Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (268)

Search Parameters:
Keywords = neutrophil apoptosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 25333 KiB  
Article
Regulatory Effects of Codonopsis pilosula Alkali-Extracted Polysaccharide Induced Intestinal Lactobacillus Enrichment on Peripheral Blood Proteomics in Tumor-Bearing Mice
by Yuting Fan, Chenqi Yang, Yiran Zhao, Xiao Han, Hongfei Ji, Zhuohao Ren, Wenjie Ding and Haiyu Ji
Microorganisms 2025, 13(8), 1750; https://doi.org/10.3390/microorganisms13081750 - 26 Jul 2025
Viewed by 370
Abstract
Codonopsis pilosula polysaccharides have demonstrated multiple biological activities including immune regulation, antitumor, and antioxidant properties. The rapid development and integrated application of multi-omics can facilitate the unraveling of the complex network of immune system regulation. In this study, C. pilosula alkali-extracted polysaccharide (CPAP) [...] Read more.
Codonopsis pilosula polysaccharides have demonstrated multiple biological activities including immune regulation, antitumor, and antioxidant properties. The rapid development and integrated application of multi-omics can facilitate the unraveling of the complex network of immune system regulation. In this study, C. pilosula alkali-extracted polysaccharide (CPAP) were prepared, and their effects on gut microbiota compositions, metabolic pathways, and protein expressions in peripheral blood and solid tumors in mice were further evaluated. The 16S rDNA sequencing results showed that CPAP could effectively promote the enrichment of intestinal Lactobacillus in tumor-bearing mice. In addition, it could be inferred from peripheral blood and solid tumor proteomics results that CPAP might activate T cell-mediated antitumor immune functions by regulating purine metabolism and alleviate tumor-caused inflammation by promoting neutrophil degranulation, finally inducing apoptosis in tumor cells by increasing oxidative stress. These results will provide a theoretical foundation and data support for the further development of CPAP as dietary adjuvants targeting immune deficiency-related diseases. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

20 pages, 2556 KiB  
Article
High-Calorie Diets Exacerbate Lipopolysaccharide-Induced Pneumonia by Promoting Propionate-Mediated Neutrophil Extracellular Traps
by Yingqiu Sun, Hui Liu, Jiyu Jiang, Leyan Hu, Qingpu Ma, Shuxuan Li, Tiegang Liu and Xiaohong Gu
Nutrients 2025, 17(13), 2242; https://doi.org/10.3390/nu17132242 - 7 Jul 2025
Viewed by 625
Abstract
Objectives: High-calorie diets are linked to increased risks of chronic inflammation and immune dysfunction, yet their role in modulating pneumonia severity remains unclear. Focusing on the interactions among gut-originating short-chain fatty acids (SCFAs), neutrophil function, and histone deacetylases (HDACs), this research examined [...] Read more.
Objectives: High-calorie diets are linked to increased risks of chronic inflammation and immune dysfunction, yet their role in modulating pneumonia severity remains unclear. Focusing on the interactions among gut-originating short-chain fatty acids (SCFAs), neutrophil function, and histone deacetylases (HDACs), this research examined the exacerbating effects of a high-calorie diet on pneumonia in rats. Methods: Male Sprague-Dawley rats (3 weeks old, 110 ± 10 g) were allocated among four groups: normal diet (N), high-calorie diet (G), LPS-induced pneumonia (P), and high-calorie diet combined with lipopolysaccharide (LPS)-induced pneumonia (GP). LPS was administered via aerosolization for three days. Fecal, serum, and lung SCFA levels were quantified via GC-MS. Neutrophil extracellular traps (NETs) formation, neutrophil apoptosis, and HDAC activity were assessed using immunofluorescence, TUNEL assays, and qRT-PCR. Propionate supplementation and HDAC inhibitor (trichostatin A) interventions were applied to validate mechanistic pathways. Results: The group GP exhibited exacerbated lung inflammation, increased NETs release, and reduced neutrophil apoptosis compared to the group P. Propionate levels in feces, serum, and lung tissues decreased sharply in GP rats, correlating with elevated HDAC1/2/3/6 activity and reduced histone acetylation. Propionate supplementation or HDAC inhibition significantly attenuated lung injury, suppressed NETs, and restored neutrophil apoptosis. Conclusions: High-calorie diets exacerbate pneumonia by depleting gut-derived propionate, which drives HDAC-mediated NETs overproduction and impairs neutrophil apoptosis. Restoring propionate levels or targeting HDACs may offer therapeutic strategies for diet-aggravated respiratory diseases. Mechanistically, propionate-mediated HDAC inhibition demonstrates proof-of-concept efficacy in modulating H4 acetylation, warranting further investigation in disease-specific pneumonia models. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

