ official data and on in-depth surveys conducted with 14 bio-input private companies. The results reveal ongoing development efforts to improve traditional products, such as inoculants that help plants fix nitrogen. There is also progress in mastering the formulation of new bio-inputs, such as bio-fertilizers that promote plant growth and bio-pesticides for pest control. Lastly, the next generation of bio-inputs composed of phytovaccines promises to help prepare plants’ immune systems against the attack of pathogenic fungi and bacteria, while bio-herbicides can potentially reduce the use of synthetic herbicides to prepare fields for harvest. Domestic companies based in Argentina and Brazil play an important role in these innovations that can underpin bio-economy growth in developing countries. Full article
(This article belongs to the Special Issue Agricultural Economic Transformation and Sustainable Development)
Show Figures

Figure 1

16 pages, 4149 KiB  
Article
Mycelium-Based Composites as a Sustainable Solution for Waste Management and Circular Economy
by Daniel-Gabriel Barta, Irina Simion, Ancuța-Elena Tiuc and Ovidiu Vasile
Materials 2024, 17(2), 404; https://doi.org/10.3390/ma17020404 - 13 Jan 2024
Cited by 18 | Viewed by 5800
Abstract
The global population is expected to increase by nearly 2 billion individuals over the next three decades, leading to a significant surge in waste generation and environmental challenges. To mitigate these challenges, there is a need to develop sustainable solutions that can effectively [...] Read more.
The global population is expected to increase by nearly 2 billion individuals over the next three decades, leading to a significant surge in waste generation and environmental challenges. To mitigate these challenges, there is a need to develop sustainable solutions that can effectively manage waste generation and promote a circular economy. Mycelium-based composites (MBCs) are being developed for various applications, including packaging, architectural designs, sound absorption, and insulation. MBCs are made by combining fungal mycelium with organic substrates, using the mycelium as a natural adhesive. Mycelium, the vegetative part of fungi, can be grown on various organic feedstocks and functionalized into a range of diverse material types that are biobased and thus more sustainable in their production, use, and recycling. This work aims to obtain mycelium-based composites with acoustic absorption properties, using coffee grounds and agricultural waste as raw materials. The topic approached presents a new method of recovering spent coffee grounds that does not involve high production costs and reduces two current environmental problems: noise pollution and abundant waste. Measurements of the normal-incidence sound absorption coefficient were presented and analyzed. Mycelium-based composites offer an innovative, sustainable approach to developing bio-composite sound-absorbing surfaces for interior fittings. The material by Ganoderma lucidum exhibits exceptional sound-absorbing properties at frequencies below 700 Hz, which is a crucial aspect of creating sound-absorbing materials that effectively absorb low-frequency sound waves. The modular construction system allows for a high degree of flexibility to adapt to short-term changes in the workplace. Full article
Show Figures

Figure 1

Back to TopTop