17 pages, 2658 KiB  
Article
Hematological Changes and Immunomodulation of Neutrophil and Monocyte Populations in Shelter Dogs
by Marek Kulka, Iwona Monika Szopa and Maciej Klockiewicz
Animals 2025, 15(13), 1988; https://doi.org/10.3390/ani15131988 - 6 Jul 2025
Viewed by 427
Abstract
Environmental impact plays a pivotal role in forming the welfare of shelter dogs exposed to chronic stress. Standard methods of animal health monitoring, such as psychological evaluation or cortisol measurements, do not fully reflect modulation of the immune system. Functional cellular changes may [...] Read more.
Environmental impact plays a pivotal role in forming the welfare of shelter dogs exposed to chronic stress. Standard methods of animal health monitoring, such as psychological evaluation or cortisol measurements, do not fully reflect modulation of the immune system. Functional cellular changes may be subtle and observed only at the molecular level. Therefore, the aim of this study was to characterize the immune function of shelter dogs kept on different timetables in comparison with client-owned dogs. We focused on potential alterations of antigen processing by neutrophils and monocytes in animals undergoing different durations of stress. Hematological and biochemical parameters were evaluated, and changes in TLR4 and MHC Class II expression on neutrophils and monocytes isolated from peripheral blood were determined. Additionally, we measured the percentage of apoptotic cells within these leukocyte populations. Our study revealed that stressful conditions can alter the molecular pattern of surface receptors on neutrophils and monocytes, as well as the leukocytes apoptosis rate. The obtained data also indicated that the dogs’ duration of stay in the shelter plays an important role in immunomodulation and triggering their adaptation mechanisms. These results bring a new perspective and will be crucial in developing improved guidelines for monitoring and promoting the welfare of shelter dogs. Full article
Show Figures

Figure 1

14 pages, 5400 KiB  
Article
Therapeutic Potential of CHCHD2 in Ischemia–Reperfusion Injury: Mechanistic Insights into Nrf2-Dependent Antioxidant Defense in HK2 Cells
by Yajie Hao and Xiaoshuang Zhou
Int. J. Mol. Sci. 2025, 26(13), 6089; https://doi.org/10.3390/ijms26136089 - 25 Jun 2025
Viewed by 328
Abstract
Acute kidney injury (AKI) resulting from ischemia/reperfusion (I/R) poses a significant clinical challenge due to its high mortality and complex pathophysiology. Here, the protective actions of Coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) in carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-induced adenosine triphosphate depletion and recovery (ATP-D/R) [...] Read more.
Acute kidney injury (AKI) resulting from ischemia/reperfusion (I/R) poses a significant clinical challenge due to its high mortality and complex pathophysiology. Here, the protective actions of Coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) in carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-induced adenosine triphosphate depletion and recovery (ATP-D/R) injury in human kidney-2 (HK2) cells are examined. During ATP-D/R, expression levels of CHCHD2 were significantly reduced. The overexpression of CHCHD2 substantially reduced the levels of ROS, lipid peroxidation, apoptosis, kidney injury molecule-1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL), whereas the knockdown of CHCHD2 exacerbated cellular injury. Mechanistic studies further demonstrated that overexpression of CHCHD2 restored Nrf2 expression under ATP-D/R conditions, facilitated its nuclear translocation, and upregulated the downstream antioxidant enzyme HO-1. In contrast, the knockdown of Nrf2 reduced the cytoprotective actions of CHCHD2. These findings indicate that CHCHD2 reduces cellular damage by enhancing antioxidant defenses and reducing apoptosis through activating the Nrf2 axis, underscoring its potential as a therapeutic target for AKI. Full article
(This article belongs to the Special Issue Focus on Antioxidants and Human Diseases)
Show Figures

Figure 1

21 pages, 6110 KiB  
Article
Integrating Bulk RNA and Single-Cell Sequencing Data Reveals Genes Related to Energy Metabolism and Efferocytosis in Lumbar Disc Herniation
by Lianjun Yang, Jinxiang Li, Zhifei Cui, Lihua Huang, Tao Chen, Xiang Liu and Hai Lu
Biomedicines 2025, 13(7), 1536; https://doi.org/10.3390/biomedicines13071536 - 24 Jun 2025
Viewed by 627
Abstract
Background/Objectives: Lumbar disc herniation (LDH) is the most common condition associated with low back pain, and it adversely impacts individuals’ health. The interplay between energy metabolism and apoptosis is critical, as the loss of viable cells in the intervertebral disc (IVD) can [...] Read more.
Background/Objectives: Lumbar disc herniation (LDH) is the most common condition associated with low back pain, and it adversely impacts individuals’ health. The interplay between energy metabolism and apoptosis is critical, as the loss of viable cells in the intervertebral disc (IVD) can lead to a cascade of degenerative changes. Efferocytosis is a key biological process that maintains homeostasis by removing apoptotic cells, resolving inflammation, and promoting tissue repair. Therefore, enhancing mitochondrial energy metabolism and efferocytosis function in IVD cells holds great promise as a potential therapeutic approach for LDH. Methods: In this study, energy metabolism and efferocytosis-related differentially expressed genes (EMERDEGs) were identified from the transcriptomic datasets of LDH. Machine learning approaches were used to identify key genes. Functional enrichment analyses were performed to elucidate the biological roles of these genes. The functions of the hub genes were validated by RT-qPCR. The CIBERSORT algorithm was used to compare immune infiltration between LDH and Control groups. Additionally, we used single-cell RNA sequencing dataset to analyze cell-specific expression of the hub genes. Results: By using bioinformatics methods, we identified six EMERDEGs hub genes (IL6R, TNF, MAPK13, ELANE, PLAUR, ABCA1) and verified them using RT-qPCR. Functional enrichment analysis revealed that these genes were primarily associated with inflammatory response, chemokine production, and cellular energy metabolism. Further, we identified candidate drugs as potential treatments for LDH. Additionally, in immune infiltration analysis, the abundance of activated dendritic cells, neutrophils, and gamma delta T cells varied significantly between the LDH group and Control group. The scRNA-seq analysis showed that these hub genes were mainly expressed in chondrocyte-like cells. Conclusions: The identified EMERDEG hub genes and pathways offer novel insights into the molecular mechanisms underlying LDH and suggest potential therapeutic targets. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

18 pages, 13680 KiB  
Article
Upregulated BAP31 Links to Poor Prognosis and Tumor Immune Microenvironment in Breast Cancer
by Zhenzhen Hao, Bo Zhao, Xiaoshuang Zhu, Wanting Zhang and Bing Wang
Int. J. Mol. Sci. 2025, 26(13), 5975; https://doi.org/10.3390/ijms26135975 - 21 Jun 2025
Viewed by 541
Abstract
BAP31, a transmembrane protein in the endoplasmic reticulum, is known for its oncogenic properties, but its role in immunotherapy is not well understood. While BAP31’s involvement in liver, gastric, and cervical cancers has been documented, its role in pan-cancer immune regulation, particularly in [...] Read more.
BAP31, a transmembrane protein in the endoplasmic reticulum, is known for its oncogenic properties, but its role in immunotherapy is not well understood. While BAP31’s involvement in liver, gastric, and cervical cancers has been documented, its role in pan-cancer immune regulation, particularly in breast cancer, remains unexplored. Using TCGA data, analysis via the Xiantao academic and GEPIA2 database showed that BAP31 upregulation correlates with advanced clinical stages and a poor prognosis. ROC analysis demonstrated BAP31’s high accuracy in distinguishing cancerous tissue from normal tissues. Additionally, BAP31 expression is associated with CNV, methylation, TMB, and MSI. In breast cancer, TIMER database analysis revealed that BAP31 expression is inversely correlated with the infiltration levels of myeloid-derived suppressor cells (MDSCs), macrophages, T lymphocytes, B lymphocytes, and neutrophils. Additionally, we investigated the relationship between BAP31 and the expression of major histocompatibility complex (MHC) molecules and chemokine receptors utilizing the TISIDB database. LinkedOmics analysis demonstrated associations between BAP31 and various immune-inflammatory pathways, while also indicating a negative correlation between BAP31 expression and four critical pathways: extracellular matrix receptor interaction, focal adhesion, JAK-STAT signaling, and TGF-β signaling. Furthermore, loss-of-function experiments employing shRNA-mediated knockdown of BAP31 resulted in a marked reduction in cell proliferation and an increase in apoptosis in breast cancer cells, thereby confirming its role in tumor promotion. These findings suggest that BAP31 may serve as a promising prognostic biomarker and a potential target for immunotherapy in breast cancer. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

38 pages, 1860 KiB  
Review
Modified Lipid Particle Recognition: A Link Between Atherosclerosis and Cancer?
by Amy E. Hall, Dhananjay Jade, Faheem Shaik, Shervanthi Homer-Vanniasinkam, Stephen P. Muench, Michael A. Harrison and Sreenivasan Ponnambalam
Biology 2025, 14(6), 675; https://doi.org/10.3390/biology14060675 - 11 Jun 2025
Viewed by 3795
Abstract
Cardiovascular disease and cancer are major global causes of mortality. Dysfunctional lipid metabolism causes atherosclerosis, a driving force in arterial disease leading to heart attacks and strokes. In this review, we focus on emerging evidence for links between atherosclerosis and cancer. In atherosclerosis, [...] Read more.
Cardiovascular disease and cancer are major global causes of mortality. Dysfunctional lipid metabolism causes atherosclerosis, a driving force in arterial disease leading to heart attacks and strokes. In this review, we focus on emerging evidence for links between atherosclerosis and cancer. In atherosclerosis, modified and oxidized lipid particles promote plaque initiation and progression, with wider effects on cell and tissue responses. Oxidized and modified lipid particles bind to scavenger receptors (SRs) and promote intracellular signaling and pro-inflammatory responses. Increasing evidence points to SR-mediated activation and signaling promoting cancer cell growth and spread. In particular, the lectin-like oxidized low-density lipoprotein (LOX-1) scavenger receptor activates NF-κB-regulated signal transduction pathways which modulate different cellular responses. LOX-1-regulated signaling events are implicated in both atherosclerosis and cancer, depending on the cell type. LOX-1 signaling modulates cell proliferation, epithelial–mesenchymal transition, neutrophil recruitment and apoptosis. Elevated LOX-1 levels are linked to poor prognosis in arterial disease and prostate, colorectal and lung cancers. Inhibition of LOX-1 function could thus provide new therapeutic strategies for targeting both atherosclerosis and cancer. Full article
(This article belongs to the Section Cancer Biology)
Show Figures

Graphical abstract

27 pages, 6113 KiB  
Article
Peptidylarginine Deiminase 4 Deficiency Suppresses Neutrophil Extracellular Trap Formation and Ameliorates Elastase-Induced Emphysema in Mouse Lung
by Megumi Katsumata, Jun Ikari, Akira Urano, Eiko Suzuki, Kazuto Kugou, Yoshinori Hasegawa, Koichiro Tatsumi and Takuji Suzuki
Int. J. Mol. Sci. 2025, 26(12), 5573; https://doi.org/10.3390/ijms26125573 - 11 Jun 2025
Viewed by 797
Abstract
Neutrophil extracellular traps (NETs) are associated with the extracellular release of nuclear chromatin decorated with cytoplasmic proteins. Excessive release of NETs has been reported in chronic lung diseases, including chronic obstructive pulmonary disease (COPD). However, the role of NETs in the pathogenesis of [...] Read more.
Neutrophil extracellular traps (NETs) are associated with the extracellular release of nuclear chromatin decorated with cytoplasmic proteins. Excessive release of NETs has been reported in chronic lung diseases, including chronic obstructive pulmonary disease (COPD). However, the role of NETs in the pathogenesis of COPD remains unclear. Peptidylarginine deaminase 4 (PAD4) contributes to NET formation. Therefore, in an elastase (ELS)-induced emphysema mouse model, we examined the role of PAD4 using Padi4 gene knockout (KO) mice. First, we confirmed that ELS induced NET formation in the parenchyma of the lungs. PAD4 deficiency suppressed ELS-induced NET expression and tended to ameliorate the lung tissue injury. The cellular profile of bronchoalveolar lavage fluid (BALF) did not differ between the two groups. Additionally, PAD4 deficiency ameliorated emphysema and apoptosis in lung cells. Finally, we examined the effects of PAD4 on comprehensive gene expression signatures using RNA sequencing. Enrichment analysis of the transcriptomic data revealed that the expression of several genes associated with COPD pathogenesis was altered in the KO mice. Overall, the results suggest that PAD4 deficiency improves NET formation and emphysema in the lungs; this pathway can be a potential therapeutic target for the treatment of COPD. Full article
Show Figures

Figure 1

22 pages, 8985 KiB  
Article
Huanglian Jiedu Decoction Treats Ischemic Stroke by Regulating Pyroptosis: Insights from Multi-Omics and Drug–Target Relationship Analysis
by Yixiao Gu, Zijin Sun, Tao Li and Xia Ding
Pharmaceuticals 2025, 18(6), 775; https://doi.org/10.3390/ph18060775 - 23 May 2025
Viewed by 879
Abstract
Background: Ischemic stroke (IS) is a severe condition with limited therapeutic options. Pyroptosis, a type of programmed cell death linked to inflammation, is closely associated with IS-related damage. Studies suggest inflammation aligns with the traditional Chinese medicine (TCM) concept of “fire-heat syndrome”. Huanglian [...] Read more.
Background: Ischemic stroke (IS) is a severe condition with limited therapeutic options. Pyroptosis, a type of programmed cell death linked to inflammation, is closely associated with IS-related damage. Studies suggest inflammation aligns with the traditional Chinese medicine (TCM) concept of “fire-heat syndrome”. Huanglian Jiedu Decoction (HLJD), a TCM formula known for clearing heat and purging fire, has shown therapeutic effects on IS, potentially by regulating pyroptosis. Study design: Eight-week-old male mice were divided into six groups: sham operation, model, positive drug, and low-, medium-, and high-dose HLJD groups. After a week of adaptive feeding, mice received respective treatments for five days, followed by modeling on the sixth day, with samples collected 23 h post-perfusion. Analyses included multi-omics, physiology, histopathology, virtual drug screening, target affinity assessment, and molecular biology techniques to measure relevant indicators. Results: HLJD effectively mitigated IS-related damage, maintaining neurological function, reducing ischemic levels, protecting cellular morphology, inhibiting neuronal apoptosis, and preserving blood–brain barrier integrity. Bioinformatics of high-throughput omics data revealed significant activation of pyroptosis and related inflammatory pathways in IS. ScRNA-seq identified neutrophils, macrophages, and microglia as key pyroptotic cell types, suggesting potential therapeutic targets. Network pharmacology and molecular docking identified NLRP3 as a critical target, with 6819 ligand–receptor docking results. SPR molecular fishing, LC-MS, molecular dynamics, and affinity measurements identified small molecules with high affinity for NLRP3. Molecular biology techniques confirmed that HLJD regulates pyroptosis via the classical inflammasome signaling pathway and modulates the inflammatory microenvironment. Conclusions: Following IS, pyroptosis in myeloid cells triggers an inflammatory cascade, leading to neural damage. HLJD may inhibit NLRP3 activity, reducing pyroptosis and associated inflammation, and ultimately mitigating damage. Full article
Show Figures

Figure 1

32 pages, 21562 KiB  
Article
Major Traumatic Injury and Exposure to Mitochondrial-Derived Damage-Associated Molecular Patterns Promotes Neutrophil Survival Accompanied by Stabilisation of the Anti-Apoptotic Protein Mcl-1
by Thomas Nicholson, Michael Macleod, Antonio Belli, Janet M. Lord and Jon Hazeldine
Cells 2025, 14(10), 754; https://doi.org/10.3390/cells14100754 - 21 May 2025
Viewed by 574
Abstract
Traumatic injury leads to an extension of the half-life of circulating neutrophils. However, how quickly neutrophil apoptosis is delayed post-injury is currently unknown, as are the underlying mechanisms and factors that promote this extension of lifespan. During the ultra-early (≤1 h) and acute [...] Read more.
Traumatic injury leads to an extension of the half-life of circulating neutrophils. However, how quickly neutrophil apoptosis is delayed post-injury is currently unknown, as are the underlying mechanisms and factors that promote this extension of lifespan. During the ultra-early (≤1 h) and acute (4–12 and 48–72 h) post-injury phases, we collected blood samples from 73 adult trauma patients. Following ex vivo culture, neutrophil apoptosis was measured, alongside caspase-3 activation and expression of the anti-apoptotic protein Mcl-1. To identify factors that may promote neutrophil survival post-trauma, neutrophils from healthy controls (HCs) were cultured with mitochondrial-derived damage-associated molecular patterns (mtDAMPs) or mitochondrial DNA (mtDNA). Accompanied by reduced mitochondrial membrane depolarisation, delayed Mcl-1 turnover, and reduced caspase-3 activation, the ex vivo lifespan of neutrophils from trauma patients was significantly enhanced in a protein synthesis-independent manner within minutes to hours after injury. Neutrophils from HCs exhibited delayed apoptosis when cultured in media supplemented with trauma patient serum, which occurred alongside stabilisation of Mcl-1. Culturing HCs neutrophils with mtDAMPs or mtDNA significantly delayed apoptosis rates, promoted stabilisation of Mcl-1, and reduced caspase-3 activation. The release of mtDAMPs from damaged tissue may drive post-trauma immune dysregulation by promoting the survival of dysfunctional neutrophils. Full article
(This article belongs to the Collection Feature Papers in ‘Cellular Immunology’)
Show Figures

Graphical abstract

15 pages, 1909 KiB  
Article
Early Immunological and Inflammation Proteomic Changes in Elderly COVID-19 Patients Predict Severe Disease Progression
by Shiyang Liu, Wen Xu, Bo Tu, Zhiqing Xiao, Xue Li, Lei Huang, Xin Yuan, Juanjuan Zhou, Xinxin Yang, Junlian Yang, De Chang, Weiwei Chen and Fu-Sheng Wang
Biomedicines 2025, 13(5), 1162; https://doi.org/10.3390/biomedicines13051162 - 10 May 2025
Viewed by 741
Abstract
Background: Elderly patients infected with SARS-CoV-2 are at higher risk of developing cytokine storm and severe outcomes; however, specific immunological and proteomic biomarkers for early prediction remain unclear in this vulnerable group. Methods: We enrolled 182 elderly COVID-19 patients from the Chinese PLA [...] Read more.
Background: Elderly patients infected with SARS-CoV-2 are at higher risk of developing cytokine storm and severe outcomes; however, specific immunological and proteomic biomarkers for early prediction remain unclear in this vulnerable group. Methods: We enrolled 182 elderly COVID-19 patients from the Chinese PLA General Hospital between November 2022 and April 2023, categorizing them based on progression to respiratory failure requiring mechanical ventilation (defined as severe progression). Olink proteomic analysis was performed on admission serum from 40 propensity score-matched samples, with differentially expressed proteins (DEPs) validated by cytometric bead array (CBA) in 178 patients. To predict severe progression, a model was developed using a 70% training set and validated on a 30% validation set. LASSO regression screened features followed by logistic regression and receiver operating characteristic (ROC) analysis to optimize the model by incrementally incorporating features ranked by random forest importance. Results: Elderly patients progressing to severe COVID-19 exhibited early immune dysregulation, including neutrophilia, lymphopenia, monocytopenia, elevated procalcitonin (PCT), C-reactive protein (CRP), interleukin-6 (IL-6), neutrophil-to-lymphocyte ratio (NLR), and systemic immune-inflammation index (SII), as well as coagulation dysfunction and multi-organ injury. Proteomics identified a set of biomarkers, including tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), and revealed disruptions in signaling pathways, including the mTOR and VEGF signaling pathways. The optimal predictive model, which incorporated PCT, IL-6, monocyte percentage, lymphocyte count, and TRAIL, achieved an area under curve (AUC) of 0.870 (0.729–1.000) during validation. TRAIL levels negatively correlated with fibrinogen (p < 0.05). Conclusions: Elderly COVID-19 patients with severe progression demonstrate early immune dysregulation, hyperinflammation, coagulation dysfunction, and multi-organ injury. The model we proposed effectively predicts disease progression in elderly COVID-19 patients, providing potential biomarkers for early clinical risk stratification in this vulnerable population. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Figure 1

16 pages, 2702 KiB  
Review
Harnessing Azelaic Acid for Acute Myeloid Leukemia Treatment: A Novel Approach to Overcoming Chemoresistance and Improving Outcomes
by Silvia Di Agostino, Anna Di Vito, Annamaria Aloisio, Giovanna Lucia Piazzetta, Nadia Lobello, Jessica Bria and Emanuela Chiarella
Int. J. Mol. Sci. 2025, 26(9), 4362; https://doi.org/10.3390/ijms26094362 - 3 May 2025
Viewed by 913
Abstract
Azelaic acid (AZA), an aliphatic dicarboxylic acid (HOOC-(CH2)7-COOH), is widely used in dermatology. It functions as an inhibitor of tyrosinase, mitochondrial respiratory chain enzymes, and DNA synthesis, while also scavenging free radicals and reducing reactive oxygen species (ROS) production by neutrophils. [...] Read more.
Azelaic acid (AZA), an aliphatic dicarboxylic acid (HOOC-(CH2)7-COOH), is widely used in dermatology. It functions as an inhibitor of tyrosinase, mitochondrial respiratory chain enzymes, and DNA synthesis, while also scavenging free radicals and reducing reactive oxygen species (ROS) production by neutrophils. AZA has demonstrated anti-proliferative and cytotoxic effects on various cancer cells. However, its therapeutic potential in acute myeloid leukemia (AML) remains largely unexplored. AML is a complex hematologic malignancy characterized by the clonal transformation of hematopoietic precursor cells, involving chromosomal rearrangements and multiple gene mutations. The disease is associated with poor prognosis and high relapse rates, primarily due to its propensity to develop resistance to treatment. Recent studies indicate that AZA suppresses AML cell proliferation by inducing apoptosis and arresting the cell cycle at the G1 phase, with minimal cytotoxic effects on healthy cells. Additionally, AZA exerts antileukemic activity by modulating the ROS signaling pathway, enhancing the total antioxidant capacity in both AML cell lines and patient-derived cells. AZA also sensitizes AML cells to Ara-C chemotherapy. In vivo, AZA has been shown to reduce leukemic spleen infiltration and extend survival. As our understanding of AML biology progresses, the development of new molecularly targeted agents, in combination with traditional chemotherapy, offers the potential for improved treatment outcomes. This review aims to provide a comprehensive synthesis of preclinical evidence on the therapeutic potential of AZA in AML, consolidating current knowledge and identifying future directions for its clinical application. Full article
(This article belongs to the Special Issue Molecular Mechanism of Acute Myeloid Leukemia)
Show Figures

Figure 1

17 pages, 1693 KiB  
Review
Host Immune Response to Bovine Viral Diarrhea Virus (BVDV): Insights and Strategies for Effective Vaccine Design
by Asamenew Tesfaye Melkamsew, Tesfaye Sisay Tessema and Jan Paeshuyse
Vaccines 2025, 13(5), 456; https://doi.org/10.3390/vaccines13050456 - 25 Apr 2025
Viewed by 1579
Abstract
Bovine viral diarrhea (BVD) is caused by bovine viral diarrhea virus (BVDV), a member of the genus Pestivirus and in the family Flaviviridae. According to some studies, the disease incurs USD 1.5–2.5 billion per year and USD 0.50 to USD 687.80 per cow [...] Read more.
Bovine viral diarrhea (BVD) is caused by bovine viral diarrhea virus (BVDV), a member of the genus Pestivirus and in the family Flaviviridae. According to some studies, the disease incurs USD 1.5–2.5 billion per year and USD 0.50 to USD 687.80 per cow loss in beef and dairy farms, respectively. Using vaccines is among the strategies to prevent the disease. However, complete protection requires vaccines that target both the humoral and cellular immune responses of the adaptive immune system. A comprehensive literature review was made to provide insights into the interaction of BVDV with host immunity, vaccine applications, and the limitation of the currently available vaccines, as well as explore strategies used to advance the vaccines. BVDV causes immunosuppression by interfering with the innate and adaptive immune systems in a manner that is species and biotype-dependent. Interferon production, apoptosis, neutrophil activity, and antigen-processing and presenting cells are significantly affected during the viral infection. Despite maternal antibodies (MatAbs) being crucial to protect calves from early-age infection, a higher level of MatAbs are counterproductive during the immunization of calves. There are numerous inactivated or modified BVDV vaccines, most of which are made of cytopathic BVDV 1 and 2 and the BVDV 1a subgenotypes. Furthermore, subunit, marker, DNA and mRNA vaccines are made predominantly from E2, Erns, and NS3 proteins of the virus in combination with modern adjuvants, although the vaccines have not yet been licensed for use and are in the experimental stage. The existing BVDV vaccines target the humoral immune system, which never gives the full picture of protection without the involvement of the cell-mediated immune system. Several limitations were associated with conventional and next-generation vaccines that reduce BVDV vaccine efficiency. In general, providing complete protection against BVDV is very complex, which requires a multi-pronged approach to study factors affecting vaccine efficacy and strategies needed to improve vaccine efficacy and safety. Full article
(This article belongs to the Special Issue Vaccines and Antibody-Based Therapeutics Against Infectious Disease)
Show Figures

Figure 1

16 pages, 2089 KiB  
Review
Decoding Mycoplasma Nucleases: Biological Functions and Pathogenesis
by Xinchao Yi, Ying Huang, Xinru Li, Hao Xu, Chang Liu, Chao Li, Qianrui Zeng, Haodang Luo, Zufeng Ye, Jun He and Xiaoxing You
Toxins 2025, 17(5), 215; https://doi.org/10.3390/toxins17050215 - 24 Apr 2025
Viewed by 883
Abstract
Nucleases are critical metabolic enzymes expressed by mycoplasmas to acquire nucleic acid precursors from the host for their parasitic existence. Certain nucleases, either membrane-bound or secreted, not only contribute to the growth of mycoplasmas but also serve as key virulence factors due to [...] Read more.
Nucleases are critical metabolic enzymes expressed by mycoplasmas to acquire nucleic acid precursors from the host for their parasitic existence. Certain nucleases, either membrane-bound or secreted, not only contribute to the growth of mycoplasmas but also serve as key virulence factors due to their unique spatial structures and physiological activity. The pathogenesis includes, but is not limited to, degradation of host DNA and RNA, leading to disruptions of nucleic acid metabolism and the induction of host cell apoptosis; degradation of neutrophil extracellular traps (NETs), allowing escape from neutrophil-mediated killing; and upregulation of inflammatory molecules to modulate the immune response of the host. Understanding the biological functions of nucleases is essential for gaining deeper insights into the virulence and immune evasion strategies of mycoplasmas, which can inform the development of novel approaches for the prevention, diagnosis, and treatment of mycoplasma infections. Full article
Show Figures

Figure 1

22 pages, 5601 KiB  
Article
The Role of Extracellular-Vesicle-Derived miRNAs in Postoperative Organ Dysfunction in Neonates and Infants Undergoing Congenital Cardiac Surgery: An Exploratory Study
by Fahd Alhamdan, Wiriya Maisat, LeeAnn Higgins, Yue Chen, Juan Ibla and Koichi Yuki
Int. J. Mol. Sci. 2025, 26(8), 3837; https://doi.org/10.3390/ijms26083837 - 18 Apr 2025
Viewed by 745
Abstract
Despite significant advancements in medical and surgical care, the morbidity and mortality rates of neonates and infants undergoing congenital cardiac surgery remain high. To identify new pathomechanisms associated with postoperative organ dysfunction, extracellular vesicles (EVs) were isolated from plasma from neonates and infants [...] Read more.
Despite significant advancements in medical and surgical care, the morbidity and mortality rates of neonates and infants undergoing congenital cardiac surgery remain high. To identify new pathomechanisms associated with postoperative organ dysfunction, extracellular vesicles (EVs) were isolated from plasma from neonates and infants with or without organ dysfunction at three different time points around congenital cardiac surgery, and the EV miRNA expression profiles in the plasma were analyzed. A clear distinction was observed between the organ dysfunction (OD) and non-organ dysfunction (NOD) groups based on their EV miRNA expression profiles. Apoptosis and proinflammatory pathways were consistently upregulated across all time points in the OD group. Complement and coagulation cascades unexpectedly displayed downregulation at the end of the surgery in the OD group, which was verified further at the proteomic level in an independent patient cohort. The neutrophil extracellular trap (NET) formation was enhanced in the OD group across all time points compared to that in the NOD group. As NETs are known to consume complement components, these observed events might be interconnected. A feature selection machine learning method identified miR-200b-5p, miR-4800-5p, miR-363-3p, and miR-483-5p as robustly linked to organ dysfunction following congenital cardiac surgery (accuracy score = 9; SD in accuracy = 0.3162). In conclusion, our study suggested that neonates and infants with postoperative organ dysfunction were associated with enhanced NET formation and complement consumption. Full article
Show Figures

Figure 1

Back to TopTop